Lax- og silungsveiði

Umsögn í þingmáli 215 á 148. þingi


Þingmál lagt fram: 20.02.2018 Tegund þingmáls: Lagafrumvarp Fjöldi umsagna við þingmál: 7 Fjöldi umsagnabeiðna við þingmál: 16 Ferill þingmálsins á althingi.is Sendandi: Bjarni Jónsson Viðtakandi: Atvinnu­vega­nefnd Dagsetning: 06.03.2018 Gerð: Upplýsingar
j& z M í G r j u i i A A (o. 3 2 0 / S 2 ! 2 y n a l á a m d c f S f ^ m ^ ^ Möguleikar í álaveiðum og álaeldi I þ in g i Bjami Jónsson Má]snr. _ i w j n _____ Norðurlandsdeild Veiðimálastofnunar f ) A KJ O M á la ly k i l l : ----------^ . jJ . . J _ / L c_______ Þekking á lífsferlum ála sem miðað hefur verið við hérlendis er að mestu byggð á rannsóknum erlendis frá. Margt er hins vegar ólíkt með lífsháttum ála á Islandi og annars staðar þar sem hann er að finna. Skipta þar máli staðsetning landsins og sérstaða íslenskrar náttúru með sínum fjölbreyttu búsvæðum en tegundafæð. Einnig er ísland eina landið þar sem bæði er að fínna evrópuál og kynblendinga við amerískan ál. Nýjar erfðafræðirannsóknir staðfesta umfangsmikla blöndun þessara tegunda hér og að hún skili sér á milli kynslóða ála sem berast til Islands en komi ekki fram annarsstaðar á útbreiðslusvæði álsins. Álar á Islandi nýta sér fjölbreytt búsvæði í ám og vötnum og þá er jafnvel að fmna í svo ólíkum búsvæðum sem heitum lækjum, köldum og dimmum hraunsprungum eða fullsöltum sjó við ströndina. Hérlendis hefur frá árinu 1999 verið unnið markvisst að margvíslegum rannsóknum á álum. Þær rannsóknir hafa ekki síst beinst að göngum glerála til landsins, útbreiðslu, vistfræði og tegundasamsetningu ála á íslandi. Frá því rannsóknimar hófust hafa glerálar veiðst á 30 stöðum á landinu. Rannsökuð hafa verið áhrif sjávarfalla, vatnshita, birtu og fleiri þátta á faratferli glerálanna. Einnig hafa daghringir í kvömum glerálanna verið notaðir til að tímasetja hin ýmsu myndbreytingaskeið hjá álalirfunum og hve lengi þær eru á leið til landsins. Aðalgöngutími glerálanna er frá apríl og fram í byrjun júlí en þeirra fyrstu verður vart í mars. Gangan er að mestu yfírstaðinn um miðjan júlí ár hvert. Þeir þættir sem ráða hvað mestu um göngumar eru sjávarföll og vatnshiti. Rannsóknir á daghringjum í kvömum glerála sýna að þeir eru um eitt ár á leiðinni yfir hafið frá Þanghafinu til Islands, en áður var talið að ferðin tæki þá þrjú ár. Rannsóknir á glerálagögnum hafa ekki síst miðast við að afla þekkingar sem nýta megi við veiðar á glerálum til álaeldis. Nú fer fram tilraunaeldi á álum í samvinnu nokkurra aðila sem byggir á áframeldi á glerálum sem veiddir hafa verið hérlendis. Þær tilraunir hafa lofað góðu og er stefnt að því að auka umfang þeirra á árinu 2006. Rannsóknir á gulál og bjartál hafa beinst að útbreiðslu ála á íslandi, búsvæðavali, lífsháttum og nýtingarmöguleikum. Þessar rannsóknir hafa leitt í ljós að ála er að finna í öllum landshlutum í fjölbreyttum búsvæðum og með ólíka lífshætti. Hluti ála virðist ala allan aldur sinn í sjó án þess að fara í ferskvatn eða ísalt vatn. Niðurstöður benda einnig til þess að munur sé á tegundasamsetningu eftir búsvæðum og jafnvel landshlutum. Það er einstakt á Islandi að víðast er meirihluti ála hrygnur en hængar eru í minnihluta. Kynákvörðun ála er umhverfisháð og fer kynjahlutfall ála almennt annarsstaðar á útbreiðslusvæði þeirra eftir búsvæðum. ísland virðist því skera sig hér úr og er hlutfall hrygna víða allt að 100%. Hrygnur hafa meiri vaxtarmöguleika og verða stærri en hængamir. Þær eru því eftirsóttari til veiða og til eldis. Talsverðir vannýttir möguleikar em fyrir hendi í álaveiðum á íslandi en tilfinnanlega skortir enn meiri rannsóknir og þekkingu á lífsögu álsins, vexti, aldursdreifingu og stofnstærð eftir svæðum svo skipuleggja megi sjálfbærar veiðar á álum á íslandi. Sérstaklega virðast veiðar á bjartálum geta gefið góða raun. Fræðaþing landbúnaðarins 2006. Úrdráttur erindi. Evolution, 44(5), 1990, pp. 1254-1262 THE EVOLUTIONARY GENETIC STATUS OF ICELANDIC EELS J o h n C. A v is e , 1 W i l l i a m S. N e l s o n , 1 J o n a t h a n A r n o l d , ' R i c h a r d K . K o e h n ,2 G e o r g e C. W i l l i a m s ,2 a n d V i l h j á l m u r T h o r s t e i n s s o n 3 'D epartm ent o f Genetics, University o f Georgia, Athens, GA 30602 USA 2D epartment o f Ecology and Evolution, S ta te University o f New York, S tony Brook, N Y 11794 USA 2Hafrannsóknastofnunin, Skúlagötu 4, 101 Reykjavik, Iceland Abstract. —The Iceland population o f Anguilla eels contains an elevated frequency o f fish with vertebral numbers lower than those typical o f European localities. Several distinct hypotheses have been advanced to account for these morphologically atypical fish: for example, they could represent (1) genetically “pure” Amerícan expatriates, (2) genetically “pure” European types with ontogenetic abnormalities, or (3) hybrids between American and European forms. Here we critically test these and other possibilities by examining the joint dístributions o f allozyme markers, mitochondrial D N A markers, and vertebral numbers in Icelandic eels. The particular pattems o f association among the genetic and morphological traits demonstrate that the Iceland population includes, in low frequency, the products o f hybridization between American and European eels. Approximately 2-4% o f the gene pool in the Iceland eel population is derived from American eel ancestry. This hybrid zone is highly unusual in the biological world, because the mating events in catadromous eels presumably take place thousands o f kilometers from where the hybrids are observed as maturing juveniles. The molecular data, in conjunction with the geographic distributions, strongly suggest that the differences in migrational behavior and morphology between American and European eels include an important additive genetic component. Evolutionary hypotheses are advanced to account for the original separation o f North Atlantic eels into American and European populations, and for the presence o f hybrids in Iceland. Received May 22, 1989. Accepted December 1, 1989. N orth A tlan tic eels o f two nom inal species, Anguilla anguilla and A. rostrata, inhabit inland and coastal waters o f Europe and North Africa, and the Americas, re- spectively. The only known morphological distinction between the two is num ber of vertebrae, which typically ranges from 103 to 110 in eels from North America (with an approximate norm al distribution around mean 107.1), and from 110 to 120 in eels from Europe (approximate normal distri- bution around mean 114.7). Both forms ap- parently spawn in the tropical west-Atlantic Oeean (the Sargasso Sea—Fig. 1), yet dis- perse as larvae to “ appropriate” continental waters, such that eels with high vertebral counts arrive in Europe and those with low vertebraí counts predom inate in the Amer- icas (Table 1). On reaching sexual maturity, eels from both continents complete the ca- tadrom ous life cycle by returning to the Sar- gasso Sea to reproduce. The biological and taxonomic relation- ships o f American and European eels have Iong been the subject o f debate (review in Williams and Koehn, 1984). Tucker (1959) proposed that the vertebral count differ- ences are entirely ecophenotypic (not ge- netically based), and arise in response to different am bient temperatures experienced along the different migration paths taken by Iarvae destined for America versus Europe; thus American and European forms would belong to a single (perhaps panmictic) pop- ulation. The hypothesis o f a single popu- lation became untenable with more recent demonstrations that American and Euro- pean eels also differ significantly in fre- quencies o f traits with unambiguous genetic basis: malate dehydrogenase (M dh-2) allo- zymes (review in Williams and Koehn, 1984), and mitochondrial DNA (mtDNA) restriction sites (Avise et al., 1986). Early in this century, Schmidt (1925) had shown that newly produced Iarvae with high ver- tebral counts were concentrated northeast o f the Lesser Antilles, while larvae with low numbers o f vertebrae were found mainly to the west, between the Greater Antilles and Bermuda. The deduction, that spawning of American and European eels was largely al- lopatric, may help to account for the recent genetic data indicating two largely separate gene pools. However, McCleave et al. (1987) 1254 ICELAND EELS 1255 have recently shown that overlap in spawn- ing areas is probably greater than Schmidt (1925) had suspected. Many questions rem ain conceming the possibility o f hybridization and extent of gene flow (if any) between American and European eel popu la tions. Particularly within northem Europe, a low proportion o f eels (about 0.3%—Williams et al., 1984) exhibit vertebral counts normally charac- teristic o f American forms (i.e., less than 110). Three distinct possibilities have pre- viously been raised to account for these eels with Iow vertebral num bers in Europe (Boe- tius, 1980): (1) occasionaí straying of ge- netically “pure” American eel larvae into water masses bound for northem Europe, (2) occasional action o f environmental in- fluences that reduce vertebral numbers in “pure” European eels, and (3) occasional hybridization between American and Eu- ropean forms. Opportunities to address these and other possibilities become magnified in Iceland, where eel populations show pre- dom inantly European characteristics, yet exhibit an elevated frequency o f low ver- tebral counts and o f the M dh-2a allele nor- mally associated with the American form (Table 1). Here we critically evaluate several alter- native hypotheses to account for atypical eels by examining the jo in t morphological and genetic characteristics o f eels from Ice- land. Genetic markers (M dh-2 and mt- DNA) in conjunction with vertebral count numbers dem onstrate that hybridization between American and European eels has indeed contributed to the Iceland eel gene pool. The genetic data also allow an esti- mate o f the magnitude o f flow o f American eel alleles into Iceland, and m otivate spec- ulation about the evolutionary origins and mode o f differentiation o fthe American and European eel populations. M a t e r ia l s a n d M e t h o d s A total o f 197 eels was collected from four sites in Iceland (Fig. 1) as follows: (1) Rey- khólar (N = 48), (2) Óxnalaekur (N = 70), (3) Stokkseryi (N = 54), and (4) Villingholt- vatn (N = 25). Frozen specimens were shipped to our Iaboratories at Stony Brook and Georgia, where assays o f M dh-2 and m tD N A , respectively , were conducted. ( AFRICA Fig. I. Freshwater geographic dístributions (shad- ed areas) o f American and European eels; reproduction occurs in the Sargasso Sea area. Numbered collectíon locales in Iceland are described in Materials and Meth- ods. Numbers o f vertebrae in the Iceland spec- imens were counted from X-ray photo- graphs. In addition, 17 eels collected in Aar- hus, Denmark, and 27 from Long Island, N.Y., were scored solely for mtDNA geno- type. M dh-2 genotypes were assayed by starch gel electrophoresis (Comparini and Rodino, 1980). m tD N A genotypes were determined from restriction digestion profiles revealed in Southem blot assays, using as a probe previously purified eel m tDNA (Avise et al., 1986). The DNA isolation and Southem blotting procedures were similar to those described by M aniatis et al. (1982). For each specimen, either or both o f two endonu- cleases, B glll and Pvull, were used to digest total genomic DNA. These enzymes were chosen because each produces gel profiles that differ by at least two restriction site changes in American versus European eels (Avise et al., 1986). Hence the possibility o f misdiagnosis o f an individual due to con- vergent m utations at multiple m tDNA sites is negligible. For simplicity, in this paper the mito- chondrial genotype “X ” will refer to the pooled class o f typically European mtDNA 1256 J. C. AVISE ET AL. T a b l e 1. Characteristics that distinguish eel populations in North America from those in Europe. AIso shown are frequencies o f these traits in eels from Iceland. T rait America Europe Iceland Reference Vertebral number Range Freq. < 1 1 0 Freq. < 1 1 0 Malate dehydrogenase Freq. M dh-2a Freq. M dh-2a Mitochondrial D N A Freq. “C” genotype Freq. “C” genotype 103-110 0.994 (N — 1,609) 0.958 (N = 696) 1.00 (N = 109) 1.00 (N = 27) 110-120 0.003 (N = 15,854) 0 .100(iV = 1,079) 0.00 (N = 29)1 0.00 (N = l l ) 2 108-118 0.033 (N = 241) 0.056 (N = 197) 0.129 (N = 241) 0.109 (N = 197) 0.036 (N = 197) Williams and Koehn (1984) and refer- ences therein Present study Williams and Koehn (1984) and refer- ences therein Present study Avise et al. (1986) Present study 1 EngJand and Ireland. 2 Denmark. genetic markers (Avise et al., 1986), whiie m tDNA “C” will refer to American mt- DNA genotypes. Similarly, M dh-2b will re- fer to a pooled class o f typically European electromorphs, distinct from M dh-2a which is the com m on allele in North America (Ta- ble 1). R e s u l t s Genetic Status o f Fish with Low Vertebral Counts In the current sample o f 197 fish from Iceland, 11 (or 5.6%) exhibited vertebral counts o f 110 or less. Thís value represents roughly a 17-fold increase in the frequency o f such “ low count” eels compared to other European locales, but is consistent with pre- vious estimates for the Iceland population (Table 1). The following comparisons are based on data summ arized in Table 2 and Figure 2. These data involve genotype fre- quencies for m tD N A and M dh-2, their as- sociations with one another (Table 2), and th e ir associations w ith verteb ra l count numbers (Fig. 2). Since Boetius’ (1980) hy- potheses refer specifically to such low count fish, we will initially focus attention on the genetic status o f eels in this lower end of the frequency distribution o f vertebral numbers (Fig. 2). We will then examine properties of the pooled collections o f Icelandic eels. Hypothesis 1: Icelandic eels with low ver- tebral counts are American expatriates. If the Icelandic eels with Iow vertebral num- bers are “pure” American eels that happen to have settled in Iceland, they should rep- resent a random draw from the American gene pool. They do not. Six o f the 11 eels with 110 or fewer vertebrae possess mtDNA genotype “X ” that has not yet been ob- served in any American locale (Table 1). O f the remaining five eels with low vertebral numbers, none is homozygous for M dh-2a/ M dh-2a, the prevalent allozyme genotype in the Americas. One o f these latter individ- uals is homozygous for M dh-2b/M dh-2b, a genotype expected with frequency 0.002 in America, while the other four are hetero- zygotes {Mdh-2a/M dh-2b). The probability that any single eel from America is a het- erozygote is 0.08; the probability that four such eels would all be heterozygous is 4 x 10“5. Clearly then, eels with low vertebral counts in our Iceland sample are not Amer- ican expatriates collectively, nor with high likelihood are they pure American eels in- dividually. Hypothesis 1 also seems unlike- ly on morphological grounds alone, since all 11 Icelandic eels with “ low” vertebral num- bers have counts above the American mean. Hypothesis 2: Icelandic eels with low ver- tebral counts are ontogenetic abnormalities within the European gene poo l If the Ice- landic eels with low vertebral numbers are “ pure” European eels, they should provide a random sample (with respect to genes not involved in vertebral development) from the European gene pool. They do not. Five o f the 11 eels with 110 or fewer vertebrae pos- sess m tD N A genotype “C” that has not yet ICELAND EELS 1257 T able 2. Numbers (in parentheses) and frequencies o f the joint M dh-2 /m tD N A genotypes in eels from Iceland. The cytonuclear associations (and their stan- dard errors) are summarized using the allelic (D ) and genotypic (D \, D i, D 3) disequilibríum statistics o f As- mussen et al. (1987). M dh-2 chondria a/a a/b b/b Total c 0.000 0.030 0.005 0.035 (0) (6) (1) (7) X 0.000 0.188 0.777 0.965 (0) (37) (153) (190) Total 0.000 0.218 0.782 1.000 (0) (43) (154) (197) D = 0.011 ± 0.005 D \ = 0.000 ± 0.000 d 2 = 0.022 ± 0.009 d 3 = - 0 .0 2 2 ± 0.009 been observed in any European locale (Ta- ble 1). O f the remaining six eels with low vertebral count numbers, five are hetero- zygous for M dh-2a/M dh-2b, an allozyme ge- notype observed in Europe with frequency 0.18. Hence the probability that any o f these latter eels is “ pure” European is less than 20%, and the probability that all five are E uropeanis2 x 10“4. Clearly, eels with low vertebral counts in our Iceland sample do not possess typical European genotypes. Hypothesis 3: Icela.nd.ic eels are part o f a selection-mediated cline o f genotype fre- quencies in one Atlantic eel gene pool. This possib ility , n o t considered by Boetius (1980), suggests that the interm ediate allele and vertebral count frequencies in Iceland eels (Table 1) represent selection-mediated responses to an Icelandic habitat that is somehow interm ediate to m ost American and European locales. I f so, allele frequen- cies at several loci might indeed be shifted concordantly. However, within the Iceland population, there should be no particular pattem o f association among unlinked (and nonepistatic) genes, or between such genes and vertebral count numbers. But such as- sociations do exist (Fig. 2). In a 2 x 2 test o f independence (Sokal and Rohlf, 1969), involving the m tD N A genotypes “C” and “X ” and the vertebral count categories < 110 versus >110, there is a highly signifi- cant association between the American-type m tDNA and low vertebral count number No. Vertebrae F ig . 2. Frequency distribution o f vertebral count numbers in the current sample o f eels from Iceland. Shaded areas o f the histogram indicate fish with the heterozygous genotype M dh-2a/M dh-2b (no M dh-2a/ M dh-2“ homozygotes were observed). In parentheses are the numbers o f individuals with various vertebral counts that exhibited the m tDNA-C genotype nor- mally characteristic o f American eels. (G = 24.1, P c 0.01). In a similar test in- volving Mdh, there is a comparably strong association between M dh-2a and low num- bers o f vertebrae (G = 21.4, P <c 0.01). (Associations between the M dh and mt- DNA genotypes will be discussed later.) Hypothesis 4: Icelandic eels represent the founder stock fo r both American and Euro- pean eelpopulations. U nder this hypothesis, the Icelandic gene pool contains American and European genotypes by virtue o f reten- tion o f polymorphisms from an ancestral stock in Iceland. This possibility seems very unhkely since Iceland became habitable only about 10,000 years ago. Furthermore, any retained polymorphisms at unlinked and nonepistatic loci are not expected to be as- sociated w ithin particular individuals. But as discussed beyond, such associations be- tween m tD N A and M dh-2 do exist, as do associations between these genotypes and vertebral count numbers. Hypothesis 5: Icelandic eels with low ver- tebral counts include F, hybrids between American and European forms. The most com m on genotypes expected in F^ hybrids between American and European eels are M dh-2a/M dh-2b/m tÐ N A -C , and M dh-2a/ M dh-2b/m tÐ N A -X , depending on whether an American or European eel was the female parent in the cross. (From Mendelian cal- culations, the likelihood that one or the oth- er o f these genotypic classes is present in an 1258 J. C. AVISE ET AL. F, is 0.86.) Among the 11 eels with low vertebral numbers, 5 were M dh-2a/M dh-2b/ m tDNA-C, and 5 were M dh-2a/M dh-2b/ m tDNA-X. This finding suggests that these indivíduals may indeed be first generation hybrids, and furtherm ore that the crosses involved in their production took place in both directions with respect to sex. Nonetheless, an analysis o f markers from multiple nucleargenes would be required to firmly establish that these indíviduals are Fi as opposed to later generation hybrids. For example, a first-generation backcross to a European eel would be expected to possess either o f the two M dh/m XD NA genotypes listed above with probability 0.52. In fact, there are two initial lines o f evidence to sug- gest that our Iceíandic eel sample as a whole includes some non-F! hybrids. First, one individual with low vertebral count number exhibited M dh-2b/M dh-2b, a genotype ex- pected in an F, with probability only 0.04. Second, even after rem oval o f the 11 eels with vertebral counts < 110 from our Ice- land sample, significant associations remain between lower vertebral count numbers (in this case 111-113) and both the M dh-2a and m tD N A -C frequencies (G = 17.2 and 16.8, respectively; P <s 0.01). Thus overall, there is strong genetic evi- dence for hybridization between American and European eels. M ost o f the eels in Ice- land w ith low vertebral count numbers are likely Fi or other early generation hybrids. In addition, there is a probable invasion of American genes (via backcrossing) into the predom inantly European gene pool o f Ice- landic eels. We will now estimate the rela- tive contributions o f American and Euro- pean alleles to the Icelandic stock. Gene Flow into the Iceland E el Population The eel stock in Iceland clearly contains a mixture of alleles from America and Europe. The contribution o f European genes to the Ice- landic gene pool can be estim ated by M = (qh - q y ( q h - q.J (1) (Wallace, 1968 p. 81), where qz, qb, and qh represent the frequencies o f the M dh-2a (or mtDNA-C) allele in America, Europe, and íceland, respectively. Using the M dh-2 al- lele ffequencies sum m arizedin Table 1 (with qh the weighted average of M dh-2a in the two surveys), M = 0.977. This value agrees closely with the estimate of M = 0.964 ob- tained from a sim ilar analysis o f the m t- DNA haplotype frequencies (Table 1). Thus Iceland eels exhibit European genes pre- dominantly, and both M dh-2 and m tDNA indicate that only about 2-4% (i.e., 1 — M ) o f the gene pool in the Iceland eel popula- tion is derived from American eel ancestry. Interestingly, the percentage shift in the mean vertebral count num ber in Icelandic eels toward the American population mean (9%) appears generally consistent with these conclusions. Additional inform ation can be extracted from the jo in t distributions o f m tDNA and M dh-2, as sum m arized by allelic (D) and genotypic (£>,, D 2, and D 3) cytonuclear dis- equilibria defined by Asmussen et al. (1987). The param eter D measures the association between alleles at a nuclear and a cytoplas- mic locus, and D ,, D 2, and D 3 measure as- sociations between two cytotypes and the three respective genotypes at a diallelic nu- clear locus. These four measures o f disequi- libria are expected to exhibit certain pat- tems in a hybrid zone depending on a variety o f factors such as mating behavior, selec- tion, and migration. Table 2 shows the cy- tonuclear disequilibria calculated for Ice- landic eels. Using the G-test approach described in Asmussen et al. (1987), the hy- pothesis that all four disequilibria equal zero can b e re jec ted íU ^ 13.65, P = 0.001), while the hypothesis that D, alone equals zero cannot (G = 0.04, P = 0.84). (Because of the small expected counts in some cells of Table 2, we confirmed that the G-value of 13.65 was significant by an exact test that involved calculating the multinom ial prob- abilities o f all possible tables wíth the same marginal counts as those exhibited by Table 2.) We conclude that there are significant associations between m tD N A and M dh-2 in the Iceland population. To explain the pattem of cytonuclear as- sociation in the context of migration of eels into Iceland, we can apply the models de- veloped by Asmussen et al. (1989). As ap- plied to the current situation, we can view the Iceland stock as being composed of some ICELAND EELS 1259 fraction o f pure European and American eels, and some fraction o f hybrids stemming from random mating in the hybrid zone. We further assume that the censusing takes place after mating, migration o f pure Amer- ican and European eels to Iceland occurs at a fixed rate per (nonoverlapping) genera- tion, and genotypes are neutral with respect to fitness. Recursions for the cytonuclear genotypic frequencies under this model are given by Equations (B4) in Asmussen et al. (1989). The model was fitted to the data of Table 2 by the m ethod o f maximum like- lihood, under the assum ption that the Ice- land eel population is at genetic equilibri- um. The best goodness-of-fit (G = 8.08, P = 0.044) was obtained when the per-gen- eration m igration rates o f pure American ( m x) and pure European (m 2) eels into the Iceland population were 0.02 and 0.70, re- spectively. Thus by this approach, the ac- cumulated proportion o f Icelandic alleles with European ancestry is M = m 2/(m x + m 2) = 0.972. This estim ate is virtually iden- tical to the values obtained above from a consideration o f the m tDNA and nuclear genotypes separately (M = 0.964 and 0.977, respectively). Spatial Structure o f Genotypes American and European eels have dis- tinct dispersal pattem s that take them to the appropriate continent. In the current study, we also have the first evidence for nonran- dom settlement o f eels on a microgeograph- ic scale. Among the four collection sites in Iceland, there was significant heterogeneity in the frequencies o f both the M dh-2a and m tDNA-C alleles (GH = 19.7 and 20.7, re- spectively, both P < 0.01), and in frequen- cies o f fish w ith <110 versus >110 verte- brae (Gn = 14.3, P < 0.01). For example, all seven individuals carrying mtDNA-C were present in the Reykhólar collection, 37 o f the 43 M dh heterozygotes were observed in the Reykhólar and Öxnalaekur collec- tions, and all 11 fish with <110 vertebrae were in Reykhólar and Öxnalaekur. Such nonrandom spatial distributions o f geno- types and morphologies raise the possibility that specific subsets o f eel reproduction (products o f certain spawns or sets o f spawns) may occasionally tend to stay to- gether and settle jointly. Nonetheless, any particular distribution o f genotypes on a fine spatial scale would likely be ephemeral, changing with each round o f reproduction and current-m ediated migrational influx. I f this is tm e, the microspatial differences w ould n o t be expected to accum ulate through time, and hence are not necessarily inconsistent with the absence o f dram atic macrogeographic heterogeneity o f gene fre- quencies within regions such as N orth America or Europe (Avise et al., 1986; Wil- liams and Koehn, 1984). In the future, it would be o f interest to m onitor tem poral variation in genotype frequencies at partic- ular locales. D is c u s s io n We have shown that the Reykhólar and Öxnalaekur samples o f eels in Iceland in- clude, in low frequency, hybrids between American and European forms. This hybrid situation is highly unusual, because the lo- cation in which the hybrid animals are found as juveniles and young adults is presumably far rem oved from where the mating events take place (some 5,000 km away, in the Sar- gasso Sea). W hat could account for the orig- inal genetic separation o f American and Eu- ropean eels, and for the occurrence o f hybrids in Iceland? The following scenarios are based on available genetic and life his- tory data for eels, and should be viewed as hypotheses requiring further evaluation. At some tim e in the past, all N orth At- lantic eels m ust have belonged to a single population that subsequently became sep- arated into American and European forms. The current nucleotide sequence divergence in m tDNAs between American and Euro- pean populations (after correction for with- in-continent divergence) is approximately p = 0.03 (Avise et al., 1986). U nder a “con- ventional” m tD N A clock calibration o f 2% sequence divergence per m illion years (Brown et al., 1979; Shields and Wilson, 1987), a separation time o f approximately 1.5 million years ago is suggested. The mul- tilocus allozym e d istance [N ei’s (1972) measure] is D = 0.11 codon substitutions per locus (Williams and Koehn, 1984), which also suggests a divergence tim e of perhaps 1-2 million years under some “con- 1260 J. C. AVISE ET AL. ventional” protein clock calibrations (see A vise and A quadro , 1982). W hile the m tD N A and protein estimates o f diver- gence times are provisional, they both point to a tim e o f separation in the Pleistocene. Ancestral eels in the N orth Atlantic prob- ably exhibited a catadrom ous life cycle [no species o f Anguillidae is known to pass its entire life history in freshwater, and all other Anguilliformes are strictly marine (Mar- shall, 1966; Moyle and Cech, 1982)]. These ancestral eels m ay have bred as one popu- lation, producing larvae destined for one continent or geographic region. The follow- ing “dispersal” scenario will assume that juveniles o f the ancestral population oc- curred in Europe and secondarily colonized N orth America, but the arguments hold equally well i f the direction of continental colonization is reversed. Suppose th a t during the P leistocene, shifting oceanic currents brought some lar- vae normally destined for Europe within reach o f the N orth Ameriean coastline, and that some o f these larvae settled “prema- turely” (North Atlantic current pattem s are thought to have varied widely in the Pleis- tocene, due to global climatic changes as- sociated w ith glacial advances an d re- tre a ts —e.g., KefFer e t al., 1988). A fter maturing in N orth America, and on retum - ing to the sea to reproduce, these eastward- swimming eels would likely have first en- countered “ suitable” waters for spawning in the westem portion of the Sargasso Sea area, while eels retum ing westward from Europe would first encounter suitable spawning waters in the eastem Sargasso Sea area. Hence there may have been an initial ten- dency for assortative mating by continental origin due simply to the geographic posi- tioning o f retum ing adults. Suppose further that these oceanie cur- rents persisted, and that there was some ini- tial genetic variation with respect to larval settlement times. Today, American eels set- tle in about 1 year and European eels settle after 2 years or m ore (Williams and Koehn, 1984). Initially, as now, there m ust have been strong disruptive selection favoring larval settlem ent on one continent or the other, eventually leading to the bim odal dis- tribution o f larval settlement times. Con- comitantly, this selection pressure should have provided a fitness advantage to any genetically based behav io ra l tendencies (migration routes or mating preferences per se) leading to assortative m ating among eels from the two eontinents. Thus once set in m otion by an initial continental coloniza- tion event, a selection-driven feedback pro- cess should have reinforced any original tendency for premating isolation between the two eel forms. An im portant component o f this premating isolation is no doubt the continuing spatial separation within the Sargasso Sea of the m ajor concentrations for breeding o f American versus European eels (Schmidt, 1925), but hom otypic mating preferences in sympatry may also be at work (see McCleave et al., 1987). A lternatively , a “ v ica rian t” scenario might be entertained to account for the orig- inal separation o f American and European eels. Perhaps a single ancestral population produced larvae that dispersed to north- central Atlantic coasts, particularly Green- land, Ieeland, and northem Scandinavia. W ith cooling during Pleistocene glacials, this northem region became uninhabitable, and forced a southward retreat and disjunction o f spawning areas. Two separate breeding grounds may then have produced larvae destined for N orth America and Europe, re- spectively. Adaptive choice o f spawning re- gion would again be accompanied by shifts in behavior o f larvae enabling them to reach appropriate temperate coasts. W ith the sub- sequent retreat of sea ice and the reemer- gence o f su itab le h ab ita ts no rthw ard , spawning areas may then have expanded and secondarily overlapped, leading to the current hybrid situation. In any event, Iceland occupies a position longitudinally interm ediate to N orth Amer- ica and Europe (Fig. 1). Sínce we now know that some hybrid eels occur in Iceland, it seems reasonable to speculate that this is the result o f an interm ediate hybrid migra- tional behavior. This behavior could reflect larval dispersal along unique currents stem- ming from the geographically interm ediate spawning grounds in the Sargasso Sea where American and European eels presumably overlap, and/or an interm ediate settlement tim e from ocean currents sweeping by Ice- land. A general behavioral intermediacy of hybrid animals is not unusual (Brown, 1975; ICELAND EELS 1261 Lamb, 1987), and there is at least one known precedent for the intermediacy o f hybrids with respect to migratory behavior: Berthod and Q uem er (1981; see also Berthod, 1988) found that hybrids between migratory and nonmigratory European warblers exhibit pattem s o f migratory restlessness interme- diate to those o f their parents. Nonetheless, there are some potential problems with this simple hypothesis for the elevated frequency o f hybrid eels in Ice- land. Surface currents o f the G ulf Stream, after crossing the N orth Atlantic, are thought to pass the British Isles before swinging west in higher latitudes and reaching Iceland (this presumably accounts for the great prepon- derance o f European genotypes in the Ice- landic eel population). Yet England does not appear to exhibit an elevated frequency o f American vertebral count numbers. How- ever, ocean currents and eddies in the North Atlantic, particularly at various depths, are not well understood (Richardson, 1985), and it is quite possible that certain eddies reach Iceland via a m ore direct route from the Sargasso Sea, carrying with them hybrid lar- vae from an overlap zone in the breeding area. Or perhaps young eels actively swim north from the G ulf Stream, at an inter- mediate settlem ent time, to reach Iceland. W hat have been the genetic consequences o f hybridization in eels?—are the hybrids an evolutionary dead-end, or have they pro- vided an avenue o f gene exchange between the American and European forms? For ex- ample, Boetius (1980) found that mean numbers o f vertebrae are homogeneous over m ost o f the European range o f eels, but are shifted slightly toward American values in localities such as Scotland and Sweden, a result that could be interpreted as evidence for introgression o f American genes into the northem European gene pool (sample sizes are not yet large enough to evaluate the pos- sibility o f a comparable shift in northem Europe in frequencies o f M dh-2 or m tD N A genetic markers). Answers to questions about the m agnitude and pattem o f genetic introgression depend in large part on as- sumptions about the ancestral condition of the American and European gene pools. Suppose, as an ex trem e exam ple, th a t American and European eels were at one tim e fixed for altem ate alleles at M dh-2. An application o f Equation (1) to the M dh-2 data in Table 1 then suggests that about 10% o f the nuclear genes in Europe are o f Amer- ican ancestry, and that about 4% o f the nu- clear genes in America are o f European an- cestry. But an altem ative interpretation is that the presence o f both M dh-2 alleles on the two continents represents the parallel retention o f an ancestral polym orphism in the absence o f any introgression. W ith very large genetíc samples o f European eels, it might be possible at least partially to eval- uate these competing hypotheses: if hybrid- ization and introgression were predomi- nantly recent, genetic disequilibrium might rem ain among alleles at unlinked loci, and associations could exist between such mark- er genes and particular morphological fea- tures such as vertebral counts. Overall, we have shown that the Icelandic eel stock includes, in low frequency, the products o f hybridization between Ameri- can and European eels. Associations be- tween M dh-2 and m tD N A genotypes, mor- phologies, and locations strongly imply that there is an im portant additive genetic com- ponent to intermediate (hybrid) eel verte- bral count numbers and m igrational behav- ior. While the firm documentation o f hybrids in Iceland eliminates some o f the hypoth- eses previously advanced to account for the unusual properties o f Icelandic eels, the findings also raise many new questions, par- ticularly about the specific location o f the hybrid breeding grounds, and the migra- tional routes taken by hybrid larvae. Fur- ther field studies, perhaps in conjunction with genetic tests, will be required. A c k n o w l e d g m e n t s We thank M. Ball and B. Bowen for useful discussion and help with data analyses and J. H. M cDonald for running the protein gels. The Institute o f Freshwater Fisheries in Ice- land provided generous assistance in ob- taining specimens for this study. W ork was supported by NSF G rant BSR-8805360 (to J.C.A.). Literature C ited Asmussen, M. A., J. Arn o ld , and J. C. A vise. 1987. Definition and properties o f disequilibrium statis- tics for associations between nuclear and cytoplas- m ic genotypes. Genetics 115:755-768. Asmussen, M . A., J. Arnold , a nd J. C. Avise. 1989. 1262 J. C. AVISE ET AL. The effects o f assortative mating and migration on cytonuclear associations in hybrid zones. Genetics 122:923-934. A v is e , J . C., a n d C. F . A q u a d r o . 1982. A compar- ative summary o f genetic distances in the verte- brates: Pattems and correlations. Evol. Biol. 15: 151-185. A v is e , J. C., G. S. H e l f m a n , N. C. S a u n d e r s , a n d L. S. H a l e s . 1986. Mitochondrial D N A differentia- tion in North Atlantic eels: Population genetic con- sequences o f an unusual life history pattem. Proc. Natl. Acad. Sci. U.S.A. 83:4350-4354. B e r t h o d , P. 1988. Evolutionaryaspectsofmigratory behavior in European warblers. J. Evol. Biol. 1: 195-209. B e r t h o d , P., a n d U . Q u e r n e r . 1981. Genetic basis o f migratory behavior in European warblers. Sci- ence 212:77-79. Boetius, J . 1980. Atlantic Anguilla. A presentation o f old and new data o f total numbers o f vertebrae with special reference to the occurrence o f Anguilla rostrata in Europe. Dana 1:1-28. B r o w n , J. 1975. The evolution o f Behavior. Norton, N.Y. B r o w n , W. M., M. G e o r g e , J r . , a n d A. C. W i l s o n . 1979. Rapid evolution o f animal mitochondrial D N A. Proc. Natl. Acad. Sci. U.S.A. 76:1967-1971. C o m p a r i n i , A., a n d E. R o d i n o . 1980. Electropho- retic evidence for two species o f Anguilla leptoce- phali in the Sargasso Sea. Nature (London) 287: v 435-437. K e f f e r , T., D. G. M a r t i n s o n , a n d B. H. C o r l i s s . 1988. The position ofth e GulfStream during Qua- temary glaciations. Science 241:440-442. Lamb, T. 1987. Call site selection in a hybrid pop- ulation oftreefrogs. Anim. Behav. 35:1140-1144. M a n i a t i s , T., E. F. F r i t s c h , a n d J. S a m b r o o k . 1982. Molecular Cloning. Cold Spring Harbor Lab., Cold Spring Harbor, NY. M a r s h a l l , N . B. 1966. The Life o f Fishes. Universe Books, N.Y. M c C l e a v e , J. D., R. C. K l e c k n e r , a n d M. C a s t o n - g u a y . 1987. ReproductivesympatryofAmerican and European eels and implications for migration and taxonomy. Am. Fish. Soc. Symp. 1:286-297. M o y l e , P. B., a n d J. J. C e c h , J r . 1982. Fishes: An Introduction to Ichthyology. Prentice-Hall, Engle- wood Qiffs, NJ. N e i , M. 1972. Genetic distance between populations. Am. Nat. 106:283-292. R i c h a r d s o n , P. L. 1985. Derelicts and drifters. Nat- ur. Hist. 94:43-49. S c h m i d t , J. 1925. The breeding places o f the eel. Smithson. Rep. 1924:279-316. S h i e l d s , G. F., a n d A. C. W i l s o n . 1987. Calibration o f mitochondrial D N A evolution in geese. J. Mol. Evol. 24:212-217. S o k a l , R. R., a n d F. J. R o h l f . 1969. Biometry. Freeman, San Francisco. T u c k e r , D. W. 1959. A new solution to the Atlantic eel problem. Nature (London) 183:495-501. W a l l a c e , B. 1968. Topics in Population Genetics. Norton, N.Y. W i l l i a m s , G. C., a n d R. K . K o e h n . 1984. Popula- tion genetics o f North Atlantic catadromous eels (Anguilla), pp. 529-560. In B. J. Tumer (ed.), Evo- lutionary Genetics o f Fishes, Plenum Press, N. Y. W i l u a m s , G. C., R. K . K o e h n , a n d V. T h o r s t e i n s - s o n . 1984. Icelandic eels: Evidence for a single species o f Anguilla in the North Atlantic. Copeia 1984:221-223. Correspondíng Editor: R. L. Honeycutt FOLIA PARASITOLOGICA 54: 141-153, 2007 Parasite communities of eels Anguilla anguilla in freshwater and marine habitats in Iceland in comparison with other parasite communities of eels in Europe Árni Kristmundsson and Sigurður Helgason Institute for Experimenta! Pathology at Keldur, University of Iceland, v/Vesturlandsveg, IS-l 12 Reykjavik, Iceiand Key words: Anguilla anguilla, eel, parasites, parasite communities, diversity, species richness, comparison, Iceland Abstract. Ninety-five eels from one marine and three freshwater localities in Iceland were examined for parasites. Twenty spe- cies were found, 12 from marine habitat, 12 from freshwater and 4 species were found in both habitats. These are: Eimeria an- guillae, Chilodonella hexasticha, Tríchodina fultoni, T. jadraníca, Myxidium giardi, Myxobolas kotlani, two Zschokkella spp., Derogenes varicus, Deropristis inflata, Diplostomum sp., Plagioporus angalatus, Podocotyle atomon, Anisakis simplex (larva), Eustrongylides sp. (larva), Hysterothylacium aduncum (larva), Raphidascaris acus (larval and adult stages), Bothríocephalus claviceps, Proteocephalus macrocephalus, and a pseudophyllidean iarva. Thirteen of these species are new parasite records trom Icelandic waters. The component community o f marine eels was characterized by low diversity and a high dominance of a single species. Overall, seven species of helminths were observed, up to five different species occurring in an individual ftsh. The com- ponent community of the freshwater eels was species-poor with Iow diversity and relatively high dominance of single species. A between-sites difference in the freshwater eels was considerable; only Diplostomum sp. was found at more then one sampling site. Similar to previous studies, there is a total replacement of freshwater macroparasite species by marine ones in saline waters. But unlike research abroad in which species richness decreases with higher salinity, the marine eels in Iceland have considerably higher richness than the freshwater ones. The parasite communities of freshwater eels in Iceland are, in general species-poorer, less diverse and having higher Berger Parker (BP) dominance than other eel communities in Europe. Marine eels have on the other hand comparable species richness, are less diverse and with a high BP dominance. Five species o f fishes live in the Icelandic freshwater ecosystem: Atlantic salmon Salmo salar L., brown trout Salmo trutta L., arctic char Salvelinus alpinus (L.), three-spined stickleback Gasterosteus aculeatus L., and eel Anguilla anguilla (L.). According to Albert et al. (2006), about 15% o f the eel population in Iceland are hybrids between A. anguilla and the American eel, A. rostrata (Lesueur). During the last decades, extensive research on the parasite fauna o f the European eel has been carried out in many European countries (e.g. Koie 1988, Kennedy 1997, Kennedy et al. 1997, Borgsteede et al. 1999, Sures et al. 1999, Saraiva et al. 2005). To date, observations on parasites o f Icelandic freshwater fishes have been limited; only few papers published, focusing on parasites o f salmonids (Stephenson 1940, Brinckmann 1956, Baer 1962, Richter 1981, Richter 1982a, b, c, Malmquist et al. 1986, Frandsen et al. 1989, Kristmundsson and Richter 2002-2003) and three- spined sticklebacks (Blair 1973). The present study is the first one made on the parasite fauna o f eels in Ice- land. This paper presents the composition and diversity characteristics o f parasite communities o f freshwater and marine eels in Iceland in comparison with other similar studies in Europe. MATERIALS AND METHODS Study area and fish eollection. A total number of 95 eels from one marine (GV) and three freshwater localities (OL, ST, VV) were examined (Fig. 1). The eels were caught in fyke nets; samples from OL in September 2000 and 2001; from ST in August 1999 and August-September 2000; írom VV in June 2000 and October 2001; from GV in June-July 2001. Eel length ranged from 34.0 to 63.5 cm (median 53.5 cm) in OL, from 33.5 to 72.5 cm (median 59.3 cm) in ST, from 33.0 to 71.0 cm (median 54.3 cm) in VV and from 42.0 to 71.0 cm (median 52.3 cm) in GV (Fig. 2). Fig. 1. Sampling sites. GV - Grafarvogur (n = 20), a shallow creek with a salinity of 30-33%o; OL - ditches and tributaries of the glacial river Olfusa (n = 15); ST - Steinsmyrarfljot (n = 30), a small shallow lake (max depth <2.5 m); VV - Vi- filsstadavatn (n = 30), a small shallow lake (max depth <2.5 m). All three freshwater localities harbour brown trout, arctic char and three-spined sticklebacks; OL also harbours salmon. A ddress for correspondence: Á. K ristm undsson, Institute for Experim cntal Pathology, University o flce lan d , K eldur v/Vesturlandsveg, IS -112 Reykjavik, Iceland. Phone: ++354 585 5100; Fax: ++354 567 3979; E-mail: amik@ hi.is 141 mailto:amik@hi.is Fig. 2. Length distribution of eels from the localities studied. The eels were brought alive to the Iaboratory and either kept alive in aquaria until they were examined (completed within a week of capture), or kept frozen at -20°C for subse- quent examination. If examined frozen, the gills were excised and put in 70% alcohol prior to freezing. Examination o f eels and identifícation o f parasites. The eels were killed with an overdose of phenoxyethanol, and their length and weight was determined. The extemal surface, fins, nostrils, buccal cavity, each gill arch and excised eyes were examined thoroughiy with a stereoscope. Smears ffom blood and eye tissues and scrapings from the extemal surface and from slices of two gill arches ffom each side of a fish were examined for parasites with a compound microscope. The visceral cavity and ail major organs (heart, brain, liver, kidney, spleen, gall bladder, urinary bladder, swim-bladder and go- nads) were examined thoroughly using both a microscope and a stereoscope. The alimentary tract was removed; the oe- sophagus, stomach and intestine, each kept separate in Petri dishes, were split longitudinaily and scrapings ffom all parts prepared for a microscopic examination. Finally contents of the stomach and the intestine were searched for intestínal helminths using both microscope and stereoscope. Ciliates of the genera Chilodonelía and Trichodina were identified by the use of Klein’s silver nitrate technique (Klein 1958). To íden- tify cestode species, proglottids were stained with Schneider’s acetocarmine (Ash and Oriel 1987). Final identification to a species and/or genus level, was based on Bykhovskaya- Pavlovskaya et al. (1964), Lom and Dyková (1992), Moravec (1994), Hoffmann (1999) and Buchmann and Bresciani (2001). Determ ination o f helminth community structure and statistical treatment. Specialists are defined as those para- sites that occur and reproduce almost exclusively in eels whereas generalists are those that commonly occur in other families of fishes. Definitions of other ecological terms are according to Bush et al. (1997). Analysis of the parasite com- munity structure was carried out at both component and inffa- community level. The measures of the component community structure adopted were: species richness (total number of spe- cies), the Shannon-Wiener (SW) diversity index and its Even- ness, Simpson’s reciprocal index (SLl/Ð) and the Berger- Parker dominance index (BP). To get comparative figures from several other simílar studies, in which different logarithm (log2) was used, the diversity indices were recalculated from data given. Additionally, diversity indices and dominance values from data given in a number of publications in which those community characteristics where not analysed were calculated. The measures of the inffacommunity structure adopted were: mean number of individuals and species per eel, the maximum number of species per eel, the mean Brillouin’s index (BI) (all eels and infected eels only) and the maximum value of the BI. All indices were calculated and defmed ac- cording to Magurran (1988) using natural iogarithm (In) where appropriate. The Percentage Similarity index (quantitative measure) and the Sörensen’s index of similarity (qualiíative) (Magurran 1988) were used to measure similarities between localities at the component level. Statistical difference be- tween the Shannon Wiener diversity indices of the localities studied was tested using a modified í-test proposed by Hutcheson (1970). RESULTS Composition of the parasite communíties Table 1 Four protozoan species were found. Eimeria anguil- lae Léger et Hollande, 1922 (Sporozoa: Cocccidia) was detected in the intestine o f one freshwater and one ma- rine eel. Tridiodina jadranica Raabe, 1958 (Ciliophora: Trichodinidae) was ffequent on the gills o f eels from VY and OL as was Trichodina fu lton i Davis, 1947 (Ciliophora: Trichodinidae) on the skin and gills o f eels from OL and ST. Chilodonella hexasticha (Kiemik, 1909) (Ciliophora: Chilodonellidae), also on gills and skin, was found only on eels from OL. Four myxozoan species, Myxidium giardi Cépéde, 1906 (Bivalvulida: M^otidiidae), Myxobolus kotlani Molnár, Lom et Malik, 1986 (Bivalvulida: Myxobolidae) and two Zschokkella spp. (Bivalvulida: Myxidiidae), were observed from both freshwater and marine localities, the three latter species only on rare occasions (prevalence: 3.3 to 6.6%) but M. giardi in high prevalence (30.0 to 93.3%) at all sampling sites. Myxidium giardi most heavily infected the gills, but kidneys and various other organs were also frequently infected. Myxobolus kotlani was detected ffom fms and two species o f Zschokkella, one in fins and the other one in the stomach mucosa. Twelve helminth species were found; seven in the marine eels and five in freshwater ones. The marine eels had oniy marine species and the freshwater eels only freshwater species. Diplostomum sp. (metacercariae) (Strigeoídea: Diplostomatidae) was found in eels from all the freshwater sites and was the most prevalent helminth species at ST (66.6%) and OL (20.0%). An encapsulated larval stage o f the nematode Eustrongyl- ides sp. (Dioctophymatiodea: Dioctophymatidae) was found only in the stomach wall o f eels from W (13.3%). One specimen o f a third-stage larva o f Ani- sakis simplex (Rudolphi, 1809) (Ascaridida: Anisaki- dae) was found in the visceral cavity o f one marine eel. Nine species o f gastrointestinal helminths were present in the eels: four species o f digeneans, Deropristis inflata (Molin, 1859) (Allocreadiodea: Deropristiidae), Dero- genes varicus (Miiller, 1784) (Hemiuroidea: Derogeni- dae), Podocotyle atomon (Rudolphi, 1802) (Allocrea- diodea: Opecoelidae) and Plagioporus angulatus Du- 142 Table 1. Infccted organs, prevalence (P), mean intensity and intensity range of the parasite spccies found at the localities studied. Locality (Salinity) Number of eels examined OL (0%o) 15 Intensity ST (0%o) 30 Intensity VV (0%o) 30 Intensity GV (30-33%o) 20 Intensity Infected Mean Mean Protozoa organs p Range ±SD P Range ± SD P Range ±SD P Range ±SD Eimeria anguillae* I 6.6' ND ND _ _ _ _ _ _ 5.0’ ND ND Chilodonella hexasticha * G/S X ND ND _ - _ - _ „ _ _ _ Trichodina fultoni* G/S X ND ND X ND ND - _ _ - .... „ Trichodina jadranica* G X ND ND _ _ - X ND ND - - _ Metazoa Myxidium giardi* G/K/VO 93.3 ND ND 33.3 ND ND 30.0 ND ND 70.0 ND ND Zschokkella sp.-l* F 6.6' ND ND 6.6 ND ND - ... - _ _ - Zschokkella sp.-2* SW - ~ - - _ 6.6 ND ND 5.01 ND ND Myxobolus kotlani* F 6.6' ND ND 3.3' ND ND _ _ - 5.0’ ND ND Diplostomum sp. E 20.0 1-6 3.6 ±2.5 66.6 1-13 3.4 ±2.8 20.0 2-14 6.0 ±5.9 _ - _ Derogenes varicus ST - ~ - _ _ _ _ _ _ 45.0 1-6 1.7 ± 1.6 Deropristis inflata * I - - _ - „ _ „ 85.0 2-379 104.6 ± 123.7 Podocotyle atomon I - - _ _ _ _ _ 20.0 1-3 1.7 ±0.9 Plagioporus angulatus * I - - - __ _ _ - 15.0 1-6 3.7 ±2.5 Anisakis simplex VC _ - _ _ _ _ _ _ _ 5.01 1 1 Hysterothylacium aduncum I - - _ - _ _ _ _ _ 10.0 1-2 1.7 ±0.5 Raphidascaris acus * I - - - 43.3 1-18 4.0 ±5,0 _ _ _ _ _ _ Eustrongylides sp.* SW - - - _ _ 13.3 1-2 1.5 ±0.5 _ „ _ Proteocephalus macrocephalus * I ~ _ _ 16.6 1-2 1.3 ± 0.5 - „ _ „ _ _ Bothriocephalus claviceps* I _ - _ _ _ 26.6 1-25 5.7 ±7.9 _ _ _ pseudophyllidean larva I/IW - - - _ - _ _ „ - 10.0 2 2.0 ±0.0 *New parasite records for Iceland.; G - gills; K - kidney; F - fin; I - intestine; S - skin; E - eye; VC - visceral cavity; IW - intestinal wall; ST - stomach; SW - stomach wall; VO - various organs; 'only one eel infected; X - species found but prevalence not determined; ND - number of parasites not dctermined. 143 jardin, 1845 (Fasciolata: Opecoelidae); two nematode species, Raphidascaris acus (Bloch, 1779) (Ascaridida: Anisakidae) and Hysterothylacium aduncum (Rudolphi, 1802) (larva) (Ascaridida: Anisakidae); and three cestode species, Bothriocephalus claviceps (Goeze, 1782) (Pseudophyllidea: Bothriocephalidae), Proteo- cephalus macrocephalus (Creplin, 1825) (Proteocephal- oidea: Proteocephalidae), and a pseudophyllidean larva. In marine eels, the eel-specific parasite D. inflata was by far the most prevalent species (85.0%). In fresh- water, the nematode R. acus was the most prevalent intestinal helminth at locality ST (43.3%) and the cestode B. claviceps at locality W (26.6%). No intesti- nal helminths were detected at locality OL. Similarity between communities Tables 2, 3 The only macroparasite species any two sampling sites had in common was Diplostomum sp. On a qualita- tive basis (Sörensen’s index), the levels o f total compo- nent similarity of macroparasite communities between the three freshwater sites ranged from 0.33 to 0.50. It was the same for OL-ST and O L -W (0.5) but lower for S T -W (0.33). On a quantitative basis (Percentage simi- larity index) the OL-ST values were 54% but 41% for O L -W and W -S T . The eels from the marine site GV and those from the three freshwater sites harboured en- tirely different helminth species. None o f the localities had any intestinal helminth species in common; there- fore their intestinal helminth communities were com- pletely dissimilar. The Sörensen’s index between the total microparasite component communities was gener- ally rather high. It was highest for GV-ST (0.75) but lowest for VV-ST (0.29). Component community structure Tables 4, 5 The total macroparasite community o f eels from the marine locality GV was richer (7 species) than the ones from all freshwater localities (1-3 species). The diver- sity was, however, significantly lower than from the freshwater sampling sites ST and W , which had very similar diversity values and the evenness was consid- erably lower. The GV’s low diversity reflects its high Berger-Parker dominance value (0.98), the eel specific parasite Deropristis inflata being the dominant species. Eels fforn the sampling site OL had the lowest value in richness, diversity and evenness, harbouring only one helminth species, Diplostomum sp. The freshwater lo- calities ST and VV had very similar Berger-Parker dominance values (0.54 and 0.52, respectively) but dif- ferent dominant species, the cestode Bothriocephalus claviceps and Diplostomum sp., respectively. Consider- ing only intestinal helminths, all eels from OL were uninfected; one species was present in W eels, two in ST eels and six in GV eels. The diversity (SW and SI) remained similar for GV but dropped for the freshwater sites. Dominance values increased considerably at ST and W but remained the same for GV. It was highest at the freshwater locality VV, where the only species found, Bothriocephalus claviceps, was completely domínant and reached 0.90 at ST. The dominant species for GV and VV remained the same but at sampling site ST the nematode generalist Raphidascaris acus became dominant species instead o f Diplostomum sp. Table 2. Sörensen’s similarity index and Percentage similarity index (parenthesis) between the total helminth communities (above the diagonal) and the intestinal helminth communities (below the diagonal) of the localities studied. OL ST v v GV OL - 0.50 (54.0) 0 .50(41 .0 ) 0 (0 ) ST 0 (0 ) - 0 .33(41 .0 ) 0 (0 ) W 0 (0 ) 0 (0 ) - 0 (0 ) GV 0 (0 ) 0 (0 ) 0 (0 ) - Table 3. Sörensen’s similarity index for total microparasite component communities of the localities studied. OL ST VV GV OL ST VV 0.73 0.40 0.29 GV 0.55 0.75 0.57 - Table 4. The diversity characteristics of the total and intestinal helminth component community of eels from Icelandic waters. Locality W ST OL GV Total component com m unity N um ber o f eels 30 30 15 20 N um ber o f species 3 3 1 7 Shannon-W iener index 0.89 0.84 0 0.13 Simpson index 2.25 2.15 1.00 1.05 S-W evenness 0.81 0.77 0 0.06 Berger-Parker dom inance 0.52 0.54 1.00 0.98 Dominant species Bc £>sp Dsp D i Intestinal com ponent com m unity N um ber o f species 1 2 0 6 Shannon-W iener index 0.00 0.33 0 0.12 SW evenness 0.00 0.30 0 0.07 Simpson index 1.00 1.23 1.00 1.04 Berger-Parker dom inance 1.00 0.90 - 0.98 Dominant species Bc Ra - Di Bc - Bothriocephalus claviceps\ /)sp - Diplostom um sp.; Di - D ero- pristis inflata; Ra - Raphidascaris acus. Table 5. Testing of statistical difference between the totai component communities diversity indices of the localities studied. W ST OL W - ST NS - _ OL *** *** GV *** *** NS *** PO.001; NS -not significant difference. Intestinal infracommunity structure Tables 6, 7 Prevalence o f coexistent helminth species in the in- testine o f the eels differed markedly between localities. Considerable differences occurred comparing the ma- 144 Kristmundsson, Helgason: Parasites of Icelandic eels rine (GV) and freshwater localities (OL, ST, VV). Only 5% of the marine eels were uninfected compared to 50 to 100% o f the freshwater eeis. The prevalence o f infec- tion also differed considerably between freshwater sam- pling sites. A great majority (90 to 100%) o f the fresh- water eels had none or one species o f intestinal heiminths, few (0 to 10%) were infected with two spe- cies and none had three helminth species in their intes- tine. A striking difference was in the mean number o f helminths per eel, between freshwater and marine sites, the values being 0.00 to 1.93 in freshwater eels and 90.90 in marine eels. The mean number o f specíes per eel was also considerably lower in the freshwater eels (0.0 to 0.60) than the marine eels (1.85), considering all eels. This difference decreased markedly looking only at infected eels. Maximum number o f species parasitizing individual eels was one at W , two at ST and four at the marine site GV. The mean BI was low at all sampling sites; the value for the marine locality though was con- siderably higher than at the freshwater sites, 0.17 and 0.00 to 0.03, respectively (all eels). Considering in- fected eels only, the BI for GV eels remained noticeably higher. All eels from VV and OL had either no or one species, 90% o f the ST eels but 45% o f the GV eels. Table 6. Prevalence (%) of coexistent intestínal helminth spe- cies of eels from the localities studied. Locality N uraber o f eels exam ined VV 30 ST 30 OL 15 GV 20 0 species 73.3 50.0 100 5.0 1 species 26.7 40.0 0.0 40.0 2 species 0.0 10.0 0 .0 30.0 3 species 0.0 0.0 0 .0 15.0 4 species 0.0 0.0 0.0 10.0 DISCUSSION The parasite community structure A total o f 20 parasite species were observed, 4 proto- zoans and 16 metazoans (Table 1). All the protozoan and myxozoan species (Eimeria anguillae, Chilodonella hexasticha, Trichodina fultoni, T. jadranica , Myxidium giardi, Myxobolus kotlani, two Zschokkella spp.) and seven o f the helminth species (Deropristis inflata, Pla- gioporus angulatus, Raphidascaris acus, Eustrongylides sp., Bothriocephalus claviceps and Proteocephalus macrocephalus) are new parasite records from Icelandic waters. Myxidium giardi, Myxobolus kotlani, E. anguil- lae, D. inflata, P. macrocephalus and B. claviceps are more or less strictly host specific, the others are general- ists. Six species ('Derogenes varicus, D. inflata, Podo- cotyle atomon, P. angulatus, Anisakis simplex and Hys- terothylacium aduncum) are marine ones and five are ffeshwater species (Diplostomum sp. larva, R. acus, Eu- strongylides sp. larva, P. macrocephalus and B. clavi- ceps). Myxidium giardi, Myxobolus kotlani, one o f the Zschokkella spp. and E. anguillae were found both in freshwater and marine environment. Although reporfed both from freshwater and marine environment (Lom and Dyková 1992), Trichodina jadranica and T. fu lton i were only found on the ffeshwater eels. A total lack of strict freshwater parasite species ín eels from the GV area indicate no or only limited travel o f these eels between fresh- and marine waters. Myxidium giardi was found in high prevalence (20 to 93%) at all sampling sites but Eimeria anguillae, Zschokkella spp. and Myxobolus kotlani were found on rare occasions; only one or two eels ffom each sampling site were infected. The prevalence o f Chilodonella hexasticha, Trichodina jadranica and T. fu lton i was not determined; therefore these data only confirm that these species exist on eels in the Icelandic ecosystem. Comparison between sampling sites The similarity o f the microparasite communities be- tween the sampling sites is fairly high, 0.29 to 0.75 (Sörensen’s similarity index). Myxidium giardi was found at all localities and Myxobolus kotlani at all sites except VV. One of the Zschokkella spp. was found at both ST and OL, the other at VV and GV. Considering the similarity indices, the microparasite fauna seems to be similar both in/on freshwater and marine eels as well as in/on eels from different freshwater localities. Con- siderable between-sites difference occurred in the helminth composition at the freshwater sites. They all have one species in common, Diplostomum sp., the only helminth species found at more than one sampling site. Although the values o f SW diversity and evenness indi- ces, as well as dominance values, are similar in eels at sites VV and ST, the total helminth species composition is quite different. The nematode Raphidascaris acus (prevalence: 43.3%) and the cestode Proteocephalus macrocephalus (16.6%) are common in eels from ST but are not found in the W eels. Similarly, the cestode Bothriocephalus claviceps (26.6%) and the larval stages o f the nematode Eustrongylides sp. (13.3%) are quite common in W but totally absent in ST eels. This is interesting since both sampling sites are small shallow and relatively fertile lakes, harbouring the same species o f fishes, i.e. brown trout, arctic char, three-spined stickleback and eels. Differences in the composition of the fish fauna o f these sites could, however, elucidate these differences to some extent. Brown trout is the dominant fish species at ST but arctic char at W . Trout is thought to play a part in the life cycle o f Raphidas- caris acus, both as a final host and an intermediate or a paratenic host (Moravec 1994). The existence o f this helminth species in ST eels could be partly due to how common brown trout is in the lake. Moravec (1985) reported that B. claviceps was more frequently found in smaller eels due to differences in their diet with size. The eels from VV were considerably smaller than those from ST. Stefánsson (2000) studied the diet o f eels in VV and found the tendency for smaller eels to eat pro- portionally more o f small crustaceans, which are vital in the life cycle o f B. claviceps (see Moravec 1985). Infor- mation on the invertebrate fauna o f the lakes is however 145 Table 7. The diversity chavacteristics of the intestinai infracommunity of heiminths from Icelandic waters (helminths iti stomach included) and sevcral other freshwater and saline lo- calities in Europe. Freshwater M arine or brackish tceland UK Germany Ireland Portugal lceland ltaly Reference Present study Kennedy 1993 Kennedy 1997 Sures c la l. 1999 Sures and Streit 2001 Kennedy and M oriarty 2 00 2 Saraiva et al.2005 Present study Kemtedy et.al. 1997 Di Cave et al. 2001 Locality VV ST OL C lyst O tter 1979-92 1985-96 (m in-m ax) (min-max) LA RLI 'iVorms Alb Shannon 1983-2001 (m in-m ax) Trovela Covo Este Sousa GV Burano Fogliano M onaci Caprolace Comaccio Figeri Acquatina NO. OF EELS 30 30 15 459 216 61 60 35 19 309 55 79 47 93 20 28 20 44 38 42 33 21 (27-100) (10-43) (11-25) NO. OF HOLMINÍTHS X 1.53 1.93 0 1.041 0.771 17.8 15.0 4.7 9.1 16.851 0.95 0.91 0.72 2.48 90.90 10.0 8.4 9.9 2.6 45.9 63.2 10.1 (0 - 10.2 ) (0-7 .0) (2.3-79 .1) SD 4.68 3.93 0 - 37.2 23.9 18.9 21.2 - 1.52 3.34 0.55 7.31 119.26 11.4 12.2 18.8 3.9 59.9 76.6 27.8 NO. OF HELMINTH SI‘P. (ALL EELS) X 0.27 0.60 0 0 .6 7 1 0 .511 0.6 0.9 0.3 1.3 1.151 0.49 0.33 0.32 0.57 1.85 1.14 1.25 0.95 0.60 2.2 1.8 0 .8 (0 -1 .44 ) (0-2 .23) (0 .7 -1 .7 ) SD 0.45 0.67 0 - - 0 .8 0.7 0.6 1.5 - 0.63 0.55 0.56 0.70 1.09 0.72 0.85 0.80 0.82 0.8 0.9 0 .8 ntax. 1 2 0 2 1 2 1 3 3 2 5 3 1 2 2 2 4 4 3 3 3 3 4 4 3 (0 -4 ) (0 -5 ) (1 -3 ) NO. OF HOLMINTH SPP. (INF. EEI.•s) X 1.00 1.20 0 - - 1.4 1.3 1.3 2.2 - - - - - 1.95 1.28 1.56 1.39 1.37 2.2 1.9 1.2 SD 0 0.41 0 - - 0.6 0.5 0.5 1.3 _ - - - _ 1.03 0.61 0.63 0.56 0.59 0.8 0.9 0 .6 B I (ALL EEt.S) — 0 0.03 0 0.0361 0.0091 0.06 0.07 0.02 0.22 0 .0611 0.035 0.013 0.012 0.024 0.17 0.064 0.167 0.088 0.074 0.37 0.22 0.03 X (0-0 .158) (0-0 .415) (0-0 .162) SD 0 0 .10 0 _ _ 0.17 0.17 0.08 0.33 - 0.111 0.068 0.076 0.096 0.26 0.181 0.221 0.179 0.180 0.29 0.28 0 .10 max. 0 0.37 0 0 .3661 0.3461 0.66 0.67 0.37 1.02 0 .3 9 9 1 0.461 0.366 0.398 0.549 0.84 0.755 0.557 0.592 0.730 1.08 1.07 0.47 (0-0 .986) (0-0 .957) 0 -0 .922 BI (INF. EELS) X 0 0.06 0 0 .3 4 8 1 0.43 0.4 0 .10 0.38 0 .227 ' 0.087 0.046 0.057 0.050 0.18 0.499 0.418 0.383 0.142 0.46 0.39 0.29 (0-0 .514) (0-0 .635) SD 0 0.13 0 - - 0.17 0.19 0.17 0.36 - 0.165 0.125 0.140 0.134 0.26 0.293 0.102 0.172 0.142 0.26 0.26 0.25 % o f eels with 100 90 100 9 2 1 9 7 .1 1 85.3 83.4 95 602 7 3 1 91 96 95 94 45 82 60 75 84 19 42 90 0 or 1 species (61-100) (45.4-100) (36-100) 'Long-term study; median value calculated from data given by authors. 2Values estimated from a histogram given by authors. 146 Kristmundsson, Helgason: Parasites of Icelandic eels scarce. A difference in the sampling time might also be an affecting factor. The complete absence o f intestinal helminths at locality OL is interesting but hard to ex- plain. The difference in the intestinal infracommunity between the marine and the freshwater sites in Iceland is considerable. The total number o f helminths and the helminth species per eel is much higher in the marine eels than in the freshwater ones. This is because most o f the marine eel’s parasites are generalists. Many o f these are frequently found in distínct fish species common in Icelandic marine waters, such as Atlantic cod Gadus morhua, saithe Pollachius virens, dab Limanda limanda and anglerfish Lophius piscatorius (Koie 1983, 1993, 2000, Eydal and Ólafsdóttir 2002-2003, Eydal et al. 2005). Comparison with other parasite communities in Europe The microparasite fauna observed in this study re- sembles the one found in similar studies on the Euro- pean eel. The two strict eel specific microparasites found in our study, Myxidium giardi and Eimeria an- guillae, are widespread parasites o f the European eel (Copland 1981, Orecchia et al. 1987, Koie 1988, Saraiva and Chubb 1989, Benajiba et al. 1994, Molnár and Székely 1995, Sures et al. 1999, Outeiral et al. 2002, Aguilar et al. 2005, Maíllo et al. 2005) and Tri- chodina jadranica, T. fu ltoni and Myxobolus kotlani have also previously been reported from eels (Markiewicz and Migala 1980, Molnár et al. 1986, Ly- holt and Buchmann 1995, Madsen et al. 2000, Aguílar et al. 2005). On the other hand, based on both measures o f morphological features and sites o f infection, neither of the Zschokkella species found seems to be Z. stet- tinensis, the only reported species in the European eel (Molnár et al. 1986). An obvious difference between our study and previous ones is the total lack o f the flagellate Trypanosoma granulosum in our study, but this species has been found in most other similar studies in very high prevalence (Orecchia et al. 1987, Koie 1988, Saraiva and Chubb 1989, Mo and Sterud 1998, Sures et al. 1999, Sures and Streit 2001, Outeiral et al. 2002, Aguilar et al. 2005). Compared to previous studies, the parasite communi- ties o f freshwater eels in Iceland are, in general, species- poorer, less diverse and have higher dominance o f a single species (Tables 8, 9; Figs. 3, 4). The median number o f intestínal helminths calculated from the stud- íes selected for comparison is four species compared to zero, one and two, respectively, for the three freshwater localities OL, VV and ST in Iceland. The richest intesti- nal helminth community, 12 species, was observed in Lake Esrum Denmark and the lowest (no parasites found) in 1984 in River Clyst and in 1988 in River Otter as well as locality OL in Iceland. The richness is com- parable at ST and W with Lake Balaton in ITungary, Ooigem and Kerkhove in Belgium and at Markermeer and S-Ijsselmeer in the Netherlands (Table 8, Fig. 3a). Considering the total number o f macroparasites found, Lake Esrum has the richest community, 23 species and the median values are 7 for previous studies and 1, 3 and 3, respectively, for the Icelandic localities OL, ST and VV (Table 8, Fig. 3b). Looking at diversity indices (SW and SI) the values for the Icelandic localities are considerably lower than the median value for other stud- ies (Table 8, Fig. 3c, d). The BP dominance index and the percentage o f eels with 0/1 species, is noticeably higher for the Icelandic localities than in most other studies (Table 8, Fig. 3e, f). In the previous studies, the dominant intestinal species is most often an acantho- cephalan species but nematode and cestode species are, however, also quite often dominant. Digenean species are, however, rarely dominating eel parasite communi- ties in freshwater. In Iceland the dominant species in freshwater eels is the nematode Raphidascaris acus and the cestode Bothriocephalus claviceps, both common parasites o f eels in Europe and dominant in several stud- ies (Table 8). All species found at the Icelandic locali- ties are frequently found in other studies but many of the most prevalent ones found in previous studies, such as the monogeneans Pseudodactyiogyrus anguillae and P. bini (e.g. Koie 1988, Saraiva and Chubb 1989, Mo and Sterud 1998, Borgsteede et al. 1999), the acantho- cephalans Acanthocephalus anguillae, A. lucii and Pomphorhynchus laevis (e.g. Conneely and McCarthy 1986, Koie 1988, Sures et al. 1999, Kennedy and Moriarty 2002, Norton et al. 2003), the nematodes Paraquimperia tenerrima, Camallanus lacustris (e.g. Moravec 1985, Conneely and McCarthy 1986, Koie 1988, Mo and Sterud 1998, Kennedy 2001) and Anguil- licoia crassus (e.g. Koie 1988, Molnár et al. 1991, Ken- nedy et al. 1997, Sures et al. 1999) and the crustacean Ergasilus gibbus (e.g. Conneely and McCarthy 1986, Koie 1988, Borgsteede et al. 1999, Aguilar et al. 2005), are absent in this study. Some differences emerged at the intestinal infra- community level comparing eels from Iceland to other similar studies (Table 7). The number o f helminths at localities ST and VV are much lower than observed in eels from the River Rhine and River Shannon but fairly similar to the numbers observed by Saraiva et al. (2005) in Portugal. Results from River Clyst and River Otter vary greatly between sampling years, sometimes being much higher than at ST and W but sometimes lower, the median value being somewhat lower. O f the locali- ties in Iceland only ST eels harbour more than one helminth species and consequently the BI exceeds zero. Including all eels, the mean BI is low at ST and compa- rable to most o f the studies considered here. It is al- though to some extent lower than at Worms in River Rhine and in some years in River Clyst and River Otter. Including only infected eels, the BI at ST is lower than observed elsewhere except for the Portuguese localities, where the values are comparable (Table 7). 147 Table 8. Comparison of intestinal helminth component communities between the Icelandic freshwater sampling sites and numer- ous freshwater localities in Europe. Country Reference Locality No. o f intest. sp. (m in- max) Total no. o f sp. SW index (m in-m ax) SI i/D (m in-m ax) BP dom. (min—max) Dom inant sp. No. o f eels (min—max) 0 or 1 sp. (%) (m in-m ax) Present study OL 0 1 0.00 - 0 15 100 íceland ST 2 3 0.33 1.23 0.90 Ra 30 90 VV 1 3 0.00 1.00 1.00 Bc 30 100 K aie 19881 Lake Esrum 12 23 2 .20 7.73 0.19 Da/Cl 120 nd Denmark Arreso 6 11 1.21 2.31 0.63 Aa 30 nd Sjælso 4 12 1.13 2.67 0.50 Pm nd Norway M o and Sterud 1998 Aarungen Glomma 4 4 7 6 - - - - 3 13 - Sures e t al.2 ‘LA ’ 6 8 0.35 1.17 0.92 Pa 61 85.3 Gerraany 1999 ‘R H ’ 4 5 0.41 1.23 0.90 Pa 60 83.4 Sures and W orms 4 6 0.42 1.23 0.9 Pa 35 95 Streit 2001 Alb 6 8 1.11 2.12 0.67 Pa 19 60 Schabuss Illmitz 54 0 .884 1.704 0.764 Al/Aa 424 61.5“ A ustria e t al. 20053 1994-2001 (2 -5 ) (0.37-1.44) (1.11-4.02) (0 .30-0.95) (19-156) (41.5-100) South 54 0.504 1.364 0.854 Aa/Bc 296 78.34 1996-2001 (2 -5 ) (0 .21 - 0 .8 8 ) (1 .06-1.72) (0 .75-0.97) (5-180) (55.9-86.7) Kennedy Clyst 34 * 0.714 1.604 0.744 A c / 459 92 ' 1993 1981-1992 (0-9) (0-1.04) (1.00-2.67) (0.50-0.88) Bc/Pt (27-100) (61-100) UK Kennedy 1997 Otter 1985-1996 44 (0- 8 ) * 1.044 (0-1 .83) 2.384 (1.00-5.55) 0.514 (0 .25-1) Bc/Pm /Pt/Si 216 (10-43) 9 7 .14 (11.4-100) N orton4 Test 8 * 1.33 2.72 0.54 Et 50 38 et al. 2003 Thames 8 * 1.46 3.45 0.34 Ng 32 44 Ireland Kennedy and M oriarty 2002 C onneeiy and Shannon 1983-2001 Abbert 4" ( 1- 6) 5 * 7 0 .124 (0.04-0.30) 1.30 1.044 (1.01-1.15) 3.30 0.984 (0 .94-1) 0.4 A l Ra 309 (11-25) 33 W (36-100) nd M cCarthy Drimneen 7 10 1.16 2.59 0.49 Pl 49 nd 1986' Corrib 9 12 0.52 1.05 0.89 Sb 39 nd Saraiva e t al. Trovela 4 * 1.30 3.39 0.42 P t 55 91 2005 Covo 3 * 0.69 1.83 0.67 Ct 79 96 Portugal Este 3 * 0.35 1.20 0.91 Ct 47 95 Sousa 4 * 1.01 2.44 0.52 Ra 93 94 Saraiva and C h u b b 1989 Este 4 6 n.d. n.d. n.d. Pt7 129 nd Spain A guilar e t al. 2005' U lla R iver Tea River 6 7 10 10 1.37 1.52 3.42 4.15 0.39 0.31 Si Pt 323 200 nd nd Seyda 1973' Stotczcyn 6 7 1.28 2.63 0.57 A a 20 nd Poland Trzebiez 5 8 0.91 1.97 0.67 Bc 33 nd Dabie 8 10 1.38 2.92 0.53 Aa 30 nd Schabuss Ooigem 2 36 0.12 1.06 0.97 Pm 30 nd Belgium et al. 19972 Kerkhove 2 36 0.12 1.05 0.97 Pm 16 nd Bavikhove 3 46 0.88 2.08 0.63 A l 31 nd St. Baafs. 3 40 0.40 1.24 0.90 Aa 30 nd M olnár and Hungary Székely 1995* L. Balaton 2 7 0.68 1.95 0.58 Bc 82 nd Nether- lands Borgsteede et al. 1999' N -ljsselm .3 S-Ijsselm .5 3 2 5 4 0.08 0 .02 1.03 1.005 0.99 0.998 Ac Ac 72 92 nd nd M arkerm .5 1 2 0 1.00 1 Ac 99 nd Forraer M oravec 1 o s s Lake M ácha 7 11 n.d. n.d. n.d. Bc 132 nd 'Values calculated fforn data given by authors; 2Values recalculated from data given by authors, taking only intestinal helm ínths into count; ■’Values recalculated fforn data given by authors using natural logarithm (ln/logc) instead o f log2; 4Long-term study; m edian value calculated from data given by authors; 5Data from tw o sam pling times pooled; 6N ot looked for ectoparasites in the study; * Only looked for intestinal helminths in the study; nd - no data. Parasite species abbreviations: A a - Acanthocephalus anguillae, A c - A. clavula, A l - A. lucii, Bc - Bothriocephalus claviceps, C l - C am allanus lacustrís, C t - Cucullanus truttae, Da - Daniconema anguillae, E t - Echinorhynchus truttae, N g - N icolla gallica, Pa - Paratenuisentis ambiguus, P l - Pom phorhvnchus laevis, Prn - Proteocephaíus macrocephalus, P t - Paraquim peria tenerrima, Ra - Raphi- dascaris acus, Sb - Sphaerostom a bramae, S i - Spinitectus inermis. 148 Kristmundsson, Helgason: Parasites of Icelandic eels Table 9. Comparison of intestinal helminth component communities between the Icelandic marine sampling site and other brack- ish and marine localities in Europe. Country Reference Locality (Salinity) No. o f intest. sp. (m in-m ax) Total no. o f sp. SW index SI 1/D BP dom inance Dom inant sp. No. o f eels O or 1 sp- (%) Iceland Present study GV (33%o) 6 7 0.12 1.04 0.98 D i 20 45 Koie U lf Sund (4—8%o) 9 18 1.15 2 .20 0.64 D i 60 nd Denmark 1988' Ringk. Fjord (10%o) fsefjord (15-20%«) W. K attesat (30-34%o) 4 11 6 10 19 9 1.02 0.87 1.16 2.31 1.93 2.47 0.60 0.70 0.59 Pni D i D i 24 80 36 nd nd nd Kennedy Bun-ano ( 10-40%o) 6 8 0.97 1.93 0.71 D i 28 82 e ta l. 19972 Fogliano (28-48%o) 3 4 1.06 2.79 0.43 Bp 20 60 M onaci (17-39%») 3 4 1.00 2.58 0.43 D i 44 75 Italy Caprolace (32-44%o) Valle Figheri (15-35%o) 2 5 3 11 0.86 0.83 1.97 2.03 0.67 0.60 D i D i 38 33 84 42 Di Cave Coraacchio (23-37%o) 4 7 0.81 1.96 0.65 D i 42 19 et aí. 20 Ö12 Acquatina (30-42%o) 4 6 0.08 1.10 0.95 Bp 21 90 Netherlands Borgstcede et al. 1999' Volkerak3 (brackish)4 3 5 0.65 2.35 0.58 A c 98 nd Outeiral et al. Aurosa (>30%o) 13 18 1.67 4.36 0.37 D i 477 nd 2 0 0 1 , 2 0 0 2 ’ Ferrol (>30%o) 13 17 0.71 1.68 0.73 D i 479 nd Spain M aíllo et al. 2GÖ52 Encanyissada (3-30%o) Tancada (8—36%o) 3 1 6 3 0.42 0 1.26 1.00 0.89 1 D i Di 141 39 nd nd Canal Vell (8-30%«) 3 5 0.92 2.24 0.59 Di 36 nd France (Corsica) Tem engo e ta l. 2005’ U rbino pond (>30%o) 4 5 0.38 1.21 0.91 Di 31 nd :Values calculated from data given by authors; 2Values recalculated from data given by authors, taking only intestinal helm inths into count; ';Daca from two sam pling tim es pooled; "'Salinity not given; nd - no data. Parasite species abbreviations: A c - Acanthocephalus clavula, Bp - Bucepha- lus polym orphus, D i - D eropristis inflata, Pm — Proteocephalus macrocephalus. Compared to the number of studies of freshwater eels, relatively few have dealt with parasites o f eels ífom brackish and full salinity environment (e.g. Koie 1988, Kennedy et al. 1997, Borgsteede et al. 1999, Di Cave et al. 2001). The number o f intestinal helminth species at GV (6) in Iceland is either comparable or higher (Table 9, Fig. 4a) than that observed ín most of those studies (median value 4 species). Three localities stand out regarding number o f intestinal helminths, i.e. the Danish localities Isefjord (11 species) and U lf Sund (9 species) and from the estuaries in North-West Spain, Aurosa and Ferrol (Table 9), both with 13 species. Fluc- tuations in salinity exist at U lf Sund (15 to 20%o) and Isefjord (4 to 8%o) and consequently the eels from these iocalities harbour a number o f freshwater species, unlike the eels ffom GV. Although salinity at Aurosa and Ferrol exceeded 30%o, these eels seem to travel to freshwater or low salinity areas resulting in a number o f ffeshwater species. When the total numbers o f macro- parasites are compared, 7 are found at GV compared to 3 to 19 at the other localities, with a median value o f 6.5 (Table 9, Fig. 4b). The diversity at the Icelandic locality (GV) is, on the other hand, generally lower than at the other localities, with a SW value o f 0.12 and SI value of 1.04, compared to a medían value at the other localities (SW: 0.87, SI: 2.03); only Acquatina in Italian waters and Tancada in Spanish waters have lower diversity (Table 8, Fig. 4c, d). This low diversity reflects GV’s high BP-dominance, the digenean species Deropristis inflata being 98% (BP = 0.98) o f all intestinal hel- minths. Comparable BP dominance figures for the other localities range ffom 0.37 to 1 with a median value of 0.65 (Table 8, Fig. 4e). The eel-specific trematode D. inflata is the dominant species at 15 o f 19 localities con- sidered here, the trematode Bucephalus polymorphus at 2 localities and the ffeshwater cestode Proteocephalus macrocephalus at U lf Sund, a low-saiine (4 to 8%o) lo- cality in Danish waters (Table 9, Fig. 4f). All compared studies share one helminth species, i.e. D. inflata, which is without doubt the most common parasite o f eels in saline waters. Apart from Koie’s study (1988), the spe- cies composition o f the GV’s eels is quite different ffom other studies made. As in Koie’s (1988) study, most o f the species found are generalists which commonly para- sitize many different families o f fishes, such as Atlantic cod, Gadus morhua (Koie 1993, 2000, Eydal et al. 2005), which is a very common species in Icelandic and Danish waters. The differences in the aquatic fauna at these localities most likely explain these dissimilarities. Comparing the intestinal infracommunity o f GV eels to other studies (Kennedy et al. 1997, Di Cave et. al. 2001), the mean number o f species is comparable. On the other hand, the Brillouin’s index is much lower but the mean number o f helminths per eel considerably higher (Table 7). In summary, the parasite communities o f freshwater eels in Iceland are in general species-poorer, less di- verse and have higher BP dominance than other eel communities in Europe. Marine eels, on the other hand have comparable species richness, are less diverse and, 149 12 11 «101- ~ 9 u aF Q. 8[ I 7RJ f 1 6 S 5t I t ?o 3J ° 22 1 0 E 6 X cc> o-D -- 4 o 3 tno.§ 2 co 1 X ST (2) VV(1) — OL(0) ( ■ ST f 1.231 W{1.00J- Fig. 3. Distribution of diversity characteristics from numerous European freshwater eel communities (based on data from Table 8). For comparison, values ffom the Iceiandic sampling sites are also shown. a - number of intestinal specíes; b - total number of species; c - Shannon Wiener diversity index; d - Simpson’s diversity index; e - Berger Parker dominance index; f - proportion (%) of eels parasitized with one or two helminths. Note: the mean value is marked with an X. with a high BP dominance. Similar to most previous studies, there is a total replacement of ffeshwater macroparasite species by marine ones in saline waters. But unlike research abroad in which species richness generally decreases with higher salinity, the marine eels in Iceland have considerably higher species richness than the freshwater ones. This difference is more due to few species in freshwater eels rather than high numbers in the marine ones. As mentioned before, some parasite species, e.g. the flagellate Trypanosoma granulosum, the monogenean Pseudodactylogyrus spp., the swim-bladder nematode Anguillicola crassus, acanthocephalan species, the nematodes Paraquimperia tenerrima, Camallanus lacustris and the crustacean Ergasilus gibbus, which frequently parasitize ffeshwater eels in Europe, are not found ín/on the Icelandic eels. Why is this? The biodi- versity o f a certain ecosystem depends on both biotic (related to living things) and abiotic factors (related to nonliving things) such as climate, minerals and light (Buchmann and Bresciani 2001), as well as on the op- portunity for new species to colonize that ecosystem. The overall Icelandic freshwater vertebrate and non- parasitic invertebrate fauna is species-poor, compared to other European countries. This is clearly o f great impor- tance. Commonly parasites need an intermediate host, most frequently ínvertebrates, to complete their life cy- cle. Aiso, interaction between físh species is often a vital part o f a parasites’ life cycle. One fish species is offen a paratenic or an intermediate host for a parasite that has a different fish species as a final host. The lack o f suitable intermediate hosts is therefore, without doubt, one o f the explanations for few parasites in the Icelandic eels. Trypanosoma granulosum, for example, uses the leeches Hemiclepsis marginata and Piscicola geometra as an intermediate host (Lom and Dyková 1992). These leeches are not a part o f the invertebrate fauna of Iceland and therefore this parasite cannot be present. Regarding the acanthocephalans, the isopod Asellus aquaticus serves as an intermediate host for Acanthocephalus anguillae and A. lucii (Brown et al. 1986, Williams and Jones 1994) and the amphipods Gammarus pulex, G. fossarum and G. duebeni celticus (Irish waters) for Pomphorhynchus laevis (Brown et al. 1986, Williams and Jones 1994). None o f these species inhabit the Icelandic freshwater system. As a conse- quence, these acanthocephalans cannot live in Icelandic freshwater. But why is the Icelandic freshwater fauna so species poor? The country’s climate at its northem lati- tude o f 64° to 66°N is rather cold (12 to 13°C mean temperature in July). However, because o f volcanic ac- tivity in the country, many Icelandic lakes are rich in minerals, which create a good basis for the production o f biotic material and fertile lakes. The northem parts of Norway and Canada and Alaska which are on simiiar latitudes as Iceland are, however, much richer in the vertebrate and invertebrate fauna. Many fish species which Iive there, e.g. northem pike, Esox lucius 150 Kristmundsson, Helgason: Parasites of Icelandic eels « F 12l >11í;io ’ 9 tL i 9 ' f: 5 t: 4- i 31 2| oL GV ÍS) (a) ■= 3Í-I 5 i£fl o' cl. E i to i 1Í-" 0 L_ (d) j 16Cfl 14o o 0-12«fl o 10 ö Q C O S 6 £ 4 2 0 1 0.9 x CJ t j 0.8 c ö _ _ 0 0.7 c P3 1 °-6O 2 0.5 œ 0.4 0,3 18 V(7L (b). - G V ( 0 .9 8 ) | (e) í 1.4 1.2 x% 1.0 £ 0.8 05 0.6 0.4 0 .2 - 0 100 90 I 80u a . 70w S 60 Í 50 5 <fi 40 © 0 3052 20 r 10 -G V (0.12) * ■k J c ) j X GV (45.0) Fig. 4. Distribution of diversity characteristics ffom numerous European eel communities ffom marine and brackish localities (based on data ffom Table 9). For comparison, values from the Icelandic sampling site are also shown. a - number of intestinal species; b - total number of species; c - Shannon Wiener diversity index; d - Simpson’s diversity index; e - Berger Parker dominance index; f - proportion (%) of eels parasitized with one or two helminths. Note: the mean value is marked with an X. (Crossman 1996), burbot, Lota lota (Cohen et al. 1990), common carp, Cyprinus carpio carpio (Welcomme 1988, Coad et al. 1995), and grayling, Thymallus thy- mallus in Norway (Blanc et al. 1971) and Thymallus arcticus arcticus in Canada (McClanes 1974) and Alaska (Morrow 1980) do not inhabit Iceland although abiotic factors, such as temperature, are similar in these areas. The northem position o f Iceland is therefore not a suffícient explanation for its poor biodiversity. Most species o f the present fauna o f Iceland and the northem part o f Europe and N. America have colonized these areas during the last 10 thousand years, after the last ice age. The geographical location o f Iceland has, however, hampered its eolonisation, whereas the recolonisation of northem European and N. American areas along rivers and coastal areas from further south has been much eas- ier. The only físh species able to colonize Icelandic freshwater were ana- and catadromic species. The main reason for poor biodiversity in Icelandic freshwater of both invertebrates (including parasites) and vertebrates is most likely the geographical isolation and the short time span available for their colonisation. For instance, parasites like Anguillicola crassus and Pseudo- dactylogyrus bini, which most probably were íntroduced to Europe with imported eels from Asia, have due to this isolation not spread to Iceland but also because no import o f live eels has been permitted. Low winter tem- perature o f most Icelandic freshwater systems would seriously hamper a successful development o f A. cras- sus (Knopf et al. 1998) except in few discrete areas af- fected by geothermal activity. Many authors, studying eel parasites, have analysed their parasíte community characteristics, such as diver- sity, evenness, species richness and species dominance. This kind o f analysis is very interesting for comparison with other similar studies. When comparing data ob- served in different studies one must be sure that the val- ues selected for comparison really are comparable. Re- garding the analysis o f eel parasite communities, au- thors are evidently using different logarithms for calcu- lations o f their data, natural logarithm (ln) (e.g. Aguilar et al. 2005, Saraiva et al. 2005), or logarithm with log base two (logí) (e.g. Norton et al. 2003, Schabuss et al. 2005). Calculations using these two different logarithms give considerably different values and hence comparing diversity characteristícs data derived from calculations with different logarithms calls for recalculations or else the comparison is meaningless. For example, the values o f the SW índex ealculated from a certain data give val- ues o f 0.12 and 2.20 using natural logarithm but 0.05 and 0.95 using logi, respectively. To avoid further con- fusion we suggest that the more commonly used natural logarithm should be applied in future studies. Acknowledgement. We acknowledge a grant awarded by the Icelandic Research Council. 151 REFERENCES AGUILAR a . , á l v a r e z M .F ., L e i r o J.M ., S a n m a r t í n M .L. 2005: P aras ite popu la tions o f the E uropean eel (A nguilla an- g u illa L .) in the rivers U lla and T ea (G alic ia , no rthw est Spain). A q uacu ltu re 249: 8 5 -9 4 . A l b e r t V ., JÓNSSON B „ B e r n a t c h e z L . 2006: N atural hybrids in A tlan tic eels (Á nguilla anga illa , A . ro stra ta ): ev idence for successfu l rep roduc tion and fluc tua ting abundance in space an d tim e . M ol. Ecoi. 15: 1 903-1916 . ASH L .R ., ORIEL T .C . 1987: Parasites: A G uide to L aboratory P rocedures an d Iden tifica tion . A S C P Press, C hicago, 328 pp. B a ER J .G . 1962: C estoda . T he Z o o logy o f Iceland. V ol. 2 (12). E jnar M unksgaa rd , C open h ag en and R eykjav ik , 63 pp. B e n a j ib a M .H ., S i l a n P ., M a r q u é S A ., B o u ix G . 1994: Proto- zoan and m e tazoan parasites o f the eel A n gu illa anguilla L ., 1758 - tem p o ra l s truc tu res o f th e ir popu la tion in a M editerra- nean lagoon. A nn. Sci. N at.-Z oo l. B io l. A nim . 15: 141-149. BLAIR D . 1973: O b se rv a tio n s a n d experim en ts on som e larval trem atodes o f fresh w ater snails and fish from sou them Ice- land. J. H e lm in tho l. 47: 4 0 9 -4 1 4 . BLANC M ., GAUDET J.L ., BANARESCU P., HUREAU J.C . 1971: E uropean in land w a te r fish : a m ultilingual catalogue. F ishing N ew s (B ooks) L td ., L ondon , 196 pp. BORGSTEEDE F .H .M ., HAENEN O .L .M ., D e B r e e J., LlSITSINA 0.1. 1999: P a ras itic in fec tions o f E u ropean eel (Á nguilla an- g u iila L .) in the N etherlands. H elm in tho log ia 36: 251 -260 . B r in k m a n n A . 1956: T rem atoda. T he Z oo logy o f Iceland. V ol. 2 (11). E jn a r M unksgaa rd , C open liagen and R eykjavik , 34 pp. B r o w n A .F ., CHUBB J.C ., V e l t c a m p C .J. 1986: A key to specíes o f A can th o cep h a la pa rasitic in B ritish freshw ater sites. J. Fish B iol. 28: 3 2 7 -3 3 4 . BUCHMANN K ., BRESCIANI J. 2001: A n In troduction to Parasitic D iseases o f F resh w ate r T rout. D S R P ublishers, 1 ed., F red rik sberg , 76 pp . BUSH A .O ., LAFFERTY K .D ., LOTZ J.M ., SHOSTAK A .W . 1997: P aras ito logy m eets eco lo g y on íts ow n term s: M argolis e t al. rev isited . J. P a ras ito l. 83: 5 7 5 -5 8 3 . BYKHOVSKAYA-PAVLOVSKAYA I.E ., GUSEV A .V ., DUBININA M .N ., IZYUMOVA N .A ., SMIRNOVA T .S ., SOKOLOVSKAYA 1.L., SHTEIN G .A ., SHUL’MAN S.S ., EPSHTEIN V .M . 1964: K ey to P a ras ite s o f F resh w ater F ishes o f th e U .S .S .R . (P av- lovskii E .N . (E d .), Israel P rog ram for Scientific T ransla tors, Jerusa lem , 919 pp. COAD B .W ., WASZCZUK H ., LABIGNAN I. 1995: E ncycloped ia o f C anad ian F ishes. C an ad ian M u seu m o f N a tu re and C anad ian S portfish ing P ro d u ctio n s, S ingapore , 928 pp. COHEN D .M ., IN A D A T ., IW A M O T O T ., S C IA L A B B A N. 1990: FA O spec ies cata logue . V ol. 10. G ad ifo rm fishes o f the w orld (O r- d e r G ad ifo rm es). A n an no ta ted and illu s tra ted catalogue o f cods, hakes, g ren ad ie rs an d o th e r gad ifo rm fishes know n to date . F A O Fish . S ynop. 10 (125), 442 pp. CONNEELY J .J ., M c C a r t h y T .K . 1986: E co log ica l factors influ- encing the co m p o sitio n o f the parasite fauna o f the E uropean eel, A n g u illa a n g u illa (L .), in Ireland . J. F ish B iol. 28: 2 0 7 - 219. C o p la n d J .W . 1981: T h e occu rren ce and d istribu tion o f M yxi- dium g ia r d i C épéde , 1906 in w ild and cu ltu red E uropean eels, A n g u illa a n gu illa L ., in E ng land . J. F ish D is. 4: 231 -2 4 2 . CROSSMAN E.J. 1996: T ax o n o m y and d istribu tion . ín: J.F . C raig (E d.), P ik e B io lo g y and E xp lo ra tion . C hapm an and H all, L ondon , pp . 1—11. D l C a v e d „ B e r r i l l i f „ d e L i b e r a t o C „ O r e c c h í a p „ K en - NEDY C .R . 2001 : H e lm in th co m m u n itie s in eels A n gu illa an- g u illa ffo m A dria tic coasta l lagoons in Italy . J. H elm inthol. 75: 7 -1 3 . E y d a l M „ H e l g a s o n S„ K r i s tm u n d s s o n á „ B a m b i r S.H. 2005: S pecies p a rasitiz ing young A tlan tic cod, G adus m or- h u a , in Ice land ic w aters. B ull. Scand.-B alt. Soc. Parasito l. 14: 55. E y d a l M „ ÓLAFSDÓTTIR D . 2 0 0 2 -2 0 0 3 : In testinal m acro - parasites in ang lerfish (L o p h iu s p isca to riu s ) from Ice land ic w aters. B u ll. Scand. Soc. P arasito l. 12-13 : 6 0 -6 8 . FRANDSEN F „ M a lm q u iS T H .J., SNORRASON S.S. 1989: E co- logical p a rasito lo g y o f po lym orph ic a rc tic charr, S a lve linus a lp inus (L .), in T h ingvallava tn , Iceland. J. F ish B iol. 34: 2 8 1 - 297. H O F F M A N N G .L . 1999: P arasites o f N orth A m erican F resh w ater F ishes, 2 ed. C o m ell U n iversity Press, N ew Y ork , 539 pp. HUTCHESON K. 1970: A test fo r com paring d íversities based on the S hannon fo rm ula . J. T heor. B iol. 29: 151-154 . K e n n e d y C .R . 1993: T h e dynam ics o f in testinal he lm in th com - m un ities in ee ls A n g u illa anguilia in a sm all stream : long - te n n changes in richness and structure. P a ras ito lo g y 107: 7 1 - 78. KENNEDY C .R . 1997: L ong-te rm and seasonal changes in com po- s ition and richness o f in testinal helm in th com m unities in eels A n g u illa a n gu illa o f an iso la ted E nglish river. F o lia Parasito l. 44: 2 6 7 -2 7 3 . KENNEDY C .R . 2001: M etapopu la tion and com m unity dynam ics o f h e lm in th pa rasites o f ee ls A ngu ilia a n gu illa in th e R iver E xe system . Parasito logy 122: 6 8 9 -6 9 8 . KENNEDY C .R ., D l C a v e D „ BERRILLI F „ ORECCHIA P. 1997: C o m p o sitio n and s truc tu re o f helm in th com m unities in eels A n g u illa a n g u illa from Ita lian coastal lagoons. J. H elm in tho l. 7 1 :3 5 -4 0 . KENNEDY C .R ., MORIARTY C. 2002: L ong-te rm s tab ility in the richness and stru c tu re o f he lm in th com m unities in eels, A n - g u illa angu illa , in L ough D erg , R iver Shannon , Ireland . J. H elm in tho l. 76: 3 1 5 -3 2 2 . KLEIN B .M . 1958: T h e “d ry ” s ilv e r m ethod and its p ro p e r use. J. P ro tozoo l. 5: 9 9 -1 0 3 . KNOPF K „ WURTZ J „ SURES B „ TARASCHEWSKI H. 1998: Im pact o f low w a te r tem pera tu re on the developm ent o f A n g u illico la cra ssu s in the fm a l h o s t A n g u illa anguilla . D is. A quat. O rg. 33: 14 3 -1 4 9 . K 0IE M . 1983: D igenetic trem atodes from L im anda lim anda (L .) (O ste ich thyes, P leu ronectidae) from D anish an d ad jacen t w a- ters, w ith spec ia l re fe rence to the ir life cycle. O p h e lia 22: 2 0 1 -2 2 8 . K 0IE M . 1988: P arasites in E u ropean eel A n g u illa angu illa (L .) ffom D an ish freshw ater, b rack ish and m arine localíties. O phelia 29: 9 3 -1 1 8 . K 0IE M . 1993: N em ato d e parasites in te leosts from 0 to 1540 dep th o f f th e F aroe Islands (the N orth A tlan tic). O p h e lia 38: 2 1 7 -2 4 3 . K 0IE M . 2000: M etazoan p arasites o f te leost fishes from A tlan tic w aters o f f the Faroe Islands. O phelia 52: 2 5 -4 4 . KRISTMUNDSSON Á „ R i c h t e r S.H . 2 0 0 2 -2 0 0 3 : Parasites o f b ro w n tro u t (Sa lm o tru ttá ) and a rctic char (Sa lve linus a lp inus) in tw o Ice land ic lakes - P relim inary resu lts. B ull. Scand. Soc. P arasito l. 1 2 -1 3 : 43. LOM J„ D y k o v á I. 1992: P ro tozoan Parasites o f F ishes. E lsev ier S c ience P ub lishers B .V ., A m sterdam , 315 pp. L y h o l t H .C .K ., B u c h m a n n K . 1995: In festa tion w íth the sk in parasite T richodina ja d ra n ic a R aabe, 1958 (C iliophora: T richod in idae ) in D an ish eel farm s. B ull. Scand. Soc. P arasito l. 5: 97. MADSEN H .C .K ., BUCHMANN K ., MELLERGAARD S. 2000: T richodina sp. (C iliophora: P eritrich ida) in eel A n g u illa an- 152 Kristmundsson, Helgason: Parasites of Icelandic eels g u illa in rec ircu la tio n system s in D enm ark: host-parasite rela- tions. D is. A quat. O rg . 42: 149-152 . MAGURRAN A .E . 1988: E co log ica l d iv e rs ity and its m easurem ent. C room -H elm , L ondon , 179 pp. M a í l l o P .A ., VfCH M .A ., S a l v a d ó H ., M a r q u é s A ., G r a c i a M .P . 2005: P a ras ite s o f A n g u illa anguilla (L .) from three coasta l lagoons o f the R iv e r E b ro de lta (W estem M editerra- nean). A cta P aras ito l. 50: 15 6 -1 6 0 . MALMQUIST H .J., SNORRASON S .S ., SKÚLASON S. 1986: [The arc tic ch ar in L ak e T h in g v allav a tn II. C estode infections]. N á ttú ru fraed in g u rin n 56: 7 7 -8 7 . (In lce land ic .) M a r k ie w ic z F ., MlGALA K. 1980: T richod in id invasion (P eritri- cha, U rceo lar iid ae) on you n g eels (A n g u illa anguilla L.) g ro w n in aquaria . A cta H ydrob ío l. 22: 2 2 9 -2 3 6 . M c C l a n e s A .J. 1974: F ie ld G u id e to F resh w ater F ishes o f N orth A m erica . H olt, R in eh art and W inston , N e w Y ork , 212 pp. M o T .A ., S t e r u d E. 1998: F irst observations o f P seudodac- ty logyrus spp . and o th e r pa rasites in w ild eel (A nguilla an- g u illa L .) in N orw ay . B ull. Scand. Soc. P arasito l. 8 : 1-5 . MOLNÁR K., LOM J., M a l i k E. 1986: A skin d isease o f the eeis caused by M yxo b o lu s ko tla n i n. sp. J. A ppl. Ichthyol. 2: 4 2 - 48. M o ln á R K ., SZÉKELY C. 1995: Parasito log ical su rvey o f som e im p o rtan t fish spec ies o f L ak e B alaton . Parasito l. H ung. 28: 6 3 -8 2 . M o l n á r K ., SZÉKELY C ., B a s k a F. 1991: M ass m ortality o f eel in L ake B alaton due to A n g u illico la c rassus in fection . Bull. Eur. A ssoc. F ish P a tho l. 11: 2 1 1 -2 1 2 MORAVEC F. 1985: O ccu rren ce o f endoparas itic he lm in ths in eels (A ngu illa a n gu illa (L .)) from the M ácha lake fishpond sys- tem , C zechoslovak ia . F o lia Parasito l. 32: 113-125 . MORAVEC F. 1994: P arasitic N em ato d es o f F reshw ater F ishes o f E urope. K lu w e r A cad em ic P ub lishers , D ordrecht, B oston, L ondon , 473 pp . MORROW J.E . 1980: T h e F resh w ater F ishes o f A laska. A laska N orthw est P u b lish in g C o m p an y , A nchorage, 248 pp. N o r t o n J., L e w is J .W ., ROLLINSON D. 2003: Parasite inffacom - m un ity d iv e rs ity in eels: a re flec tion o f local com ponen t com m unity d iversity . P a ras ito lo g y 127: 475^182 . O r e c c h i a P ., B ia n c h in i M ., C a t a l i n i N ., C a t a u d e l l a S., P.AGGI L. 1987: P a ra s ito lo g ica l study o f a popu la tion o f T iber riv e r eels (A n g u illa angu illa ). P a rassito log ia 29: 37 -4 7 . OUTEIRAL S., ÁLVAREZ M .F ., IGLESIAS R ., PANIAGUA E ., SAN- MARTÍN M .L . 2002: N o n -d ig en ean parasites o f eels from es- tuaries in N o rth -W est Spain . H e lm in tho log ia 39: 91 -9 7 . O u t e ir a l S., ÁLVAREZ M .F ., P a n ia g u a E ., L e ir o L ., S a n - MARTín M .L . 2001: D ig en ean p arasites o f the E uropean eel from estuaries in N o rth -W est Spain . H elm in tho log ia 38: 8 5 - 92. Received 19 M ay 2006 RJCHTER S.H . 1981: [P arasites o f freshw ater fish i]. V eid im adur- inn 107: 9 -1 3 . (In Iceland ic.) R ic h t e r S .H . 1982a: [P arasites o f freshw ater fish ii]. V eid i- m adurinn 108: 2 3 -2 5 . (In Iceland ic.) RlCHTER S.FL 1982b: [P arasites o f freshw ater fish iii]. V eid i- m adurinn 109: 19 -23 . (In Icelandic.) RlCHTER S.H . 1982c: [P arasites o f freshw ater fish iv]. V eid i- m adurinn 110: 3 3 -3 6 . (In Iceland ic.) SARAIVA A ., ANTÁO A ., CRUZ C. 2005: C om para tive sm d y o f p a rasite com m unitie s ín E uropean eel A n g u illa angu illa from rivers o f n o rth em Portugal. H elm in tho log ia 42: 9 9 -1 0 6 . SARAIVA A ., CHUBB J.C . 1989: P relim inary observations on the p arasites o f A n g u illa angu illa (L .) from Portugal. B u ll. Eur. A ssoc. F ísh Patho l. 9: 8 8 . SCHABUSS M ., KENNEDY C .R ., KONECNY R., GRILUTSCH B., SCHEEMER F ., HERZIG A. 2005: L ong-te rm investigation o f the com position and richness o f in testinal he lm in th com m uni- ties in the s tocked p o pu la tion o f eel, A n g u illa anguilla , in N eu sied le r See, A ustria . P a ras ito lo g y 130: 185-194 . S c h a b u s s M ., K o n e c n y R ., B e l p a i r e C ., S c h ie m e r F. 1997: E ndoparasitic he lm in ths o f the E uropean eel, A n g u illa an- g u illa , from fou r d isconnec ted m eanders ffom the rive rs L eie and S ch e ld t in w estem F ianders, B elg ium . F o lia P arasito l. 44: 1 2 -18 . SEYDA M . 1973: P arasites o f eel, A ngu illa angu illa (L .), from the S zcec in fir th and ad jacen t w aters. A cta Ichthyol. P iscat. 3: 6 7 -7 6 . STEFÁNSSON S.M . 2000: [T he d ie t o f the eel (A nguilla sp.) in L ake V ifilss tadavatn ]. U n ivers ity o f Ice land , R eykjav ik , 25 pp . (In Ice land ic .) STEPHENSON K. 1940: P arasitic an d sem iparasitic copepoda. T he Z o o logy o f Iceland. V ol. 3 (34). E jnar M unksgaard , C open- h ag en and R eyk jav ik , 24 pp. S u r e s B ., KNOPF K ., WÚRTZ J., H i r t J. 1999: R ichness and di- versity o f pa rasite com m un ities in E uropean eels A n g u illa an- g u illa o f the R iv e r R hine, G erm any , w ith specia l re fe rence to he im in th pa rasites . P arasito logy 119: 3 2 3 -3 3 0 . SURES B., STREíT B. 2001: Eel parasite d iversity and in term edia te h o st ab u n d an ce in the R iver R hine, G erm any . P arasito logy 123: 185 -1 9 1 . TERNENGO S., L e v r o n C ., D e s id e r i F., MARCHAND B . 2005: P aras ite com m unitie s in E uropean eels A n g u illa angu illa (Pi- sces, T e leo ste i) from a C orsican coastal pond. V ie e t M ilieu 55: 1 -6 . WELCOMME R .L . 1988: In tem atio n a l in troductions o f in land aquatic species. F A O F ish . T ech. Pap. 294 , 318 pp. W lLLIA M S H., JONES A. 1994: P arasitic W orm s o f Fish. T ay lo r & F ranc is , L o ndon , 593 pp. Accepted 14 D ecem ber 2006 153 Bændabladió | Fimmtudagur 8. október 2015 Sigurjón Vídalín Guömundsson á Stokkseyri, með góðan feng af iðandi á! í gildru þann 25. september síðastlidinn. Á innfelldu myndinni má sjá álagildruna í laeknum. North Atlantic ehf. I sam- starfi við Sigurjón býður mönnum veiðiráðgjöf sem fólagið greiðir ef bændur hafa búnað og land sem hægt er nýta en kunna ekki til verka. Sigurjón kortleggur ákjósanleg veiðisvæði og sýnir hverníg á að leggja gíldrur. Myndir I Helena Sif Zópfioníasdóttir. Víðir Ísfeíd Ingþórsson hjá North Atlantic ehf. á Ísafírði: Hvetur bændur til álaveiða - fyrirtæ kið kaupir ál ti! v innslu og er hann seldur ferskur á Japansm arkað Slægður áll til útflutnings hjá North Atlantic ehf. á ísafirði. Fisksölufyrirtcekið North Atlantic chf. á ísafiriM hefur stundaðvlnnslu og útílutning á ái tii Japans. Atl þykir herramannsmarur og er oróinn mjiig eftirsóttur en fram- buðiö er m jiig takmnrkað. VicSir Isfeld Ingþórsson hjá North Ariantic ehf. segir að állinn sé vcrk- efni sem hófst hjá fyrirtækinu í fyrra með þreifíngum á markaði í Japan. „Við höfum sent út tilrauna- sendingar við góðar undirtektir. 1 vetur veröur stærri állinn revktur og seldur innanlands fyrir jólamarkaó- inn. Islenski dllinn vex hægar en áll annars staðar og eru vetðisvacði því viðkvaem fyrir ofveiði. Þess vegna leggjum vid áherslu á skynsamlega nýringu á stofnum sem hér er að ftnna," scgir Víðir. Hann segist telja að állinn sé van- nýtt auðlind, en þessa físktegund er að fínna viða um land, en þó sist á Noróurlandi og á Austfjörðmn. Helstn veiðisvæðin ent í vatnasvæð- um á láglendi sunnan- og vestanlands og talsvert við Breidaíjörð. SHlróítar vcióur en ýmsar hugmyudir Ýmsar hugmyndir hafa komió upp i gegnum tiðina um stórtækar ála- veiðar seni minna hefur þó orðiö lir. Veiðar á ái voru þó stundaðar á íslandi t einhverjum mæli frá 1960 til 1964 og þá aðallega i giidrur. Einnig er hægt að veiða ál í sjó og þá kemur fyrir aft stangveiðimenn fái ál, cink- um cfbcitt c rá krók. Árið 1995 var Álatéíagið hf. stolhað og var markmiðið að heíja álaveiðar og eldi sem skila átti 200 tonna framleiðslu á ári. Fékk félag- ið m.a. sryrk fra acvinnumálanefnd Reykjavikurborgar það sama haust en litið hcvrðist þó af ÍTckar: ftam- gangi málsins. Félagið fékk virðis- aukaskattsnúmer 1997 sem var siðan lokað 1998. í grein í Morgunblaöinu Viðir isfold Ingþórsson. við stofnun fyrirtækisins var viðtal við Guðmund Þóroddson, formann félagsins. Þar kom fram að ála- eldi í heiminum á þeim tíma hafi numið um 200.0(M) tonnum. Þar af hafi um 10-15 þúsund tonn farið á Evrópuinarkaó og um 1 >S0 þúsund toun á Japansmarkað. Einnig korn fram aö ktlóverð á reyktum ál á flug- vellinum í Kaupmaunahöfn væru um 3 .000 krónur. Eftirsótt neysluvuru Áll cr vtða veiddur erlendis þar sem hann er eftirsótt neysluvara og selst á háu verði. Framboð á ál hefur minnkað mjög og er taliö að áll sem nær ströndum Evrópu hafi fækkað um 90% fiá 1070. Er talið að skýringar sc m.a. aö leita í breyttu hiiastigi sjávar, brcvtinga á vatnasvæöum í Evrópu vegna mannvirkjageröar og vegna raengunar. Líklegt er talíö að áll kunm að leita í rikari inæli til Íslands vegna hlýnunar sjávar. Geeti ordit) úguif húbótfyrir htemlur Víðir Isfeid lugþórsson hjá North Atlantic scgír að álaveiði geii verið ágæt búbót fyrir bændur og land- eigendur. Vcrkefnið sé þó enn á úl- niunastigi hjá fyrirtækinu en óskað hafi vcriö effir fleiri samstarfsaðilum og liefur hann reynt að virkja fólk til ála- veiða. í því augnamiðí auglýsti haiui i Bændablaðinu i voreftir veiöimönn- um til að veiða ál iil vinnsíu. „Okkar markmið ct að koma áia- veiói á íslandi i góðan lárveg þannig að hægt sé með reglubuudnum hætti að nýta auólindina á skynsaman hátt og skapa verðmæti fyrir þátttakeud- ur." segir Vióir. Hami segir að þar sem um þróunarverkefni sé að ræöa, þá sé enn ekki kominn aimennileg revnsla á markaðinn. y\llínn séseld- ur í mismunandi siærðarflokkum og fítupróscntan skipti lika miklu máli fyrir kaupendur. Reglulega eru send- ar út prufusendingar þar sem fítupró- sentan er mæld i hveijum einasta ál. Verður þaö gert út þetta ár ti I að fá yftrsýn yfír árstíðabundna fitupró- sentu i ál á Islandi. Þrátt fyrir óvissu um söluverð segist Viðir hafa veriö að bjóða veiðiraönnum eitt þúsund krónur fyTÍr kilóið. Reyndur álaveióimuóur u f Suóurlandi Sigurjón Vidalín Guðmundsson á Stokkseyri, sein er einn fremsti ála- veiöimaöur á íslandi í dag. gaf sig fram þegar Viðir augiýsti cftir ála- veiðimönnum. J-Icfur hann stundað veiðar á ál, cinkiun í og við Ölfusá. Hann segiraó Suðurlandið henn vel til álaveiða sem einkum er veiddur í gildrur. Hann þekkir vel til álsins frá unga aidri en hann er læddur <>g uppaiirtn á Eyrarbakka. Eiginkonan. Helena S if Zóphoniasdóttir. er honum líka stundum til aöstoðar viö álaveiðamar. Ahuginn á álnum kvikrtaói vió s/angvciói í O/fusálini „Hjá m ér vaknaði þe.ssi áhugi á sinum tima þegar maður var að veiða á stötig í Olfusánni og veiddi með beitu og slöng á letingja. Þá var maður stundum að fá ál og ég fór aö velia þvi fyrir mcr hvort hann væn hér i einhveiju magni. Ég hafði þá einhvcrja hugmyud um að þetta væri trekar verómætur og eftirsóttur físk- ur. Framhaldið kom svo skemtntilcga á óvart. Oftast hef ég þó vcrið eiim að veiða þetta, en einstaka sinnum incð öónnn. í Ölfúsinu hefur maóur stundum hitt á mjög góð ár. Állinn gengur upp ölfusána og upp i vatnasvæóin í Flóanuin. Hann gengur upp í flestar sprænur sem ganga til sjávar. Maóur hefúr heyrt Bænd?rilaðið | Fimmtudagur 8. október 2015 All cr ekki ólíkur snák eóa slöngu og er afar lífseigur. Grillaður áll, glæsilega framreiddur á matardiskí í Japan. at'því aíl hann t'an lika upp i Þjörsána þóit ég hafi aldici vcitt á því svæói. Ég hef vcriö mest i Róanum og Ölfusinu." Ahugaverti fisktegund Lífshlaup álsins, þcssa sérkennilcga fisks, hcfst i Sargossa-hafi i rúmlega 4.000 kilómetra fjarkcgð frá íslandi. Áll cr afar lifeeigur. Þótt það fjari undan honutn við ströndina lifir hann af á þurru landi þar til flæðir að nýju. Þá scgir Sigiujón aö hann skriói auó- vcldlcga milli vatnasvæóa og um llæóicngjar og gcti vcriö klnkku- stundum saman á þurru landi án þcss að vcróa mcint of. Álar fcröast cinnig um á þurru landi og skriöa jafnvel upp klcita til aö snciða hjá fossum. Sigurjón scgir aö vciðin hafi vcrið ágæt sum árin. en minna þcss á milli. ..Það cr þannig mcð álinn að vciðin cr sveiílukcnnd. Ég sctti mig í samband við Víöi í vor þcgar hann auglýsti cf’tir vciðímonnum i Bcendablaöinu og sctti þá út nokkrar gildrur til aö kanna hvort állinn væri svo sncmma á fcrðinni. Það fcng- ust cinhvcriir álar cn ckkcn til að tala um. Þó sýndist rticr að svona könnun sncmma að vori gcri gclið visbcndingar um ál á svrcðinti, cn þá gctur vcrið ágætt að bcita i gildruna, cnda ckki mikið reti i ánum á þcim úmo." All er biriufœlinn og reióist litt y fir hásumunó ,.Y fir bjanasta tima sumarsins dcttur veiði alvcg niöur. enda állinn biitu- t'ælinn og hrcyfir sig þá ckki mikið. Mcö minnkandi birtu þegar kcmur frara á haust og hcldur fcr aö kóina, þá viröist kotna raciri hreyfing á hann. Sem dæmi var ég meö nokkr- ar gildrur í hinum ýmsu vötniun í sumar og var aö kroppa einhver 40 tii 50 kiló samtals yfir limabilió. Oft og tiðiun var ckkcrt i gildrunum, enda hefst veiðitiminn ckki af viti fyrr cn cftir mánaðamói júli-ágúst. tíesti tirainn er i september og Iram i október. Siöasta hálfa mánuðinn komu aftur á móti 40 kiló í tvær gildrur. Á haustin cr eins og állinn fari að hópc sig saman og hreyfa sig meira. Þá fer hann jafhlramt aö vcra vció- anlcgri en á sumrin. Ef maður hugsar lil þess að bændur haíi áliuga á að stunda þetra sem aukabúgrcin eða sem tómsrundagaman, þá er mesta veiðin á hentugum tíma eftir að heyðnnum lýkur. Þá þarf ekki aö vitja um gildrur nema á fimiti til tiu daga tresti. I flestöllura tilfellum sem aðrar lisktcgundir koma í gildrurnar þá er hann sprelllifandi þegar vitjað cr og litið mál að sleppa honum.“ Alaveióur hemja liku viógang minksins Sigurjón segist hata ótta.st talsvcrt að mmkur sem álpaöist i gildrurnar myndi rifa þær og tæta. Það hafi hins vegar aldrci gerst og svo virðist scm minkurinn drepist strax et'tir aö hann keinur í gildrumar. „Þaö má scgja að minkavciðin sé aukahagur við álaveiöamar og fækk- ar honum þá við ár og vötn um leið. Það kemur oft minkur í gildrumar en hann hetúr aldrei skcmmt hjá mér gildrur i þau tíu ár sem ég hef stundað þetta. Þó hef ég fengiö tugi minka og einu sinni kom ég að gildru meó finmi dauðum niinkuin.“ Dvelur í íslenskum viitnum og ám i 10 til 12 ár ÁJlinn gengur i íslenskar ár sem gler- áll eftir langt ferðalag t’rá hrygningar- stöðvuuum i Þanghafinu (Sargasso). Fljótlcga eftir að hann kemur i ámar umhreytist hann i þaó scm kallað er guláll. Álar vaxa um 5-6 sentímetra á ári. en kjörhiti þeirra til vaxtar er 22-23 ÚC. Aðstæður á íslenskum vainasvæóum bjóóa sjalduast upp á slíkan hita svo vaxtarhraðinn verð- ur hægari og hatrn verður seinna kynþroska en í ám á meginlandi E\TÓpu. Þegar áll hefúr náð um 35- 100 scntímetra lengd þá sækir hanu aílur suður í Þanghafió til að hrygna og drepst aö lokinni hrygningu aö taiiö er. Þa er hann búinn aö dvcija í islcnskum ám og vötnum i 10 rii 12 ár og orðinn 500 til 1.000 grömm aó þyngd. ..Þaó er cinmitt þcssi niötugöngu- áli scm maöur vill hclst fá. sem orðínn er 500 úl 1.000 grömm ad þymgd." segir Sigurjón. Hann scgir miklar líkur á að áll- inn fari aö sækja meira til íslands mcð hJýnandi sjó. Ekki siöur við hlýnandi lottslag og hxkkun á hita- stigi vatnasvæðanna. Hingað bcrst glcrállinn mcð Golfstraumnum og ræður það dreifmgu áls um landið. Því or litiö um ál í kalda sjónum íyrir Noröuríandi og Norðausturlandi cn þeim mun meira vcstan- og sunn- anlands. Lifscigur nted eindœmum Að sögn Sigtujóns cr lyginni likast hvcrsu iífscigur állinn er. „Ég salta álinn yfirlcilt til að drcpa hann og læt hann þá liggja i salti i fjóra tíma. Eftir það cr hægt að gcra aö honum. en mjög oft eru þcir samt ckki alvcg dauðir cl’tir |>cssa Ijóra tima. Ef maöur tekur slíkan ál. sem icgiö hcfur i »alti í íjóra lil fimm tíma og cr mcð cinhverju lífsmarki. og sctur hann í rennandi fcrskí vatu, þá er cins og ckkert hafí í skorisr. Hann veróursprclllifandi með það satna." Rœndur sáu oft iöandi ál vió cngjaslátt ..Þcgar ég var að bytja i álaveiö- ínm l'yrir rúmum tiu árum var ég aö ræöa þctta við nicnn á svæöinu og hvort þcir vissu um góö vciði- svæði mcðfram bökkum Ölfusár að austanverðu. Þá sögöu þcir mcr að þegar þama var stunduöur engja- siáttur og þeir að ganga hcim yfír cngin að dagsverkt loknu. þá fannst mönnum oít eins og jöröin væri á hreylingu i rökkrinu Þcgar mcnn bmgðu Ijósum á Ioft sáu menn oft ál sem var aö skriöa i áttina aö ánni. Hann fer þvi létt mcð aö skríða á niilli vatnasvæða. Þá myndar hann utan um sig slímhjúp scm ver hann, en liann getur samt tekiö upp súrefni i gegnum hann.“ Orðatiltækið aö vera háll scm áll er dregið a f því að slimið gerir hann hálan og því erfitt aó hafa hendur á lionum. I slimlmö álsins er eirur sem getur reynst vaiasamt. komist það i opiö sár. Eitrið bronur niður og veröur skaðlaust þegar álJinn cr reyktur eöa soömn. Álar þvkja fmir ttl átu í JCina og hefur N crðió á glerálutn farið yftr fnnm þúsund dollara fyrir kíióið í J-long Kong. í Kóreu eru álar sagðir stinnandi fyrir karlmenn scm cru fámir að linasi. Auk þess cru álar borðaðir með bestu lyst um alla Evrópu og í Bandarikjimum. Sagt er að Hinrik 1. Englands- konungur hafi ctiö yfir sig af áli og drcpist og Agústus Róinarkeísari er sagður hafa átt tjörn fulla a f áliun scr til ánægju. I.engsti áli sem mældur hefur verið hér á landi var 130 semímetr- ar og vó 6,5 kíló. Fullvaxnir álar á íslandi verða þó sjaldan lengri en meui á lengd og fjögur kfló að þyngd. Hængarcru núnni en lirygnur og sjaldnast lengri eu 50 sentimcrrar hér á landi. Getur skilaó ágœtum tekjum Sigurjón segir að hjá sér hafi þetta mest verið tómstundaiðja og áJiuga- mál i gegnum tiðina. Hatm liafi eiu- hvað dundaö sér vid aö rcykja ál fyrir sig og láta tnenn hafa i prufúr. El' menn vilji aftur a móti fara að stunda þetta af alvöru, þá se öruggt að hægt sé að fá ágætis verð fyrír áiinn. Þá geti dlaveióar hentað bændum mjög vcL þar sein þær er helst hægt að stunda eflir aö heyskap lýkur. .Álaveióar i Evrópu hafa dregist saman um 90°/;. en eftirspumin er mikil. Evrópusambandið hefurnán- ast baunað álaveiöar vegna mimik- andi stofnstærðar. Þá eru einhver höft i gangi i Evrópu við innflutn- ingi á cvrópska „Anguilla anguiila" álnum. Þaö má hins vegar fiytja inn lil Evrópu eins mikið og manni sýnist a f amcrikuáinum „Anguilla rostrata". cn sú tcgund vcióist eiti- hvað hér iíka." Sam kvæm t upplýsingum i blaðinu Fishcnncn's Voicc hcfur vciói á ál þó cinnig dalað mikið i Bandaríkjunum. I rikinu Main hefur vciðin fallið frá þvi aö vcra mcst nærri 190 þúsund kilö (190 tonn) a f fullvöxnum ái árið 1974 i það að vcra vei undir 2.000 kílóum árið 2011 . Á austursirönd öandaríkjanna hafa mcnn mikið vcitt af örsmáum gíerál i fínnðin net. Hann helursiðan verið alinn upp i markaösslærö fyrir Japansmarkað á 12 til IX manuö- um. Líklegt er talið aö mikil veiói á örsmáum glerál vaidi mestu um versnandi afkomu stofnsins scm og mengun. Hlýnandi lofislu}' gtcti aukiö álagengd til Is/ands Sigurjón scgir miklar iikur á að a51- inn tári aö sækja mcira til ísiands með hlýnandi sjó. Ekki síður við hlýnandi ioftslag og liækkun á hita- siigi vatnasvæöanna. Hingað berst glcrállinn mcð Golfstraumnum og ræður það drcifingu áls um landið. Þvi cr iitiö um ái i kalda sjónum fyrir Noröurlandi og Norö-Austurlandi en þeim mim meira vestan- og sunn- anlands. „Það er scrlcga míkil cftii-spum cflir ái í Asiu og einkum i Japan. Állinn scm cg cr að vciða tyrir Viöi og Nortli Atiantic íer allur til Japans. Þá vilja Japanir frckar smærri álinn og það hcntar okkur ágæflega. Hér á norðurslóðum crum við kannski ckki rncð kjöraðstæður fy rir ál og hann vcröur þvi ckki cins sfór og sunnar í áiftmni. Misjafut cr cftir löndum hvcrn- ig ál mcnn viJja hclst. Þannig vilja Frakkar frekai minni ál en t.d. Brciar og aðrar þjóðir i kring. Þá cr misjafnt hvcrnig mcnn vcrka álinn og Brctar rcykja hann t.d. frckar cn Hollcndingar og Danir. J3g setti cinu sinni að gamni minu auglýsingu á „tíusincss to busmcss" siðu á nctinu til að kanna áhug- ann á álnum sem cg var að veiða. Skem mst er frá að segja að þaö scttu sig sirax i samband við mig aóilar fiá Hollandi, Frakklandi og Bandarikjumun scm allir voru nijög áhugasamir." Siguijon segist vita til aö eiu- hvað sc flutt inn a f rcyktum ál, cn þar scu vissulcga tækifæri fyrir íslcnska framlciðsfu á ál. „Állinn ci að ininu mati klár- lcga vannýtt aaölind og það cr mun mcira a f honum cn margur hcidur. Fólk vcit ckki a f honum vcgna þcss að hann grefur sig i bornloójuna þannig að aðcins hausinn stcndur upp úr. Þaö má segja aö alls staðar þar som vatn kcm.st i sjó við Suöur- og Vcsturland. þar fmnist áll. Mcnn hal'a verið aó scgja mcr að þcir haíi vcrið aó fá ál i kolbrúnum pollum þar scm incnn hcldu aó nær ekkcrt líf væri. Ég hcld cg hafi aldrci sctt álagildrur niöur i polla sem ckk; hat'a cinhvcr álakvikindi álpast i. Það cr ótrúlcgt hvað hann er víða. Þaö cr t.d. áll i öllum vötnum i kringuin Reykjavik. Á árum áður var t.d. veitt talsvcrc a f ál í Vifilsstaðavatni." 'HKr. Áll - sextán til tuttugu ættkvíslir Til ættkvíslarinnar Anguiliídae teljast 16 tii 20 ! tegundir ála sem eru nokkuð óltkar að útliíi og finnasi vída um hcim, aö Suöur-Atlantsbafi og : austanverðu Kyrrahafi undanskildu. Tvær tegirodír ála eru þekktar í Atlantshafi: önnur ! cr evrópski áJlinn (Anguilla anguilla) en hinn ameríski i állinn {Anguilia rosfrata). Evrópski og atneríski áJlinn j ern ólílcir aö því leyti aó sá evrópski hefur aö mcðalt3li i 114 hiyggjarfiði en sá ameríski sjö færri. eða 107. j Sumir álar á íslandi itafa færri hryggjarliði enevrópski áílinn en fieiri en sá ameríski og eru sérstakir að því j lcyti og nýjar erfðarannsóknir sýna aö hér sc um að J ræða bíendinga á milli þessara tveggja tegunda. Heimkynni cvrópska álsinscrá íslandi, í Færeyjum i og Bretlandi. Frá Noröur-Noregi að Miðjaröarhafi ! og austur að Svartaiiafi. Hann íínrisr í áni og vötn- ! um i Mið-Asíu og þeim löndura Afríku sem hggja ; aö Miðjaróarhafi auk þess sem hann er þekktur á j Asóreyjum, Madeira og Kanaricyjum og við norð- vesturströnd Afriku suður til Senegal. Ameriski állinn finttst i austanverðri Norður-Ameriku ogá Grænlandi. Afft 100% hrygnur I Bjanii Jónsson. fiskifrarðingur hjá Veiðímálastofnun. sem rannsakað hetúr ála á Islandi, segir i grcin sem má finnaá landbunaður.is: „Rannsóknirá gulál ogbjartái hafa l>cinst aö útbreiöslu ála á Islandi, búsvæöavali, iíísháttmn og nýtingarmöguleikum. Þessar rannsóknir hafá leitt i ijós að áía er aö finna i ölJum landshlutum á ! fjölbreyttum búsvæöum og með ólika lifshætti. Hluti • ála virðist ala ailan aldur smn i sjó án þess að íára i j ferskvam eða ísalt vatn. Nidurstöður benda einiug tíl i þcss aö munur sé á tcgundasamsetningu eftir búsvæð- ! um og jafnvei iandslilutura. Það er cinstakt á Íslandí j að víðast er meirihluti ála hxygnur en hængar eru i i raiimihíuta. Kynákvöróun ála er umhverfisháð og fer i kynjaliJutfali álu ahnenm annars staöar á útbreiöslu- svasði þeirra eftir búsvæðuni. ísland viröist þvi skera sig hér úr og er hlutfali hiygna víöa allt að 100%." llrogn og Urfur Alar lirygna á voriu í Þangliafinu (Sargasso-liafinu) við austurströnd Miö-Ameríku. Jirygning fer fram á 400- 700 metra dýpi í úthafmu þar sera sjávardýpi er um 6000 m. Hrogn og lirfur eru sviflæg. Lirfumar (Lepiocephalus) berast með (iclfstramnnum að strönd- um Evrópu og Amcriku og tekur það ferðalag um eitt ár. Áður varralið að ferðaíagið tæk; þrjú ár. GleráU Liríumar m\rndbreytast þegar þær nálgast strendur og kallast þá glerálar. Gleráiar em giærir og um 6 -S sm iangir. Gleráiar sækja að strönd og ganga i ferskvotn. j Smárn saraan verða þeir guibrúnir á litinn og nefnast þá álasciöi. Gleráiar og áiasciði ganga i fcrskvatn að j sumarlagi. Göngur ála cru háóar hita i vatni og gengd er meiri í hlýium sumrum. E f fossar eru á Jeið ála upp ttniar þá skríða áiarnir upp raka kletta eða gras framhja fossum. Guláll Lífsskilyrði t'yrir ála í uppeidi (guiála) cru bcst i grunn- um vötnum á láglendi scm hlýna aö sumarlagi. Álar i fersku vatnt éta ýmis stnádýr á botninum. Aiar vaxa j um 5-6 sm á árí. Álar er hitakærir og kjörhiti þcin-a j til vaxtar er 22-23 °C. BjuriáU Þegar áil hefur náð um 35-100 sentimetra lengd þá sækir hann í Þanghafiö til að hrygna. Hann tekur áður j miklum útlitsbreytiugum. augun stækka. bakið dökkn- j ar. kviöur vcrður siilurlitur og slím á húð minnkar. j Slíraug húð ála er talin vera vöm gcgn breytingu á j saltituiihaldi vatns. Állinn hættir aö éta á ákveðnu þroskastig;, magi og garnir lians skreppa saman en kynt'æri taka aö broskast. A þcssu skeiði nefhist áll bjaitáll. Hængar eru þá 35—50 sm aö lengd og 60-200 g þungir og lirygnur 45-100 sm j langar og vega 100 g-2 0 0 0 g. Fundist hafa álar sent eru 125 sm og 6 kg. Það er háð vaxtarskilyröum hvenær álar yfirgefa fcrskvatn og halda út á haf. Á íslandi eru álar líklcga X-14 ára þcgar ganga bjartála hefst. Göngur ála aukast þegar hiti lækkar aö haustt. Gönguraar er tnestar aö næturiagi. Ferö bjartála á hrygnúigarstöövar i Þanghafmu crallt aö 6.500 km löng. Talið eraðálarm r j haldi sig á ura 50 -400 metra dýpi á meöan á feróinni ! stendur. Ál3r deyja að hrygningu lokinm. Álustofninn i Evrópu Talið er að fjöldi óln sem nasr ströndum Evrópu hafi ! minnkað um 90% frá 1970. Mögulcgt cr að það stafi a f náttúrulegum svciflum eða ofveiði, sé a f völdurn ! sníkjudýra eða vegna þess að áll gctur ekki gengið i ár vcgna hindrana t.d. a f völdum vatnsaflsvirkjana. Talió cr að fækkun ála megí að einhverju leyti rekja j til m engunamf völdum PCB. AlaveuUir og álaeldi Álaveiöar eru stimdaðar með ftéttuðum netum. Áll j er mikilvægur matfisknr í strandhéntðum í Evrópu, m.a. i Danmörku, Þýskalandi, HoIIaudi. Bretlandi og j i Frakklandi. Reyktur áll er einníghluti at'hefóbundnu : sænsku jólahlaðborði. ALARANNSOKNIR Ný sannindi um álinn! Bjarni Jónsson á Norðurlandsdeiid Veiðimálastofnunar á Hólum í Hjaltadal hefur frá árinu 1999 unnið að viðamiklum rannsóknum á álum við Island. I gegnum tíðina hefur sjónum vísindamanna í litlum mæli verið beint að álnum, en rannsóknir Bj-arna hafa þegar leitt í ijós ýmis ný og áður óþekkt sannindi um álinn. Á ársfundi Veiðimálastofnunar nýverið gerði Bjarni stuttlega grein fyrir rannsóknum sínum, sem hafa verið unnar í samstarfi við vísindamenn í Japan, Kanada og Belgíu. Fram kom í máli hans að þekking á lífsháttum ála hér við land hafi tii þessa að mestu verið byggð á eriendum rann- sóknum. Hins vegar sé ljóst að margt sé ólíkt með lífsháttum ála á Islandi og annars staðar þar sem hann er að finna. I því sambandi skipti máli staðsetning iandsins og sérstaða íslenskrar náttúru með sínum fjölbreyttu búsvæðum en tegundafæð. Þá segir Bjarni að ísiand sé eina iandið þar sem bæði sé að finna svokailaðan evr- ópuál og amerískan ál og nýjar erfðafræðirannsóknir staðfesti að hér á landi sé einnig að finna blendinga á milli þessara tveggja tegunda. Glerálar veiðst á fjórtán stöðum á landinu Bjarni Jónsson segir að áiar á Is- landi nýti sér fjölbreytt búsvæði í ám og vötnum og þá sé jafnvel að finna í svo ólíkum búsvæðum sem heitum lækjum, köldum og dimmum hraunsprungum eða fullsöltum sjó við ströndina. Rannsóknir Bjarna hafii ekki síst beinst að göngum glerála til landsins, útbreiðslu, vistfræði og tegundasamsetningu ála á Islandi. Frá því rannsóknirnar hófust hafa glerálar veiðst á fjórtán stöðum á landinu. Rannsökuð hafa verið áhrif sjávarfalla, vatnshita, birtu og fleiri þátta á atferli glerálanna. Einnig hafa daghringir í kvörn- um glerálanna verið notaðir til að tímasetja hin ýmsu myndbreyt- ingaskeið hjá álalirfunum, hve Bjarni lónsson. lengi þær eru á leið til landsins og tegundirnar bornar saman. Eitt ár í stað þriggja Aðalgöngutími glerálanna er frá maí og fram í byrjun júlf en þeirra fyrstu verður vart í endaðan mars og apríl. Gangan er að mestu yfirstaðin um miðjan júlf ár hvert. Samkvæmt rannsóknum Bjarna eru sjávarföll og vatnshiti þeir þættir sem ráða hvað mestu um göngurnar hériendis. Rann- sóknir á daghringjum í kvörnum gieráia sýna að þeir eru um eitt ár á leiðinni yfir hafið frá Þanghaf- inu til Islands, en áður var talið að ferðin tæki þá þrjú ár. Rannsóknir á gulál og bjartál hafa beinst að útbreiðslu ála á ís- landi, búsvæðavali og lífshártum. Þessar rannsóknir hafa leitt í ljós að ála er að finna í öllum iands- hlutum í fjölbreyttum búsvæðum og með ólíka Iífshætti. Hluti ála virðist ala ailan aldur sinn 1' sjó án þess að fara f ferskvatn eða ísalt vatn. Niðurstöður benda einnig til þess að munur sé á tegunda- samsetningu eftir búsvæðum og jafnvel landshlutum. Fullvaxinn áll um einn metri að lengd Fullvaxinn áll getur orðið um einn metri að lengd og um fjögur Álar veiddir með rafmagni við Bár á Snæfellsnesi. sem ala allan aldur sinn í sjó er að finna i hrauninu við Grindavík. Glerálar rafveiddir á fjöru vió ósa Vogslækjar á Mýrum. ÁLARANNSÓKNIR Glerálar veiddir meö scuba háfum á flóði við Vogslæk á Mýrum. Tekin erfðasýni af álum. kíló að þyngd. Hrygnurnar verða mun stærri en hængarnir. Stærsci áll sem hefur verið mæidur hér á landi var 130 cm iangur og vó 6,5 kíló. Fyrscu fimm árin vex ái- linn um 4-6 cm á ári, en síðan dregur úr vextinum og eftir það vex hann um 1-2 cm á ári. Hængar verða kynþroska 5-10 ára gamiir og eru þá orðnir 30 tii 50 cm langir. Hrygnurnar verða á hinn bóginn kynþroska 8-15 ára og eru þá 50-100 cm. Kyná- kvörðun hjá álnum er umhverfis- háð og er hlutfal! hrygna óvenju- hátt á Islandi. Alinn hefur mjög næmt lykcarskyn og nocar það við að ieita uppi bráð sína. Vitað er að állinn étur orma, snigia, krabbadýr og skordýr, einnig hrogn, hornsíli og seiði annarra fiska. Lítið hefur verið veitc af ál við Island á síðustu árum, en fyrir um fjórum áratugum var hann nýttur í umtalsverðum mæli. Þannig eru til upplýsingar um 15 tonna ála- veiði árið 1961 og var áliinn þá fluttur lífandi tii Hollands. Árið eftir var byggt álareykhús og veiðin var um 22 conn. Síðan dró ört úr þessum útvegi. Ekki vitað um stofnstærð „Það hefur komið í ljós í þessum rannsóknum að ál er að finna í sjó allr f kringum landið, en til þessa hefur verið calið að állinn væri hér við land aðeins í ferskvatni eða saltblönduðu vatni - sjávar- lónum eða árósum. Rannsóknirn- ar benda hins vegar til að áll sé ! cöluverðu mæli f sjó hér við land og komi aldrei í ferskvatn. Þess vegna er mjög erfitt að segja til um á þessu stigi hversu scór þessi stofn er hér við land," segir Bjarni Jónsson í samtali við Ægi. „Með frekari rannsóknum þurfum við að leiða í ljós eins og kostur er hversu stór þessi stofn er," segir Bjarni. Hann segir að framundan séu spennandi áiarannsóknir, meðai annars þurfi að afla víð- tækra upplýsinga um ýmsa líf- fræðilega þætti álsins og frekari nýti ngarmöguiei ka. Vitjað um álagildrur í Áshildarhoitsvatni í Skagafirði. 4 ICELA NDAIR C A R G O Ingi Björn Albertsson, fyrrv. alþingismaður, rifjar upp áralanga baráttu fyrir kaupum á TF-Líf VELALAMD ® V É L A S A L A - T Ú R B ÍH U R { V A R A H LU T IR * VH IG ER Ð IR : M I T S U B I S H I DIESEL ENGINES Vélaland ehf • Vagnhöfði 21 • 110 Reykjavík V erö í l a u s a s ó l t i kr. 600 IS SN 0 0 0 1 -9 0 3 3 96. á rg a n g u r 4. tö lu b la ö 2003 0 00160 F is k ifr é tt ir FIMMTUDAGUR 1. JÚ N Í 2017 Glerálar sem veiddir voru vorið 2015. — Sam fe lldar rannsókn ir á álum stundaðar f um 20 ár_________________________________________________________________ Állinn á íslandi hefur sérstöðu Álar á íslandi eru um m argt ólíkir álum í öðrum löndum Evrópu. Hér er kynblöndun ála frá Ameríku, næ r allir álar eru hrygnur og göngur gleráls hafa ekki hrunið. Staða álastofna hér er góð ólíkt því sem þekkist annars staðar. KJA RTAN STEFÁNSSON k ja rtan@ fisk lfrettir.is Bjarni Jónsson, forstöðumað- u r N áttúrustofu Norður- lands vestra, hefur vaktað og kortlagt glerálagöngur á íslandi frá árinu 1999 og stundað marg- víslegar aðrar rannsókn ir á álum, svo sem um útbreiðslu, búsvæði, vistfræði, tegundasam setningu, nýtingarm öguleika og fleira. Nið- u rstöður ú r rannsóknum hans hafa kollvarpað ým sum fyrri hugm yndum um ála á íslandi. Frá því að ran n só k n ir B jarna hófust hafa g lerálar veiðst á um 30 stöðum hér á landi. Seinni árin hefur Bjarni einbeitt sér að 10 lykilstöðum þar sem h ann hef- u r kannað árlega göngur glerála. Einstök lífssaga Lífssaga áls á sér fá eða engin for- dæmi. H ann h ry g n ir í Þanghaf- inu djúpt au stu r a f Flórídaskag- anum . Þ ar eru tvæ r aðskildar tegund ir ála, E vrópuáll og Am- eríkuáll. L irfur ála berast það- an með straum um til ým issa landa við N orður-A tlantshaf- ið. A m eríkuállinn fer norður og vestu r en Evrópuállin au stu r og norður. Á llinn á sér þrjú lífsskeið eft- ir lirfustigið. Seiðin sem koma að landi eru eins árs gömul og nefnast þá glerálar. Eftir að áll hefur valið sér búsvæði, aðallega í lækjum og vötnum, nefnist hann guláll og er hann á því stigi mest- an hluta ævinnar. H ann verður kynþroska 7 til 16 ára og umbreyt- ist þá í bjartál. Þegar kynþroska er náð gengur hann til sjávar og syndir í Þanghafið til hrygningar og deyr að henni lokinni. Finnst í ö llum landshlutum Bjarni sagði að glerállinn kæmi mest hingað ti l lands á tím ahilinu 10. m aí til 10. júní. H ann sagði að ála væri að finna í öllum lands- hlutum , búsvæði þeirra væ ru fjöl- breytt og lífshæ ttir ólíkir. Fram kom hjá Bjarna að ekki a llir álar færu upp í ferskvatn. Hluti afþeim lifir við ströndina og fer aldrei í ferskt vatn og lifir annaðhvort í fullsöltum sjó eða ísöltu vatni. Mest af álunum er á svæðinu frá Höfn og til Reykhóla. Þeir um- hverfisþætlir sem ráða álagöngum hér, sérstaklega á álum sem ganga upp í vötn, eru aðallega sjávarföll og vatnshiti. Á llinn læ tu r yfirleitt lítið fyrir sér fara. H ann lifir á fjölbreyttu fæði; sm ádýrum og flugum, hornsíli og vatnabobbum. Þegar hann kem ur hingað er hann um Álar í gildru íVífilsstaðavatni sumarið 2015 en aldrei hefur komið meira í vökt- unargildrurnar en þá. Evrópuáli. mailto:kjartan@fisklfrettir.is FIMMTUDAGUR 1 .JÚ N Í2017 F isk ifré tt ir 7 é é Það er því ta lsverð uppsveifla í glerá lag ö ng u m til íslands síðustu þrjú árin. G lerá lagöngur hafa langt í f rá dregist eins mikið saman hlutfalls lega á íslandi og víðast annars s tað ar í Evrópu. fimm til sjö sentím etrar að lengd en getur farið upp í 70 til 120 sentím etra fullvaxinn. Kynblöndun ála á íslandi „Seinni árin höfum við stundað um fangsm iklar erfðarannsóknir á álum. ísland er eina landið þar sem finna m á bæði h reina Evrópu- ála og kynblendinga við amerísk- an ál. Rannsóknir okkar staðfesta um fangsm ikla blöndun þessara tegunda hér. Þessi kynblöndun kem ur ekki annars staðar fram á útbreiðslusvæði Evrópuáls- ins. Við höfum einnig sýnt fram á að afkvæm i kynblandaðra ála á Tslandi eru líklegri til að koma hingað til lands á slóðir foreldr- anna. Það sannar að lirfu r berast ekki alveg tilviljunarkennt til ís- lands ólíkt því sem áður er talið og finna m á í fræðibókum,“ sagði Bjarni. „Þá beinast rannsóknir okkar einnig að áhrifum loftslags- breytinga á erfðasam setningu og kynblöndun.“ Skörun vid A m eríku- álinn í Þanghafinu Bjarni sagði forvitnilegt að athuga tím asetninguna á því hvenær álar frá íslandi koma í Þanghafið til hrygningar. „A m eríkuállinn hrygnir aðeins seinna en Evrópu- állinn. Væntanlega eráll frá íslandi frekar seint á ferðinni þannig að hrygning hans og A m eríkuálsins skarast aðeins. Það útskýrir mögu- lega erfðablöndunina á álum sem koma til Islands.“ Aðeins e it t á r t il íslands Bjarni hefur rannsakað kvarn ir í glerálum og fullorðnum álum en út ú r þeim m á lesa áhugaverðar upplýsingar um lífshæ tti og far. „Við fundum það ú t með því að skoða daghringi í kvörnum gler- ála að þeir voru aðeins eitt á r á leiðinni ú r Þanghafinu til íslands. í fræðibókum stóð h in s vegar að ferðin hingað tæki þrjú ár sem var rangt. Við höfum líka efnagreint kvarn ir gulála. K alsíum hlutfall árhringja segir til um hvort állinn hafi alið aldur sinn í söltu vatni eða fersku. Sem dæm i þá rann- sökuðum við sjávarála á höfuð- borgarsvæðinu sem sum ir v irtust hafa gengið upp í Ú lfarsá, Elliðaár og nærliggjandi læki og verið þar í tvö ár en leitað í sjóinn á ný og ekki farið aftur í ferskt vatn. Aðr- ir höfðu aðeins dvalið í s jó s a g ð i Bjarni. Hæ ngarnir hverfandi Það er einstakt á íslandi að víðast hvar er m ikill m eirihluti ála hrygnur en hængar eru í m iklum m innihluta. Kynákvörðun ræðst af umhverfisaðstæðum ogbúsvæð- um og skiptast því á svæði þar sem hængar og hrygnur eru ráðandi. Island virðist því skera sig hér ú r og er hlutfall hrygna hátt og víðast allt upp í 100%. „Bækurnar segja að meira sé af hæng í lækjum og ísöltu vatni en meira af hrygnum í vötnum . Rannsóknir okkar leiða allt annað í ljós hvað ísland varð- ar. Hér eru hrygnur ráðandi á öll- um búsvæðum . Þá má geta þess að við Marokkó, á hinum jaðri útbreiðslusvæðisins, er aðallega hæng að finna," sagði Bjarni. Sveiflur í glerál Ekki er vitað um stofnstærð áls á íslandi en rannsókn ir á gler- ál gefa ágætar vísbendingar um þróun glerálagangna. „Við höf- um um 20 ára sögu yfir mæling- ar á glerál á ákveðnum stöðum. Glerálagöngur voru þokkalegar að jafnaði árin 1999 til 2005. Eft- ir það tók við 10 ára lægð en mik- il aukning varð aftur árið 2015 og reyndist 2016 næ r því besta frá því að m ælingar hófust. Þeir stað- ir scm búið er að mæla nú í vor koma einnig vel út. Það er því tals- verð uppsveifla í glerálagöngum til íslands síðustu þrjú árin. Gler- álagöngur hafa langt í frá dregist eins m ikið sam an hlutfallslega á íslandi og víða annars staðar í Evrópu," sagði Bjarni. Ekki virðast hafa komið fram jafnm iklar sveiflur í fjölda og sam setningu gulála m illi ára og er í fjölda glerála. Bjarni hefur vakt- að nokkra staði og til að mynda Vífilsstaðavatn öll árin 1999 til 2016. Þar er ekki sjáanlegt að magn gulála hafi m innkað í vatn- inu. Árið 2015 var meira að segja motveiði þar. Bjarni taldi að draga mætti a f þessu þá ályktun að dán- artala glerála réðist að nokkru af þéttleika. V an n ý ttir m öguleikar Hrygnur hafa meiri vaxtarmögu- leika og verða stæ rri en hængarn- ir. Þær eru því eftirsóttari til veiða og til eldis. Bjarni sagði að tals- verðir vannýttir möguleikar væru fyrir hendi í álaveiðum á íslandi. Sérstaklega v irtust veiðar á bjart- álum geta gefið góða raun. Hins vegar skorti tilfinnanlega enn m eiri rannsóknir og þekkingu á lífsögu álsins, vexti, aldursdreif- ingu og stofnstærð eftir svæðum svo skipuleggja m æ tti sjálfbærar veiðar. Stadan betri á íslandi Evrópuállinn er á lista yfir dýr í ú trým ingarhættu. Þar spila marg- ir þæ ttir inn í, svo sem ofveiði, sér- staklega á glerál, búsvæði áls hef- u r verið skert eða eyðilagt, lokað á farleiðir og sjúkdómar og sníkju- dýr hafa herjað á stofnana. Bjarni sagði að glerálagöngur í Evrópu væru víðast aðeins 1-5% af því sem þæ r voru hér á árum áður og við það bæ ttist að lítill h lu ti þeirra kæmist upp og lifði til að komast aftur á hrygningarslóð. „Staðan á íslandi er betri. M argt er ólíkt með lífsháttum ála á Is- landi og annars staðar þar sem h ann er að ÍTnna. Ylri aðslæ ður hafa ekki breyst m ikið hér við land fyrir u tan h lýnun vegna loftslagsbreytinga. Við erum ennþá laus við m arga sjúkdóma og sn ík judýrsem herja á álastofna í Evrópu. Ekki hefur verið þrengt eins m ikið að búsvæ ðum álsins hér og veiðar eru litla r sem engar. R annsóknir m ínar gefa vísbend- ingar um að staða álsins sé góð á íslandi og að álastofninn hér sé á uppleið,“ sagði Bjarni. V iðm iðunarreglu r í Evrópu í ljósi stöðu álastofna í Evrópu voru settar viðm iðunarreglur sem miða við að einstökum rík jum beri að tryggja að hið m innsta 40% þeirra ála sem lif- að hafa tak ist að ganga til sjávar, þ.e. án affalla af m anna völdum, vegna veiði, eyðileggingar bú- svæða, tú rb ína virkjana og ann- arra m anngerðra áhrifaþátta. Þá ber þeim að leita allra leiða til að endurheim ta búsvæði og grípa ti l annarra aðgerða til að fást við neikvæða m anngerða umhverfis- þæ tti. Sum ar þjóðir geta vart náð þessum m arkm iðum , nema banna álaveiðar og dugir jafnvel ekki til vegna um hverfisspjalla. Ö ðrum þjóðum er þetta létt- ara og ljóst að ekki þarf að fara í svo íþyngjandi aðgerðir eins og veiðibann á íslandi til að upp- fylla þessi m arkm ið, en auðvitað ber íslenskum stjórnvöldum að útskýra sérstöðu okkar í þessum efnum , að sögn Bjarna. Engin þörf á veiðibanni á ísiandi Fram er komið frum varp á Al- þ ingi um bann við veiðum á áli á íslandi. Bjarni sagði það skjóta skökku við að sjá slíkar tillögur þ a r sem ekkert benti til að þeim álastofnum sem héldu sig hér á landi væri hæ tta búin. „í greinar- gerð með frum varpinu er vísað í skýrslu frá Alþjóðahafrann- sóknaráðinu, ICES, og látið að því liggja að ICES leggi til veiðibann hér. Ég hef skoðað skýrsluna og þar er enga slíka tillögu að finna. H ins vegar leggur ICES til bland- aðar leiðir til að stjórna veiðum og aðgerðum sem stuðla að uppbygg- ingu álastofna sem eiga að taka m ið af s töðunni í hverju landi. Á íslandi er ekkert sem kallar á veiðibann eins og áður er getið,“ sagði Bjarni Jónsson. Bjarni Jónsson við vöktunarstað gleráls við Stokkseyri ívor. Aðstæður voru erf- iðar, óvenjumikið vantsrennsli og litur á vatni. Engu að síður var góð veiði gler- ála. Fjöldi glerála var falinn ískjóli við steina á myndinni sem eru undir sjó á flóði. MYND/HALLDÓR ARINBJARNARSON www.hampidjan.is Veiðarfæri eru okkar fag T O G T A U G A R Skarfagörðum 4 , 1 0 4 Reykjavík S ím i:5 3 0 3 3 0 0 http://www.hampidjan.is FISKIFRÉTTIR 26. ágúst 2005 id ó ttu r i botni Noregi í ;ur orð- ú síðast cgsráð- í kostn- skjóls- væri út :r fram iherrann ffa flak- rirtækið að full- iu og ná því og tjólshús : í næsta rar líafa i og því hjálpa lckja út ipa hon- tráætlun um 400 u fimm 3 í hug- orn því íeikvætt ráöherr- Prepare ki vera samtali lö fyrst isa llak- á veröi nýju að •otni og turodd- taönum. ra vera k skips- arafurð- ið tæma irinu er icildar- 6,4% á L*r fram nbands tur hafi i þessa i fyrra. ir Fiski- r 8.320 la hefur lega frá 35.976 íma fyr- Flestir kannast við það að á lar eru ferskvatnsfiskar sem ganga í á r og vötn hér á landi. H itt er á fæ rra vitorði að hluti á la sem hingað ganga hafa aldrei í ferskvatn komið en dvelja í sjó allan sinn iíftíma. Þctta eru svokallaðir s jávará la r sem má veiða í fjörum og á grunnsævi hér við land. Tiltöiu- lega stu tt e r síðan synt var fram á þetta hér á landi en sjávarál- a r eru þekktir víða annars stað- ar. Það seni e r óvenjulegt viö sjávarál hér við land er að hátt h lutfall hans e r h rygnur og hann er jafn fran it s tæ rri en gengur og gerist um ála hér á landi, að því er B jarni Jónsson, fisk ifræ öingur h já N orður- landsdeild Veiðimálastofnunar á Hólum, sagði í sam tali við Fiskiíréttir, cn hann hefur með aðstoð sam starfsm anna sinna við Tokyo háskóla sýnt fram á tilvist sjávarála hér við land fyrstur manna. Vænn sjávaráll sem veiddist í Grafarvoginum. Sýnt fram á í fyrsta sinn að sjávarálar finnast við ísland — hluti álastofnsins við ísland hefur a ldre i í ferskt eða ísa lt vatn komið en elur allan sinn aldur í sjó sam kvæ m t rannsóknum Bjarna Jónssonar fiskifræðings Bjarni Bjarni sagði aö þótt álar vcidd- ust aðallega í ferskvatni hcfðu þeir einnig veiöst í sjó við ísland en ekki hafói veriö hægt aö segja til um hvort aö um lengri eöa skemmri dvöl hctÖi vcriö aö ræða vió íull seihtskilyröi. Hins vegar cr unní aö komast að niöursiööu uin hvar og hvenær állinn hef'ur dvaliö meö því aö mæla efnasamsetningu t kvömum fisksins. Ný- iegar rannsóknir á kvörnum ála viö Japan hafa til dæmis sýnt aö hluti tegundarinnar þar hcfur aldrei komið nálægt ferskvatni og dvelur ailan sinn ald- ur í sjó. „Því var ákvcðiö aö fram- kvæma úttekl á lífssögu ála veiddra í sjó viö ísland meö þaö aó augnatniði aö rckja feröir jieirra á milli sjávar og ferskvatns ásamt því aö svara þeirri spurningu hvort einhver hluti þeirra ála sem til ís- lands koma dvclji allan sinn aldur í sjó,“ sagöi Bjarni. Álar veiddir í G rafarvogi Bjarni sagöi aö þessar rann- sóknir heföu farið þannig ffam aö álar voru veiddir í sjó víösvegar í kringum landiö. M voru álar scm veiddir voru í Grafarvogi í Rcykja- vík valdir sérstaklega fyrir fyrsta á- fanga rannsóknarinnar. AUs voru veiddir 50 álar í smáriönar ála- gildrur í Grafarvogi í júlí til ágúst 2003. Álamir voru lengdarrnæídir, vigtaóir og kyn ákvaröaö ásamt því aÖ kynkirtlar voru vigtaöir. sCvam- ir voru teknar til grcininga á hlut- falli scltu (Strontium/Calcium) scm segir fvrir um íifssögu álanna meö tilliti til vcru i ícrsku vatni og sjó. 1 f)Trsta áfanga verkcfnis- ins voru kvarnir 15 ála efnagreindar. Stæröar- drcifhg ála sem vciddir voru í margvíslegum bú- svæöum var oinnig tekin saman til frckari glöggy- unar á lífsháttum áia á ís- landi. Sjálf dhagreinmg kvarnanna fór fratn hjá . , samstarsfólki viö Tokyo jonsson. háskóJa Samhhóa um rannsóknum voru frainkvæmd tvö verkefni framhaldsnema í Kanada og á ísiandi þar scm athug- uö var svipeerö og ertÖæsamsetning sjávarála í samanburöi viö ála úr ferskvatnsbúsvæÖum. Þrenns konar Iífssaga Bjarni gat þcss aö í ijós heföi komið aö allir þeir 50 álar scm veiddir vom i sjó í Grafarvogi og rannsakaöir hefðu veriö hrygnur en taliö heíur veriö aö hænga væri írcmitr aö finna i slíkum búsvæö- um Útiii sjávuráianna og hoídafar rcyndist nokkuö frábrugöið þvi sem gerist ineðal ála scrn vciddir voru í ferskvatni. Sjávarálarnir voru lil aö mynda hlutfallslega feitari cn ferskvatnsálarnir. L-rföa- samsetning þeirra var hins vegar svipttö, og reyndist meirihluti ál- anna vera Evrópuáll en hluti kyn- blendingar á milli Evrópuála og Ameríkuála. Grcining kvarna 15 fiska gálu skýrar niöurstööur um breytileika í lífssögu álu á íslandi meö tilliti til dvalar í fersku vatni og sjó. Skipta má álum viö Isiand i þrennl eflir lífssögu samkvæmt greiningu á kvörnum. Hluti þcirra ála sem veiddir voru í sjó í Grafar- vogi höföu í fyrsta lagi dvaliö mestan aklur sinn síóan á glcrála- stigi í fersku vatni. I öðru iagi haföi hluti álanna dvaliö nokkurár í ferskvatni en síðan gerst sjávarál- ar. í þriöja flokknum voru svo eig- inlegir sjávaráiar sem höföu aldrei komiö nálægt fersku vatni. ÓJíkt öðrum álum í A tiantshafi „í þessari rannsókn var í fyrsta skipti færóar sönnur á aÖ hluti ála scm berst til islands cyðirallri ævi sinni í sjó. Það er einnig óvenju- legt aö stærstur hluti ála sem dvelja í sjó hér við land skuli vera hrygnur sem aukinheldur ná mik- illi stærö miöaö við þaö sem geng- ur og gcrisl hjá úlum á Íslandí,“ sagöi Bjarni. Hann sagöi aö einnig heföi komiö í ljós aö hluti þeirra ála sem gengur í straumvatn dvel- ur þar fyrstu ár uppvaxtar en geng- ur því næst í sjó og klárar þar vaxt- arskeiö sitt. Sú niöurstaöa kom mjög á óvart, en þelta lifssögu- form virÖist nokkuö algenut hér- lendis. Ljóst er aö álar á Islandi hafa óiíka lífssögu samanboriö viö Atlanlshafsála í Ameríku og Evr- ópu. Mögulegt cr að norðlæg stað- setning íslands geri þaö likiegra aö álar dvelji allan eöa hluta upp- vaxtartíma sins i sjó viö landiö. Aya Kotake h já Tokyo háskóla skoðar hér efnasamsetningu kvarna ú r íslenskum álum með myndgreiningu. Selta í kvörnum sýnir ferðir ála á milli fersks vatns og sjávar. I veidanlegu m agni A f og til hafa veiöar á ál veriö stundaöar hér í ám og vötnum af einhvcrjum krafti en yfirleitt er hér um takmarkað magn aö ræöa. Stundum hafa þcssar veiöar alveg legið niöri. Bjarni var spurður hvort hann teldi aö unnt væri aö nýta sjávarál sérstaklcga. „Ég lel að sjávaráll við ísland sé hér á mörgum svæöum í vciöanlegu rnagni. Þessar veiöar má stunda meö gildrum í fjörum en eúmig má fara lengra út og ieggja gildr- ur frá bátum þar sem aöstæöur eru Iientugar,“ sagöi Bjarni. Sjávarálar við ísland. Efnagreining kvarna (Calcium/Strontium hlutfall) staðfestir að hluti ála dvelur allan æviferill sinn í sjó Bjarni Jónsson, 1 Aya Kotakc,- David LG. Noakes3 og Katsumi Tsukamoto2 'VcidíntálHstofnun Noröurland.sdcild, 551 Sauöárkrókur ^Occan Rcsoarch Invtitutc. Thc Univcrsity ofToUyo YRIDIMÁLASTOJ’N I’N 'Dcparlmcnt ofZnolng}- an'il Axclrod Instilutc oflchthyology, l.'nivcrisily ofGuclph Inngangur Landfræðileg lega og jarðfræ ðileg sérstaða íslands gera landið að óvenjulegasta stað sem vitað er að A tlantshafsálar ferðast til og alist upp á. Álar á íslandi nýta sér óvenju fjölbreytt búsvæði og njóta þar að nokkru tegundafæðar á m eðal íslenskra ferskvatnsfiska. Þeir finnast í vötnum, tjöm um , lækjum, ám, votlendi og ísöltum lónum allt í kringum tandið (Jónsson og N oakes 2001). Á lar hafa einnig veiðst í sjó við ísland en ekki hefur verið hægt að segja til um hvort að um lengri eða skemmri dvöl hefur verið að ræða við full seltuskilyrði. Nýlegar rannsóknirá japanskaálnum þar sem m ælt liefur verið Strontium /Calcium hutfall i kvöm um (eym abeinum ) sýna að hluti tegundarinnar hefur aldreí komið nálægt ferskvatni og dvelur allan sinn aldur í sjó (Tsukamoto et al. 1998; Kotake et al. 2003). Því var ákveðið að ffamkvæma úttekt á Iífsögu ála veiddra í sjó við ísland m eð það að augam iði að rekja ferðir þeirra á milli sjávar og ferskvatns ásam t því að svara þeirri spum ingu hvort einhver hluti þeirra ála sem til íslands koma dvelji allan sinn aldur í sjó. Álar voru veiddir í sjó víðsvegar í kringum Iandið en álar veiddir í Grafarvogi í Reykjavík valdir sérstaklega fyrir fyrsta áfanga rannsóknarinnar. Mvnd 4. lcngdardrcifing Mynd 1. Kvamir: Strontium/Calcium hlutfall, álum safiiað í Grafarvogi 2003 Gerð 1 Gerð 1 Aðferðir Alls voru veiddir 50 álar í sm áriðnar álagildrur í Grafarvogi í jú li til ágúst 2003. Á lam ir voru lengdarmældír, v ig tað irog kyn ákvarðað ásam t því að kynkirtlar voru vigtaðir. H lutfallsleg þyngd álanna var reiknuð sem Fulton's index= (1000x(W /L3). Hlutfallsleg þyngd kynkirtla var einnig ákvörðuð með þvi að reikna GSI stuðul íýrir alla veidda ála (þyngd kynkirtla (g)/þyngd (g) x 100) (tafla 1). Einungis þrír álar sýndu m erki þess að þeir væru að verða bjartálar. A ðrir álar voru greindir sem gulálar. Kvarnir voru teknar til greininga á hlutfalli Strontium /Calcium sem segir fyrir um lífsögu álanna með tilliti til vem i fersku vatni og sjó. í fyrsta áfanga verkefnisins vom kvam ir 15 ála efnagreindar. Lengdardreifm g ála veiddra í margvíslegum búsvæðum var tekin saman til frekari glöggvunar á lífsháttum ála á íslandi (mynd 3). Gerd 3 G crð 2 N = 4 25 ' 20' f 15 (I 10 : 5 i Gcrð 3 N = I IiAamWWþKAiu. 500 1000 1500 2000 Mvnd 2. Dæmigeröar breytingar á Sr/Ca hlutfalli kvama frá miðju fram að fremra svæði kvamar (saggittal), 1. blönduð lífsaga (fcrsk vatns síðan sjór), 2. sjávarálar, 3. straumvatnsálar nýkomnir i sjó. Einstakir fiskar voru flokkaðir samkvæmt Sr/Ca hlutfalli utan marka cr má tcngja glcrálum. Mynd.3. Vöxtur og lcngdardreifing ála á íslandi eftir búsvæðum Tafla 1. Mcðallengd. þvngd, holdstuðull og hlutfallslcg þyngd kvnkirtla gul- og bjartála i Grafarvogi 2003. Ixngd (cm)___________________ Þyngd (r)_____________ Ilnldstuðull (FuUon’x Indcx) MuUMbhg þvngd kynklrtln (GSI) McðaltallSD Ijglldl mgildi n Meöaltal * SD Láglldl llágild Mcðaltal * SD I II Háglldl n Mcðallal * SD l.ac 1.644 ± 0.380 0,571 2.399 47 0.569 ± 0,318 2,309 * 0.159 2,154 2,472 3 1.596 * 0,162 1.684 * 0.403 0.571 2.472 50 0.630 * 0.396 Niðurstöður Allir þeir 50 álar sem veiddir vora í sjó í Grafarvogi voru hrygnur. Lengdardreifmg álanna er sýnd á m ynd 1 og hlutfallsleg lengd m iðað við þyngd ásam t hlutfalli kynkirtla a f heíldarþyngd í töflu 1 . Lífsaga ála var greind útfrá kvöm um . M ikill tími fer i greiningu kvam a einstakra fiska. Greining kvam a 15 fiska gefur sam t skýrar niðurstöður um breytileika i lifsögu ála á íslandi meö tilliti til dvalar í fersku vatni og sjó. Hluti þeirra ála sem veiddir voru í sjó í Grafarvogi hafa dvalið m estan aldur sinn siðan á glerálastigi í fersku vatni (gerð 1), hluti hefur dvalið nokkur ár í ferskvatni en síðan gerst sjávarálar (gerð 2 ) og hluti ála hefur ekki komið nálægt fersku vatni og geta því talist 100% sjávaráiar (gerð 3). Á stöðum merktum m eð rauðum lit á m ynd 3 virðast á lar dvelja fyrst í straumvatni en fara síðan í sjó til að klára uppvöxt sinn. Ályktanir í þessari rannsókn eru í fy rsta sk ip ti sönnur fæ rðar á að h lu ti á la sem berst til ís lands eyðir allri æ v i sinni í sjó. Þ að er e inn ig óven ju leg t að s tæ rstu r h lu ti á la sern dve lja í s jó hér v ið Iand skuli vera hrygnur, sem au k inhe ldu r n á m ikilli stæ rð m iðað við það sem gengur og gerist h já álum á íslandi. H luti þeirra á la sem gengur í s traum vatn dvelu r þ a r fy rstu ár uppvax tar en gengur því n æ st í sjó og k lá rar þar vax ta rske ið sitt. Sú n ið u rs tað a kom m jög á óvart, en þe tta lífsöguform v irð ist nokk u ð algeng t hérlend is og þegar litið er á lengdardreifingu á la í m ism unand i búsvæ ðum hérlendis (m ynd 3) er g rein ileg t að á sum um þessara s tað a v írðast álar dve lja skam m an tím a. L íklegt e r að á e in m itt þessum stöðum séu á lar sem byrji uppvöx t í læ kjum sem b jóða upp á góð sk ilyrð i fy rir sm áan og ungan fisk, m eð takm örkuðu afráni og góðum vax tarsk ily rðum , en þegar að þau búsvæ ði fa ra að vera takm arkand i m eð auk inn i stæ rð ála, þá leiti þeir í s jó til að k lá ra vöx t sinn þar sem m eira fram boð e r a f fæ ðu. L jóst e r að á lar á ís land i ha fa ó lík a lífsögu sam anborió v ið A tlan tshafsá la í A m eriku og Evrópu. M öguleg t e r að norð læ g s taðse tn ing ís lands geri það lík legra að á lar dvelji allan eð a h lu ta u ppvax ta rtím a síns í sjó v ið landið. ÞakkarorO Vid þökkum Sigriði Ingóltsdóttur. Eik h.Ilarsdóttur og Guðmundi Inga Guðbrandssyni fyrir hjálp við álavciðar og að hafa yfirstigið vandamál þvi samfara. Heimildir Jónsson. B. ogNoakcs. D. L. G.. 2001. Icelandic ccls. Procccdings of thc Inlcmational Symposium: Advancos in ccl biology. 28-30 scptembcr 2001. Kotakc A. ct a!.. 2003. Variation in migratory history o f Japancsc ccls. Angttillajaponica. collected in coastal watcrs o f thc Amakusa Islands. Japun. infcrrcd from otolith Sr/Caratios. Marine Biology 142: 849-854. Tsakumoto, K. c l al.. 1998. Do all frcshwatcr ccls migratc? Nature. 396: 635-636. Harðardóttir. ttir að Sigmar jhúsgæðingur, :s!uþátt í haust : pottgæðingur ái í eldhúsíð tii nmtilega menn 3 re v r Gíslason. i. Ekki er vitað ieiðar Anton ar annar tveg- num - eftir að jhd; lék fyrír ' Döiníiinní á gar iin - .um n Magnússon. Ólafur Páll ðalagi í Dan- ,:t meðal ann- istarmann af e r á Jótiandi. jurfti hann að tarferð. I iest- mann og tóku fleira. Óii Paiii sladisk hljóm- uyföi Dananum en sagði svo: :amir hafa ráð- n. og eru nu á tarinnar út er- -í* ' \ . ' Y / ■ tQ k J J ** ^ £ * _ • / f , > t ' * '•,S H '.7 r jll * Gleráll ur sjó er sjaldgæfur og eftirsóttur Fanaaði fyrstu glerálana Bjami Jónsson fiskifræðingur hefur fangað fyrstu gierálana sem náðst hafa í sjó 'hér við land. Glerállinn er eftirsótt vara til átu í Japan og eldis í Evrópu og leggur sig á litlar 60.000 kr. kílóið. „E g n á ð i 2 0 0 s tykk jum í h á f við ó sa A iftá r á M ý ru m u m s íð u s tu m á n a ð a - m ó t þ e g a r s tæ r s ti s t ra u m u r var. V ar b ú in n að fa ra v iða u m la n d a ð le ita f rá þv í í ap ríi í vor,“ seg ir B jam i. „Til e ru sag n ir u m að g leráll h a fi sés t vaða u m á v issu m sv æ ð u m Í v t t á tím - u m . H in s v e g ar h e fu r verið ta lið að ú tilo k a ð v æ ri a ð re k a s t á h a n n n ú til dags í e in h v e iju m a g n i og é g h e f ver- ið s p u rð u r h v o rt é g g æ ti ekk i ey tt t ím a n u m í e itth v a ð b e tra e n svona g rú sk .“ G le rá ll e r v e n ju ie g u r u n g u r áll á le ið ú r Þ a n g h a f in u u p p í á r og v ö tn og ta lið e r a ð sú fe rð h in g að tak i u m 3 ár. A ilinn h e ít ir ý m su m n ö fn u m e ftir þvf á h v að a þ ro sk astig i h a n n er. G le rá ilin n h e itir svo vegna þ e ss að h a n n e r g læ r. Þ e g a r h a n n g e n g u r u p p í fe rsk v a tn d ö k k n a r h a n n og h e itir þá gu iáli. Ú tiitið b rey tis t e n n e r h a n n v e rð u r k jT iþroska, e f tír að h a fa verið í á n u m í 6 - 2 0 á r og k a lla st h a n n þá silfu rá ll. Þ á b re g ð u r h a n n s é r tíl b aka e f t ir G o ifs tra u m n u m til að a u k a kyn s itt í K a rab ísk a h a fin u /Þ a n g h a fin u . B jarn i seg ir b ú ið að eyðileggja b ú - svæ ði á is v íð a o g e in s sé ofveiði á h o n u m við s tr e n d u r EvTÓpu. E ld is- " t : - ' r f ’i ' V , fí i l Bjarni Jónsson fiskifræðingur notaði há f á gönguna við Álftárós. s tö ð v ar í F rak k lan d i, H o lia n d i og D a n m ö rk u k a u p i h a n n d ý ru verð í en m e s t a f h o n u m sé b o rð a ð e in s h a n n k o m i fy rir og þ á að a lieg a í J a p a n . K íló íð fa ri á 6 0 .0 0 0 . k r., s am k v æ m t n ý ju s tu t fð in d u m þ a ð a n o g h a fi h æ k k a ð ú r 4 0 .0 0 0 á s íð u s tu tv e im u r á ru m . E kki e r sk e p n a n stór, u m 7 sm iö n g og e in s og sp ag h e tti a ð sver- leika. B ja rn i e r s ta r f s m a ð u r N o rð u r - la n d s d e ild a r V e ið im á la s to fn u n a r á H ó lu m f H ja ita d a l og e ftir lé t h iu ta g le rá ls fe n g s in s á v a tn a iífs sý n in g u sem s te n d u r yfir á H ó lu m . R es tin n i f ó r n a r h a n n í þ á g u v ís in d a n n a . „ S tæ rs tu r h lu t in n fe r tii r a n n s ó k n a í J a p a n . Is la n d e r e in i s ta ð u r in n í h e im ín u m sem evrópski og am erísk í á la s to f iia rn ir m æ ta s t á og því v e rð u r a th u g a ð h v o rt h é r h a fi verið kyn- b le n d in g a r á fe rð . S íð an v e rð a tek in u r þ e im e y rn a b e in sem n o ta m á til að g re in a a ld u r þ e irra í d ö g u m og tím a - se tja m y n d b re y tin g a r sem v e rð a á þ e im á le ið yfir bafið . Þ e im upp lýs- in g u m e r ek ld h æ g t að n á e ftir a ð ái- lin n k e m u r í fe rskvatn ." - E n telurSu líkur á að hægt sé að veiða glerál í einhverju m agni hér við land? „Þ essi f u n d u r e r s te rk v ísb en d in g u m a ð þ a ð sé m ö g u leg t. E f h æ g t e r að Í ím ase lja g ö n g u r á h v e rju m s tað e r a u ð v e it a ð h a n n a g iid ru r sem h e n ta og ek ld e r vafi á að g leráli ú r o k k a r h re in a u m h v e rfi se ld is t h æ s ta verð i. Þ a n n ig að ég e r b ja rtsv n n ." G L \ . ALMANAK Laugardagur 17. J l 191. dagur ársins- 27. vika. Sólris kl. 23.20. Dagurinn le APÓTEK Kvöld-, nætur- og hí apóteka í Reykjavíl apóteki. Lyfja. Lágr daga vikunnar frá k ingar um læknis- O' gefnar í síma 551 8 Neyðarvakt Tannlæk er starfrækt um.hei tíðum. Símsvari 68' HAFNARFJÖRÐUR: Apótek Norðurbæj: opið mánud.-fösíu< ard. kl. 10-14, sunr almenna frídaga kl. við Hafnarfjarðarap í símsvara nr. 565 £ AKUREYRI: Sunnu a 9.00-18.00 virkads helgar. Akureyrar aj 9.00-18.00 virka da helgar. Stjörnu apó: 9.00-18.00 virkada frákl. 10.00-14.00. APÓTEK KEFLAVÍKl Opið virka daga frá Laugard., helgidag: daga ki. 10.00-12.0 APÓTEK VESTMANh Opið virka daga frá Lokað í hádeginu rr 14.00. SELFOSS: Selfoss apótek er o Opið er á laugardöc dögum kl. 10.00-12 AKRANES: Apótek bæjarins er kl. 18.30. A iaugard. og sunnud. kl. 13.0( GARÐABÆR: Apótekið er opið rúr 9.00-18.30, en laug; 14.00. KROSSGÁ1 Lárétt: 1 íipur 5 kvenman 9 fen 10 hrelnir 12 óþurrk, 17 auðveídu 18 fisks 19 u Lóðrétt: 1 ciafna 2 spii 3 6 gagniegir 8 saltíögur 11 15 sndlií 12 LAUGARDAGUR 17. J Ú L Í 1999 M ORGUN BLA ÐIÐ FRETTIR Gleráll, sem er í raun álaseiði, veiddist í fyrsta sinn í sjó við ósa Álftár á Mýrum Japanir borga um 60 þúsund krón- ur GLERÁLL veiddist í sjó hér við land í fyrsta sínn fyrir skömmu í einhverju magni svo vitað sé. Gler- állinn þykir mikil munaðarvara og e r gríðarlega verðm ætur en um 60 þúsund krónur fást fyrir kílóið. Það var Bjarni Jónsson, fiskifræðingur hjá Veiðimálastofnun á Hólum í Hjaltadal, sem veiddi um 200 gler- ála í Alftárósum á Mýrum. Gleráll e r í raun álaseiði en áll gengur í gegnum m argar mynd- breytingar á æviskeiðinu. Seiðin berast hingað til Iands ú r Þanghaf- inu svokalíaða eða Saragossahaf- inu. Állinn elst siðan upp í ferskvatni í 6 til 15 á r en gengur þá aftur ú t í Þanghaf til hrj'gningar. Evrópuállinn svokallaði berst upp að ströndum allrar Vestur-Evrópu. Hann kemur fyrst upp að strönd- um Marokkó og þaðan með strönd- inni alveg norður til Noregs, einnig i.il Islands. G lerálarnir sem Bjarni veiddi draga nafn s itt a f því að á þessu æviskeiði eru seiðin glæ r og gagnsæ, þannig að sjá má í þeim innvdlin. Seiðin voru um 7 sentí- m etra löng en Bjarni segir seiðin engu að síður geta verið allt upp í þriggja ára gömui. Bjarni segir menn hafa^haldið því fram að álagöngur til Islands séu mun minni en á árum áður, göngur ekki árvissar og það litlar að nánast ómögulegt sé að verða var við þær. „Menn hafa sam t mik- . ið reynt að ná þessum seiðum og komist næ st þvi með því að ná seið- um sem hafa yerið nokkrar vikur í ferskvatni. Állinn breytist hins vegar ú r glerál í venjulegan ál um ieið og hann kem ur í ferskvatn, dökknar á örfáum dögum. Bjarni segir vísindamenn ekki hafa veitt glerál í sjó við ísland svo vitað sé. Hann hefur fylgst með glerálagöng- um frá því í apríl og reynt að tímasetja göng- um ar með því að vakta ákveðna staði. „Ég hef farið víða um og aðallega skoðað ósasvæði, einkum á Suður- og Vesturlandi. Eins hef ég skoðað svæði á Norðvesturiandi. É g náði um 200 fiskum ú r einni göngu, einfaldlega með því að nota háf. Flestum var fómað í vís- indaskyni en um' 50 stykki eru til sýnis á vatnalífssýningunni á Hólum. É g get vel ímyndað sér að glerállinn gangi hingað að iandinu í talsverðu magni. Það er hins vegar nánast ekkert vitað um hvenær þessar göngur koma. E n um leið og upplýsingar fást um hvert þæ r ganga, hvem- ig og hvenær verður kannski hægt að ná þessu í meira magni.“ Mikil eftirspurn vegna skorts Á meðan állinn er ennþá á gler- álsskeiðinu þvkir hann mjög Ijúf- fengur og e r mjög verðmætur. B jam i segir Japana veiða mikið af glerál við strendur Marokkó, auk þess sem hann sé veiddur mikið við strendur Frakklands og Spánar. „Glerállinn e r borðaður eins og hann kem ur fyrir. Aðalmarkaður- inn er í Japan og þar borga menn upp í 60 þúsund krónur fyrir kOóið. Kílóverðið var fyrir fáum árum um 40 þúsund krónur þannig að það ' :< <*ZZZZ> Hrygningarstöðvar álsins Áiaseiði berast með hafstraumum upp að ströndum Evrópu úr Þanghafi og kailast Gleráll þangað tii þau ganga upp í ferskvatnsár. BJARNI Jdnsson fiskifræðingur. virðist vera skortur á glerál. Göng- u m ar upp að ströndum Norður-Af- ríku og Evrópu hafa farið minnk- andi og því verður glerállinn sífeilt eftirsóttari.“ Tveir stofnar mætast á ísiandi Bjam i segir glerálinn grundvöll- inn að álaeldi. Hingað til hafi eng- um tekist að klekja ú t ál í eldi til að láta hann lifa. Glerállinn sé því eina uppsprettan í eldi á íslandi. GLERÁLLINN þykir iostætí í Japan og e r borðaður eins og hann kem ur fyrir. Áframeldi á ál þyki ekki eins hent- ugt. „Eftir að hann gengur í fersk- vatn koma í hann sníkjudýr og fleira sem menn losna aldrei við. Það e r heldur ekki hægt að fijtja inn ál vegna sjúkdómahættu. En auðvitað er m aður einnig rekinn áfram af rannsóknaráhuga. ísland er endastöö Evrópuálsins en hing- að til lands kem ur einnig Ameríku- áll. H ér e r því eíni staðurinn í heiminum þar sem þessir ríæir stofnar rnætast í náttúrunni og jafnvel blandast. Það e r því for- vitnilegt að skoða samspil þeirra. Við munum meðal annars erfða- greina þau seiði sem við náðum með tilliti til þessa. Þá gefa kvarna- sýni upplýsingar um hvenær þau klöktust ú t og einnig er hæ gt að tímasetja myndbreytingar á loið þeirra yfir hafí.ð hingað til lancis. Það er ekki hægt eftir að fískurinn kemur í ferskvatn. Það eru bví ýmsar upplýsingar sem við IVuun út 8 FISK IFRÉTTIR 10. september 2004 Gierálar veiddir með háfum. Hrun i álastofninum veldur miklum áhyggjumí Evrópu — ESB hyggst grípa til fríðunaraðgerða og þörf talin á frekari rannsóknum hérlendis eru að eiga sér stað á liafstraumum í A tlantshafi samfara hlýnun jarð- ar. Eöa jafnvel aö óþekktur virus kunni að herja á stofninn. Aö sama skapi hefur vcriö bcnt á aö ekki hefur venö varað eins sterklega við ofveiði á ál og öörum tegundum og er það m.a. rakiö til vanþckkingar á lífsháttum tegund- arinnar. All þykir herramannsmat- ur og er hans ncitt á margvíslega vegu. Hann er t.d. grillaöur og reyktur viöa í Evrópu. Jafnvel gler- állinn er notaður í forrétti eins og á Spáni. í Japan þykir áll einnig mik- ið lostæti í sushi réttum. ESB íhugar aðgerðir Evrópusam bandið mun íhuga aögerðir í haust til verndar álnum. enda efast fáir lengur um aö hrun hafi átt sér stað. Spurningin um hvaö eigi lil bragðs aö taka hefur hins vegar vafist lyrir stofnunum ESB. Sérfræöingahópur hefur þó lagt til aö veiöar á uppvaxandi ál veröi bannaðar meö öllu. Einnig að tekinn veröi upp sérstakur skattur á glerálsveiðar. Hins vegar cr Ijóst aö þaö mun valda togstreitu á milli ríkja í Norður- og Suöur-Evrópu, en gleráll er einkum veiddur viö Spán Portúgal og Frakkland á meö- an norðlægari þjóöir leggja áherslu á veiðar fullvaxins áls. Einnig valda m ism unandi reglur innan landanna vandræðum auk þess sem mjög mism unandi aófcrÖum er beitt við veiðarnar eftir löndum. Hrun viröist hafa orðið í álastofninum sem veiðst hefur í töluverð- um mæli við strendur Evrópulanda. Bjarni Jónsson, fiskifræðingur og deiidarstjóri norðurlandsdeildar Veiöimálastofnunar, segir Ijóst að þessar fregnir vti enn frekar undir nauðsvn þessa að rannsaka betur útbreiöslu og stofnstærö áls í íslenskum ám og vötnum. Ekki sist í ljósi hugmynda manna hér um veiðar á glerál til áframeldis og eld- istilraunir sem veriö er að reyna að setja í gang. Samkvæm t erlendum fréttum telja hollenskir líffræöingar Ijóst aö álastofninn á í miklum erfiðleikum og veldur þaö óvissu um framtíð 25 þúsund álaveiðimanna í Evrópu. Einnig er mikil óvissa um afdrif þeirra stofna sem lifa á þessari fisktegund sem líkist meira slöngu en fiski. Jafnvel er taliö aö hefö- bundnar álaveiöar muni líða undir loka á næstu þrem árum. Hefur rannasakað ál síðan 1999 Áll fellur ekki undir Hafrann- sóknastofnun eins og flestar aörar fisktegundir í hafinu við landiö, heldur undir Veiðimálastofnun og þá um leið landbúnaðarráöuneytiö. Bjarni Jónsson hefúr stundaö víð- tækar rannsóknir á gönguhegöun og göngustærðum áls hingaö til Iands frá 1999. Heflir hann veitt ál á um 25 stöðum víóa um land og hélt hann erindi um ál á alþjóölegri ráðstefnu á Hólum fyrir skömmu sem fjallaði m.a. um fiskilíffræöi, fiskveiöar og fiskveiðistjórnun. B jarni segir þó Ijóst aö minni göngur hafa verið a f ál hingað til lands síðustu tvö árin en næstu ár þar á undan. Hann segir fréttir a f hugsanlegu hruni álastofnsins vissulega valda mönnum áhyggjuin enda er um sameiginlcgan stofh aö ræða hjá mörgum þjóðum. Hins vegar sé ekkert í hans rannsóknum hér á landí sem bendi til algjörs hruns og því fuli ástæöa til aö halda áfram frekari rannsóknum og áætl- unuin um tilraunaveiðar- og eldi. Eldi byggist á veiðum á glerál Áframeldi byggist á veiöum á glerál (sciöum álsins) sem gengur upp i ferskvatn allt í kringum land- iö. cn þó mest á Suöur- og Vestur- landi. Hitastig ferskvatns í ám og lækjum hefur afgerandi áhrif hvenær áliinn gengur upp. Scgir Bjarni aö þegar vori vel cins og í ár þá sé hann t.d. mánuöi fyrr á ferö- inni en clla. Bannaó er aó flytja inn glcrál til áframeldis vegna hættu á im'.IIutn- ingi smitsjúkdóma og sníkjudýra sem finnast á uppeldisstöðvum í Evrópu. ÁUinn á dularfullan lífsferil og hefur tekist aö lifa a f í ám cg í ála- eidisstöðvum, þrátt fyrir mikla of- veiði og þá staöreynd aö víöa hefur verið gcngiÖ á náttúrulegar uppcld- isstöðvar. Þrátt fyrír allt hefur tek- ist frani á síÖustu ár aö halda uppi veiðinni meö þeirri endurnýjun sem ungur gleráll hefur skilað úr hafinu og upp í ár og læki. Ekki hefur hins vegar náöst árangur í að klekja út áli í eldisstöðvum og hafa lirfur úr slíku klaki aöeins lifað í skamman tíma. 1% af fyrri stofnstærö Nú er hins vegar svo komið aó hrun viróíst hafa oröiö í nátlúru- lega stofninum a f óútskýröum á- stæöum. Fjöldi einstaklinga í stofninuin haföi samkvæmt frétt- um fallið niöur í 10 próscnt a f fyrri stofnstærð á síðustu 50 árum. Nú eru þessi tíu prósent taiin koniin niður I 1 prösent. AÖ sama skapi hefiir verö á glerál þrefaldast á síö- ustu þrem árum, eða í 325 dollara pundið (um 650 dollara kilóiö). Hluti skýringarinnar er aö mati sér- fræðinga sú aö gríðarleg ásókn hef- ur vcrið í glerál vegna stóraukins álaeldis. Á sama tíma hafa oröið breytingar á náttúrulegum Iífsskil- yrðum áls í hafinu sem eru vís- indam önnum cnn ráðgáta, en hrygningarstöðvarnar eru t Sara- gossohafinu. Hafa sumir vísinda- menn giskaö á að orsakanna kunni aö vera að leita í breytingum sem Bjarni Jónsson n.skifræðingur. Morphological variability in Icelandic eels effects of habitats and genetic origin Caroline Denis and Bjarni Jónsson Veiðimálastofnun Norðurlandsdeild, 551 Sauðárkrókur. caroIine_denis@hotmail.com VTiiÐ'IMA LAS’f'OfNlJK Introduction T hc &eshwaler ecis o f thc gcnus A ngu illa have uxtique characters such á s a catadrom ous lifc h istory strategy, a long spaw ning m igration a n d a long leptocephalus larval pcriod (W atanabe. 2003). They spcnd m ost o f their lii'e in frcshw atcr, bu t undertake a long m igration to the open O cean, andm ore . prccisely to ihe Sárgasso Sca, to spaw n (TCsch, 1977). Rccently il has a lso been found that som e eels caugh t in the open ocean havc apparcntlv nevcr entercd frcshw atcr, bu t spént thc ir cntire grow th phase m the m arine environm ent (lsu k a m o to e t a t , 1998). Differences in leng th an d a g c betw ccn scxcs scem s to bc urii\,ersal and occur in a ll species o f the genus despite the ir geographic ex’tent. Pooic and Reynolds (1996) Ariother differcnce betw cen sexes is thc tendéncy for num bers of fem ales lo decrcase w ilh distance ypstream from the sea. Oliveira e t at. (2001). ( In this sludy, m otphologic and lifo history difterences be tw een eels ong iná ting frora tlirce different habituts were observcd. Sam ples w ere taken from a lake, tw o sfream s a n d a m a'rinc site in lcelarid Thc ítrs t objective o f the study w as to determ ine if eels bclonging to different hab itats a rc charaetenzed by different life h isto iy traits. A t the same tim c, dilierences in lifc h istm y traits bctw ecn sexes are observed. A secprid objective is-to' chcck if th c num ber of fcm ale eels indeed decreascs w ith d istance upstream from the sea. A th ird a im c o n s ís ts o f detcrm iriing if it isp o ss ib lc to distinguish betw een eels originating l'rom different habitats merely on th c b a s is o f morphological traits. A nd i f so, whicfa charactcristics a re m o st úscful. A nothcr section o f this study is cdncem éd w ith com parison w ith the hybrid foriris o f A m crican (A. rostrata, 103-111 vertebrae) a n d E uropian (ri. auguilla , 110-119 vertebrae) eels occiuing in leeland (A lbcrt c t al. in prep.). For tliat purpose w c used data from a gcnetic study, conducted on dte sam e sam plcs. Ásgautsvatn Grafarvogur ■ ^ L Material and Methods Sampttng Altögcthcr 173 ccls werc cxamincd in this study. origmating from four locations in Iccland. With the cxccption o f Borgarlœkur, ut lcast 50 individuals werc samplcd pcr Iocation. Thrcc typcs o f habitnts wcrc samplcd for the study: a lake, rcprcscntcd by a sampic from Ásgautsvntn. StokkseyTÍ (N “56). Two strcam popuialions. onc fróm Bár. Gnindarfirði 04"52) and a sccondi smaller one. Iroht Borgarlœkur. Mýrum (N“ I5), nnd mannc sample collcctcd in Grofarvogur, Rcykjovik (N“ 50). Bccnusc thecclspccimctts from the Bár populotion wcrc locking both o f thcir ííns os they hodbeen removcd forgcnclic anolvsis. ítw as impossiblc to mcasurc ali troits. Thereforc thcy wcre excludcd from ccrtain anolyscs. To cncountcr this technical probiem. thc Borgorlækur, unothcr strcam population was included in thc anolysis. Life history Ali indívidúals wcrc mcosured to thc noarcst 0 I cm (totol Icngth) and weiglicd to tlic ncarcsL 0 .1 g (body wcight), and the Fuiton's condition tudcx colculatcd ns follows: rulton's CI ” 10ÓOx(Wí'L?). Gonnds wcrc cxamincd ttnd wcighcd to the ntsarost 0,1 g (gonadal wcight) to dctcrminc scx and maturity stalus. BeCouse ofthe prescncc o f undifferéntiatcd cels in the samplcs. it wus not always possible to dctcrminc sex. A onc way ANOVA vvas uscd to dcterminc ifthcrc vvcre significant diffcrenccs m mcun totnl length, body woight and condition indcx botwccn habitats. Post hoc pair-wisc comparisons o f snmple mcans wcrc porformcd with Bonforroni adjustmcnt. Anulogous tcsts wcre conducted for cbmparison bctwrcn. hybrids arid coinptmson bctwccn scxcs m thc stream population. To test thc nuli hypbthcsis tlmt ntalcs and fcmalcs oocurm Ihc samc proportions among habitats, a j ? contingency tablos wris used. Morphology Morphometric measuremcms werc takcn with a vcmicr calipcr. Twcnty cxtcmal mcasurcmcnts vvcre made on thc loft side ofcach fish. Mcasurcd are the pósitioas o f thc fins: thc dorsal tin (prcdorsal lcngth). thc annl ftn (prcannl icngth) and Ihc pcctoral fm (prcpcctoral lcngth). Only for thc pectoral fin dve lcngth and hcight are mcasurcd (pectoral fui length and pcctoralfin hcight rcspcctivcly). With respcct togcneral bodv form, body hoight and width vvcrodctormiricd at twodiffcrcnt spotsori thccel: a tthc beginning o f thc dorsal fin and at V4 6f thc annl fin (body hcight and width at dorsal lin and body hcigln and width nt 'á ánal fin). Eyc size is another important trait. Thorcfore both diametcrs arc mcasurcd: thc smnll onc (oyc diamcter vcrtical) and thc largc onc (cyo diamctcr horizontal). Also thc distancc bctwocn thc cycs as wcll as thc distnnco bctwocn thc most distal margins of thc cyes wcrc mcasurcd. pcrpcndiculítr to thc body axis (orbital distnnce betvvccn eyosand orbital distancc on thccyc). Position ofthceves is dctcrminod by thc snout-cyc length, vvhich is thc distnnce from thc tip o f thc snout tothcm ost distal morgin o f thc cycs, and tho postorbital-pcctoral fin icngth. Tltc rcmaining characteristics arc rélated to thc licad shapc: mnximal head widtli (hcad widlii max). The hcad hcight is mcasurcd at tvvo spots: ni thc maximal hcad width nnd at tlic cnd o f the muxillae (hcad hcight at head width mux and hoad hciglitat maxiilue). Lcngtli isdclcrmincd forboth uppcrand lowerjaw. Mcasurements vvcrc repeatcd tw iccon 15fish to assess rchubility, Repcatcd moosurements differed 0.,9 -9,4 %, dcpcnding on tho size o f tlie ciiarnctcr involved. ANÖVAwas usod to tcst vyhcthcr morphological traits diffcrcd botwccn hubituts. Anulogous ananlyscs vvcre run to usscss dilTcrcnccs among scxcs and among hybrids. When ricccssary apo.it hoc pair-wisc comparison was conductcd by usmg Bonfcrrotu adjustment. For. these analyscs data wero sizc-adjustcd by using thc rcsiduals of the variablc regressed againsf towl Icngth. Ovcrall pattcnis o f morphological varintion was asscsscd with principal componcnt arudysis and discrimmant analysis. Thcse tcsts wcrc also based upon thcsize- adjustcd datu. Analyses wcredonc using thc SPSS software packngc wilh a diiTcrcncc vvith p-vaiuc of < 0,05 considercd significant. A lcristtc counts ln ordor to distinguish fishes of thcdiffcrcnt spocics o f AUnntio cels (A. m guiU a and A. rostrata) tuid the hýbrids betwccn thcsc tvvo specics. it ís vcry cbnvenicnt lo count tiie numbcr o f vcrtcbrac. The vertebrae counts arc niadc from thc barc spmal columit. A gcnctic study (Vioky Albert ct nl in progress) conductcd on thc sante samplcs madc a coiriparisoit possible. Thcsc gcnelic rcsults were rathcr analogous but contained more information. Thcrcforc somc groupings in thc statistical analyses vvcre based on thesc gcnctic rcsults. On the basts ol thc mcnstie cburits aiid the rcsults b f thc gcnctic study.it vvas possible tíj cotnpore thc mCristic counis bctvvecn thc hybrid types and run an ANÖVA on thcm. Thís arialysis was doric to súbstantíafc thc mtcrpretatton ofthc mcristic counts nmong thc hybrids Frequency dlagramTotal lengtti Figurc Ib Frcqucncy diagrarn oflotul lct Acknowledgements Wc thank Páll V. Kolka Jónsson. Evgcnia Ilinskaia. Katrin Kolbcinsdóttir mid Eik Elfarsdóttir for valuablc hclp at diftcrcni stagcs o f this work. Olivcira, K.,McClcavc. J 13. mid Wippclhmctcr, C.S (2001)Kcgtonal vanauou .1111] lliccfTccIol lokc nwr nrca on sex dintnbulion of Anicncmi ccls Jountal of Fijh Biology. 38:9-13-93 Poolc.VVR nndKcynolda, J.D.(1996)Growthrntcandiqtcntnugrdtion of/VngiuUa anRuilla. Joum.il o/Flih Blology.Aa 633-642 Tcrch, F W (1977) Tht. Tsokumolo.K ehtl (199S)Donll frcshv Wutnnutw, S, (2003) Taxonomy of Ihc frc Figurc 2 PCA PC-scorcs for ccls from thc thrcc habilat lypcs, tndtcatcd urc thc mcons of thc dtlfcrcnt hobitat lypcs, with stondord dcvintion Dota on 16 vttnnblcs ndjuslcd for toUtl lcngth (by unstondardizcd rcstduals) tn ccls bclongmg to thrcc diflcrem habitnt tvpes (N-163) Results T he exccssive am ount o f fem ales p resenl in the w ho le sam ple is rem arkablc. O u to f the 126 eels o f w hich the sex could be ascerlained, 119 tum ed ou t to be fem ales (94% ); N o m ales w ere observcd am ong tlie eels sam pled in.the lake or marine habilat, und onlv 7 b f 31 eels exam ined from thc s tteám population w erc m ales. A X :-tesl revealed a signilicant difterencc hi séx disfributiori am óng habitalsv vvitli tlie streám populatioiis deviating frorit th e others (X : =0,000). Fem ale eels o f thé stream population are sm a lie rthan those o f th e o th c r habitats. Fem ale cels o f the m arine population are w ay larger than the otliers ((F=32,098; p=0,00Ó), ftgurc la a n d Ib). Total length for fem ales w as significantiy diflerent betw een hab itats (F=32,098; p=0;000) N o signilicant diflerences w ere found in total length betw een the sexcs in the strcam poþululion (F=0,539; p=0,469). Analogous resu ltsw ere found for tlie weight o f thcee ls : a m irum al m ean valuc o f 52,8 g ' w as o b se rv e d in th e strcam population, an interm cdiatc 155,5 g in th c la k e popula tion and a m axim al m ean value o f 313,2 g in the m urinc sité, O nly sligh t non significant diflérence w as found in Fu lton’s condition index betw een eels occunng in lakes (C Í=1,556) and stream s (C l= l ,401). However, these values a re sm aller than th e m ean condition index for eels frora. thc m arine site (C I= 1.858, AN OV A , (p=0.000 and p=0,000). U niyariate analysis o f mbrphom efric characters prbduced only significant differences in three ad justed character m cans bctvvecn populations afler Bonferroni correction for repeated tests. They w ere prepectoral length, length o f the upper jaw a n d len g th o f the low er jaw. A com parison betw cen luko and s iream popula tions show od the highest num ber o f signiticaiit differencés in ad justed character m eans (10 ou t o f 20 traiLs). C öm parisón betw een lake and m arine site gives n s e to seven significant d iðe rö tces in ad justed character m eans and by com paring thc stream w ith the m arine site only five adjustcd charactere w ere significantly diflérent (table 1). For the stream population it w as possible to com pare the twenty morphom etric traits am ong sexes. O nly tw o ad justed characters w ere significariffy diflerent betw cen m ales and fem ales, thc body height a t '/; o f Ihe anal fin (F=5,258; p=0 ,029) und ihe body w id th a t '/: o f th e an a l fin (F=10 ,103;p= 0 ,004). In Principal Com ponent A nalysis (figure 2 ), 46 .9% ö f the varialion w as cxplained by the first P C A ax is and 18.6% by the second prineipal com ponent (a second PC A w as a lso run on on ly three o f th e popiilations; A sgautsvatn, B orgarlæ kur and Grafarvogur, w hich did no t have m issing variab les, table 2). Tlic firsl p rincipal com ponent produccd á h igh positive loading for predorstil lengih and preanal ienglh. 'l lie re w as a rathcr higli ncgativc load ing lb r body hcight a t dorsul fin. The second ax is had higli positive louding for p reanal lengtli a n d negalive Ioading for p redorsal length (tablc 2). Thc differences in m ean scores betw een hab itats were highly significant to r the first PC A (p=0.006) cven w hen w e addcd thc hvbrid sla tus a s a covariate. B u t in th e lattcr case the hybrid s ta tus itse lf and thc interaction factor w cre not significant (p=0,223 and p=0,607 respcctively) so there w as no interactíon betw cen hab iiat and hybrid sta tus. N either w as therc a significant difference in m ean scorcs betvvcen scxes (p=0,892) or hybrids (p=0,075) for the first principal coinponcnt. T he four variables, cxcluded íri th e first unalysis, scem to bé ra ther im portant as revealed by variable loadings in the principál Com pönent A nalysis on the second sct o f dala (table 2). Significant correlations w ere found in D iscrim inant A nalysis for botli the first and second function (0,744 p<0 ,000 and 0,433 p=0 ,007 respcctivcly). L ow er jaw , head heigh t u t m axillae and body w id th a t dorsal lin had the h ighestpositive coeflicients' for the f irs t lunction and body heigh t á t A o f the anal fin, m axim al head vvidth and prcanal length the highest negátive cocflicients. F o r thc secorid function, upþer ja w lerigth vvith a high negalive coeflicient secm s to play án miportant ro le in discrim inating bctw een the g roups (tab le 3, figure 3): C lassification accuracy w as m odestly good, w ith 78 .6% o f the lake population, 57 .9% o l' tlie stream population á n d 50% o f Ihe m arine eels correctly c lassified to the ir respective habítaLs. Thc num ber o f vertebrae is shovvn in figurc 4. The E uropean éels (A nguilla anguilla) in our sam ple were characterised by a b road rangé o f vertébrae m uriber (104-118). T hé F í hybrids h a d a significanúy different ran g c (þ=0,000) w h ich covers sm aller am ounts o f vcrtebrae (103-111), corresponding to the vertebrae num ber o f A m crican eels (Anguilla rostrala ). Thc F2 hybrids hud an intem icdia te range ( 1 10-137), and vvere significantly different from the F 1 hybrids (p= 0 ,001) bu t no t from Lhe A . auguilla (p= 1,000). Tablc 3 Cocflicicnls from ciu for Ihc powcr of Ihc discnmmt Uimbda. df imd p-valuc. ihcm for cach habilal lype (rcd signs) Conclusions Atlantic eels in Iceland are predominantly females in all habitat types, with males being best represented in streams. Eels from the marine habitat were the largest and had greater relative weight than eels from other habitats examined. Differences were observed in morphology between eels from altemate habitats, both in individual characters and Principal Component and Discriminant Analysis. Eels could to some extend, be classified to tlieir respective habitats based on overall morphology. F1 hybrid eels were found to have intermediate vertebrae counts in comparison with Europian and American eels, while F2 hybrids and higher, had vertebrae counts similar to that o f Europian eels. This study reveals strikingly different life history strategíes among Atlantic eels in lceland, compared to what has been reported for the species. Further, eels appear to display great flexibility in adjusting their morphology in response to the habitats they are residing in. mailto:caroIine_denis@hotmail.com Miðvikudagur 10. mars 2004 B a e n d n b l a ð i ð Bjarni Jónsson fiskifræðingur Állinn er aufilind sem baendur getn nýO sér Fyrir skom m n var skýrt frá svari landbúnaöarráðherra á Alþingi við fyrirspurn Ö ssurar Skarphéðinssonar um álaveiðar og álaeldi hér á landi. Svar ráðherra var að m estu byggt á þeim rannsóknum sem B jarni Jónsson, fiskifræ ðingur hjá norðurlandsdeild Veiðim ála- stofnunar, hefur unnið að í nokkur ár en hann er sá sem m est hefur stundað vísindalegar rannsóknar á ál hér við land. Bjarni sagði í samtali Bbl. að rannsóknir hans hefðu leitt í ljós að talsverðar göngur gleráia, sem eru seiði ála, séu hér til lands og að þeir umhverfisþættir sem ráða mestu um göngur þeirra séu sjávarfoll og vatnshiti. Unihverfis- þættir ráða mestu um hvort gler- áliinn verður karlkyns eða kven- kyns. Hér við land er það á þann veg að mikill meirihluti gleráls verður hrygnur. Þaer vaxa betur og verða stærri en hængurinn og verðmætið er meira. Hann segir að viðast hér á iandi sé hiutfall hrygna óvenjuhátt. í S-Evrópu er umhverfisþátturinn á þann veg að meirihluti glerálsins verður hæng- ar sem eru ekki eins hagkvæmir í eldi og hrygnan. lækjtun og vötnum. Nú er komið í ijós að það er hægt að stunda álaveiðar í sjó hér við land sem er þá bara viðbót við þá auðlind sem állinn er í ám og vötnum, þ.e. á! sem dveiur allan aldur sinn í sjó. Ég tei hiklaust að þarna séu komnar umtalsverðar sti'andnytjar fyrir bændur sem land eiga að sjó og eiga strandlengju sem gefur kost á áia- veiðuin. Sömu sögu er að segja af álaeldi sem líka getur orðið umtalsverð aukabúgrein en það byggist á því að veiða glerála og ala þá áfiam. Það hefur einnig koniið í ljós að hér við iand mætast Evrópu-áll og Ameríku-áll og er það eini staðurinn í heiminum sem það gerist. Það hafa meira að segja fúndist kynblendingar þessara stofna hér við landið og standa yfir rannsóknir á þeim," sagði Bjarni. Hann segir að rannsóknir sínar hafi byrjað á glerálarannsóknum árið 1999 vestur á Mýrum og voru það fyrstu vísindasýni af glerál sem hafa náðst hér við land. Upp úr því fór hann að kortieggja göngu gleráls til að fá yfirlit yfir útbreiðslu hans við landið og gönguhegðun. Næstu ár á eftir segist hann hafa vaktað ákveðna staði við landið á vorin og fram- kvæmt mælingar á glerálnum og rannsakaði umhverfisþætti. Hann segist hafa veitt glerál á 17 stöðum á svæðinu frá Stokkseyri að Barðaströnd og eftir því sem þekk- ing og kunnátta eykst veiðist meira af glerálnum. Síðan byrjaði Bjami í fyrra á nvju rannsóknarverkefni varðandi sjávarálinn og útbreiðslu hans um- hverfis landið rneð nytjar í huga. Hann hefur veitt sjálfur og fengið fólk til að veiða fyrir sig allt í kringum landið og komið hefur í ljós að ái er að finna í öllum lands- hlutum. „Það kom mér á óvart hvað veiddist mikið á ákveðnum Vœnleg búgrein „Þegar horft hefur verið til áiaveiða hér á landi fram að þessu þá hafa menn aðallega veitt álinn í Þessi áll veiddist i Elliðaánuni otj var 84,5 sm og þyngdin var 1,3 kg! Myndin birtist í bókinni Fiskar í ám og vötnum, sem Landvernd gaf út 1996. stöðum og eins iivað állinn er vænn víða við landið sem heigast af þvi að hrygnur eru í miklmn meirihiuta hér sem fyrr segir," sagði Bjarni Jónsson. 5 Fyrirhugaðar eru endurbætur á aðstöðu fyrir ferðamenn við Seljalandsfoss. Umhverfisfulltrúi Ferðamálaráðs hefur unnið með Náttúrustofnun og sveitarstjórn Rangárþings eystra að þessu máli og munu teikningar af svæðinu vera tilbúnar. Ágúst Ingi Ólafsson, sveitarstjóri Rangárþings eystra, segir að ekki sé búið að ganga endanlega frá samningum um hve mikið verður gert á svæðinu enda málið enn á hönnunarstigi. Aöspurður um hvaöa endurbætur menn séu helst aó tala um sagði hann að það væri að koma upp hreinlætisaðstöðu og að lagfæra göngustíga. Bætt aðstaða fyrir ferðamenn til að borða nestið sitt væri líka inni í myndinni. 10 SUN N U D AC iU K 12. SK I ’T K M IÍE K 1 >!')!) M O KG U N B L A D ID Veiðistaður glerála í sumar, nærri ósum Álftár á Mýrum. Glerálar gætu verið gullnáma Framboð á glerál til eldis hef- Mýrum og telur útlit fyi*ir að ur ininnkað verulega síðustu hér á landi séu góðir mögu- árin og eftirspurn, og þar með leikar að veiða glerál í því M D l’/ í l r \ m l r i r í n n n f i l o O m V *rnm i o m n r rm ’ o / í r«*n rvvi o/x i F 1.* » Gleráll í prófíl. Haiui er svo gegnsær að sjá má líffæri hans. Úr nálægð má sjá hjartað slá. Glerálar í lófa vestur á Mýnun. ál frá árí til árs. í bók þeirra Guðna Gudbergssonar og Þórólfs Antons- sonar „Fiskar í ám og vötnum“ segir frá því að fiski hafi verið eytt í Vatnsholtsvötnum á Snæfellsnesi á ái’unum ÍDG2 og 19C3. í bókinni steiulur þetta: „lteyndist þá vera 9,7 kg á hektara af ál í öðru vatninu, eða 74% af heildarfiskmassanum og 57% í hinu vatninu. Sjálfsagt er því áll oft vanmetinn meðal ferskvatnsfiska hér á iandi.“ í bókinni er einnig úttekt á nýt- ingu á ál hér á landi til þessa. Þar stetidur: „Gömul hefð var fyrir nytj- un á ál í Lóni, Nesjunt og Suður- sveit. Þegai’ þar var dregið fyrir sil- ung og kola í ísöltum lónum veiddist alltaf töluvert af ál samhliða. Var hann nýttur til matar, nýr eða reyktur. Roðið var verkað sem þvengjaskinn í skó og þótti sterkt og irtjúkt. Eftir að lagnet urðu alls- ráðandi við silungsveiðar hætti áll- inn að veiðast. Upp úr 1960 voru gerðar tilraunir íil að nýta ál betur hérlendis. Arið 1961 veiddust 15 tonn af ál víðs veg- ar um landið og var hann fluttur lif- andi til Hollands. Árið eftir var út- hlutað álagildrum til þeiira sem þá veiði vildu stunda. Hollenskur :íla- veiðimaður kom til leiðbeiningar og v;u- áætlað að veiðast myndu 100 tonn. Ehinig var byggt reykliús í Hafnarfirði eftu- hoilenskii fyrir- mynd. Aldrei veiddust nema 17 tonn það árið og fór minnkandi næstu ár. Einnig lækkaði ineðallengd veidds áls íu-att þessi ár og bendir það til þess að veitt hafi verið ofanaf stofn- inum, endurnýjun hafi ekki verið nógu lu-öð og vöxtur of hægur til að mæta þessum veiðum.“ M ögiileikariiir I> i . > ; n n m ’ M k n f : < U A n nH Upp úr 1960 voru gerðar tilraunir til að nýta ál betur hérlendis. Árið 1961 veiddust 15 tonn af ál víðs veg- ar um landið og var hann fluttur lifandi til Hollands. Árið eftir var úthlutað álagildrum til þeirra sem þá veiði vildu stunda. og komist að því að ál er nánast alls staðar að finna. Hvað þarf að gera? Það er mikilvægt að slá ekki slöku við, halda áfram á þeirri braut sem mörkuð er, skipuieggja, tímasetja og staðsetja göngutíma glerála efth- því sem það er hægt. Þessar veiðar eru afar tímabundnai- og getur tím- inn breyst. Þó ég hefði náð þessum álum vestur af Mýrum kom ég víða við og veiddi ekki neitt. Það er því ekki á vísan að róa og enn spurning um hvert magnið er.“ En bandir eitthvað til að magnið sé nægilefrt til uð garu ínegi glerúla- veiðar að arðbærri a tviiinugrein hér á landi? „Já, það eru góðar vísbendingar um það.“ Háar fjárhæðir u i „m ...i ,„i„ íf;BÉTTII ' Mögulegt að stífla Jökulsá í Ftjótsdal neðar í farveginui 28 milljarða í fómarkostn- að vegna Eyjabakka? Það er tæknilega mögulegt að stífla Jökulsá í Fljótsdal við Hrakstrandar- foss, nokkrum km neðar en nú er gert ráð fyrir. Sá kostur hlífir Eyjabökkum en er tvöfalt dýrari en núverandi til- högun Fljótsdalsvirkjunar. Helgi Bjarnason sagði Rögnu Söru Jónsdóttur nánar frá kostum og göllum tilhögunarinnar. LA N D SV lItK JU N hefur tekið virkjunar er 210 M\V en yrði tii athugunar hugmynd H elga rúm 180 MW sam kvæm t þess- H allgrím ssonar náttúrufræð- ari hugmynd. Þær aðveitur ings um tilhögun Fijótsdals- sem fyrirhugaðar eru ásamt virkjunar sem fram lconi í Eyjabakkalóni eru einnig inni í Morgunblaðinu fyrir skömmu. þessari hugmynd. 1 viðtali við H elga Hallgríms- Helgi Bjarnason segir að- son í Morgunblaðinu kvaðst spurður að helsti ókostur um- hann telja nauðsyniegt að slá ræddrar hugmyndar sé kostn- af kröfura um hagkvæmni aður. „Stofnkostnaður virkjun- virkjunarinnar til þess að arinnar yrði um 46 milljarðar mæta verndarsjónarmiðum. króna sem er nálægt tvöfalt Benti hann á tillögu sem hann meira en kostnaður núverandi sagðist hafa bent Landsvirkjun tilhögunar, sem nemur 23 millj- á en ekki fengið svör við. Fólst örðum króna. Magn efnisins hún í því að stífia Jökuisá í sem þarf í stífluna er helsti Gloiáll í prófíl. Hami er svo gegnsæ r að sjá má líffæri lians. Úr mílægð má sjá hjartað slá. ál frá ári til árs. í bók þeirra Guðna Gudbergssonar og Þórólfs Antons- sonar „Fiskar í ám og vötnum" segir frá þri að fi ski hafi verið eytt í Vatnsholtsvötnum á Snæfellsnesi á árunuin 1952 og 1963. I bókinni stemlur þettíi: „lteyndist þá vera 9,7 kg á hektara af ál í öðru vatninu, eða 7-1% af heildarfiskniassanum og 57% í hinu vatninu. Sjálfsagt or því áll oft vanmetinn meðal ferskvatnsfiska hér á landi." í bókinni er einnig úttekt á nýt- ingu á ál hér á landi til þessa. Þar stendur: „Gömul hefð var fyrir nytj- un á ál í Lóni, Nesjum og Suður- svoit. Þegm’ þar var dregið fyrir sil- ung og kola í ísöltum lónum veiddist alltaf töluvert af ál samhliða. Var hann nýttur til matar, nýr eða reyktur. Roðið var verkað sem þvengjaskinn í skó og þótti sterkt og mjúkt. Eftir að lagnet urðu alls- ráðandi við silungsveiðar hætti áll- inn að veiðast. Upp úr 1960 voru gerðar tilraunir til að nýta ál betur hérlendis. Árið 1961 veiddust 15 tonn af ál víðs veg- ar uin landið og var hann fluttur lif- andi til Hollands. Árið eftir var út- lúutað álagildrum til þeiira sem þá veiði vildu stunda. Hollenskur ála- veiðimaður kom til leiðbeiningar og var áætlað að veiðast myndu 100 tonn. Einnig var byggt reykhús í Hafnai-firði eftir hollenskri fyrir- mynd. Aldrei veiddust nema 17 tonn það árið og fór minnkandi næstu ár. Einnig laéickaði meðailengd veidds á/s hratt þessi ár og bendir það til þess að veitt hafi verið ofanaf stofn- inum, endurnýjun hafi ekki verið nógu hröð og vöxtur of hægur til að mæta þessum veiðum.“ Möguleikaruir D{n m ; nrvrmn nil Irnm.'A U ..T , ( 1,’/,n n.1 Glerálar í lófa vestur á Mýriim. Upp úr 1960 voru gerðar tilraunir til að nýta ál betur hérlendis. Árið 1961 veiddust 15 tonn af ál víðs veg- ar um landið og var hann fluttur lifandi til Hollands. Árið eftir var úthlutað álagildrum til þeirra sem þá veiði vildu stunda. og komist að því að ál er nánast alls staðar að finna. Hvað þarf að gera? Það er mikilvægt að slá ekki slöku við, halda áfram á þeirri braut sem mörkuð er, skipuleggja, tímasetja og staðsetja göngutíma glerála el'tir því sem það er hægt. Þessai- veiðar eru afar tímabundnar og getur tím- inn breyst. Þó ég hefði náð þessum álum vestur af Mýi-um kom ég víða við og veiddi ekki neitt. Það er því ekki á vísan að róa og enn spurning um hvert magnið er.“ En benclir citthvað til að magnið sé nægilcgt til að gera megi gleníln- veiðar að arðbærri atvinnugrein bér á landi'! „Já, það eru góðar vísbendingar um það.“ H áar fjárhæðir u i ......... , , ...t , i., í i, FRETTIÍFl Mögulegt að stífla Jökulsá í Fljótsdai neðar í farveginm 23 milljarða í fómarkostn- að vegna Eyjafoakka? Það er tæknilega mögulegt að stífla Jökulsá í Fljótsdal við Hrakstrandar- foss, nokkrum km neðar en nú er gert ráð fyrir. Sá kostur hlífír Eyjabökkum en er tvöfalt dýrari en núverandi til- högun Fljótsdalsvirkjunar. Helgi Bjarnason sagði Rögnu Söru Jönsdóttur nánar frá kostum og göllum tilhögunarinnar. LANDSVIRK JUN hefur tekið virkjunar er 210 MVV en yrði til athugunar hugmynd Ilelga rúm 180 MW samkvæmt þess- Hallgrímssonar náttúrufræð- ari hugmynd. Þær aðveitur ings um tilhögun Fljótsdals- sem fyrirhugaðar eru ásam t virkjunar sem fram kom í Eyjabakkalóni eru einnig inni í Morgunblaðinu fyrir skömmu. þessari hugmynd. í viðtali við H elga Hallgríms- Helgi Bjarnason segir að- son í Morgunblaðinu kvaðst spurður að helsti ókostur um- hann tclja nauðsynlegt að slá ræddrar hugmyndar sé kostn- af kröfum um hagkvæmni aður. „Stofnkostnaður virkjun- virkjunarinnar til jiess að arinnar yrði um 46 milljarðar mæta verndarsjónarmiðum. króna sem er nálægt tvöfalt Benti hann á tillögu sorn hann meira en kostnaður núverandi sagðist hafa bent Landsvirkjun tilhögunar, sem nemur 23 millj- á en ekki fengið svör við. Fólst örðum króna. Magn efnisins hún í því að stífla Jökulsá í sem þarf í stífluna er helsti Huínarlu'ði eftir hoÚenskri fyrir- mynd. Aldrei veíddust nema 17 tonn það áiið og fór minnkandi næstu ár. Einnig lækkaði meðailengd veidds áís lu-att þessi ár og bendir það tii þess að veitt liafi verið ofanaf stofn- ínum, endurnýjun hafi ekki verið nógn hröð og viixtur of hægur tii að mæta þessum veiðum.“ Möguleikamir Bjami segir að komið hafi í ljós að á Islandi séu tvær tegundir ála, evr- ópski áliinn og ameríski állinn. Þeir era líkir og eru báðii' upprunnir í Þanghafinu djúpa. Lengi vel voni áhöld um að um tvær tegundir væri að ræða, svo iíkar era þær. Onnur hefur fleiri hryggjarliði en hin. Iðn þetta eru klííriega tvær tegundir að sögn Bjarna og Island er eini staður- inn á jörðinni þar sem útbreiðsla tegundanna skarast Það er jafnvel talið liugsanlegt að þriðja áiategund- in sé hér sem blendiiigur inilli þess- ara tveggja tegunda og hvergi ann- ars staðar að finna. Rannsóknir Bjarna Jónsaonar ogjapanskra sam- starfemanna hans beinast mcðal annars að því að skera úr um þetta. Þá eru áiategundir víðar, nefna má td. japanska álinn og önnur tegund gengur í vötn og ár Eyjaáifu svo dæmi séu tekin. En evrópski állinn þykir bera af að gæðum. „Sóknarfærin eru í’óigin í því að álaeldi stendur og fellur með veiði á glerál, en framboð á honum hefur minnkað mikið í Evrópu. Það kem- ur sjálfsagt margt til, mengun, of- veiði og spjöll á búsvæðum svo eitt- hvað sé nefnt," segir Bjarni, en hvernig eiga menn að veiða g'lerál á íslandi og er nógu mikið af honum til þess að menn getí vakið með sér vonir um arðbæran atvinnuveg? „Eg veiddi glerálinn einfaldlega S finriðinn háf og það er algeng að- ferð. Gleráli er einnig veiddur í þai' til gerðar gildrur. Eg veiddi eitt- hvað um 300 glerála nærri ósum Álftár á Mýrum nú í sumar. Eg er þó ekki fyrstur til að ná glerál, því bóndinn í Laxárholti, Unnsteinn Stefánsson, veiddi nokkuð af glerál fyrir tveimur árum í samvinnu við aðila sem stóðu að fyrirtækimi Norðuráli. Það fyrirtæki stundaði veiðar á eldri ál og ætlaði að reyna áiaeldi, en ekki varð úr og það var einmitt á þeim stöðum sem ég vciddi sjálfur gierálinn í sumar. ar um landið og var hann fluttur lifandi tii Hoiiands. Árið eftir var úfhlutað álagiidrum til þeirra sem þá veiði viidu stunda. Eftir samvinnu við Norðuráls- menn á sínum tíma, þegar ég vai' enn starfsmaður Hólaskóla, varð ég mér úti um styrk til að hetja ála- rannsóknir á ný og hófst handa af fullum krafti nú S sumar.“ Hvaða gagn er í að veiða 800 glerála? „Ég lief hafið satnvinnu við heimsþekktan japanskan doktor í fiskifræði, Jun Ayoama, sem hefur helgað sig álnum. Hann var hér í sumar og hafði með sér 100 ála ti! rannsóknar og hann kemur hingað til lands aftur næsta ár og verður með mér við rannsóknir víða um land. Ég hef sent honum 200 glerála til rannsóknar. Þar verður m.a. efnasamsetning kvamanna rann- sökuð, en með því er hægt að stað- setja hvar í hafinu álarnir voru á hinum ýmsu vaxtarstigum. Kollegi minn japanski hefur m.a. kortlagt erfðir nánast allra áiastofna og rannsóknir hans snúa m.a. að þvl núna að setja rafeindabúnað á full- orðna ála sein eru að ganga til sjáv- ar. Hann hefur skip og kafbát til af- nota og ætlunin er að elta merkta ála niður í Þanghaf og ná hrygning- unni. Umfang rannsóknanna er kannski til marks um mikilvægi þess að aila vitneskju um áiinn, enda eftirsótt markaðsvara." Hvað heíur þú þegar gert annað en komið hefur íhirn og hvað er mikilvægast að gera næst? „Ég verð að geta haldið rann- sóknum mínum áfram og skilað af mér mun umfangsmeiri úttekt held- ur en ég hef gögn í á þessari stundu. Það sein ég hef m.a. gert er að rcyna að ná utan um útbreiðslu ála iiér á landi. Ijítíð er vitað um það og margt bendir til að víða sé miklu meira af honum heldur en menn gera sér grein fyrir. Ég hef talað við fjölda fólks í öilum landshlutum við og veiddi ekki neitt. Það er því ekki á vísan að róa og enn spuming um hvert magnið er.“ En bemlir eitthvað til að magnið sá nægilegt til að gera megi glerála- veiðarað arðbærrí atvinnugrein hér i landi? „Já, það eru góðar vísbendingar um það.“ H áar íjárhæ ðir Hvað erum við að tala um í krón- um talið? „Eins og ég gat um áðan hefur framboð á glerál minnkað og verðið þar með rokið upp úr öllu valdi. Eldi stendur og fellur með veiði á glerál og hann þarf að nást í sjó áður en hann fer í ferska vatnið. Eg sá ný- iega á netinu að kílóverðið á glerál er komið í 70.000 krónur, en það fara eitthvað yfir 2.000 glei'álar i kílóið. Þetta er tala sem hækkað hefur mjög ört'. Fyrr á þessu ári var verðið t.d. 60.000 krónur og árið 1997 var það um 47.000 krónur. Annað dæini get ég nefnt og það varðar Japansmarkað. Hann er stærstur, en Japanar hafa neytt 75% heiidarframieiðslunnar. Ái-ið 1990 var heildarneyslan 140.000 tonn. Auk Japans eru stórir mark- aðir á Ítalíu, í Þýskalandi og Holiandi. Gleráiamarkaðurinn í Japan veltir 3 milljörðum króna á ári og 1.200 miHjörðum með fullvax- inn ál. Þá erum við einungis að taia um evrópska álinn. Þessar töiur fékk ég nýverið hjá Rannsóknar- stofnun fiskiðnaðarins." Hveryrðu hoistu vandamálin? „Ónógt framboð af glerál tii eldis hefur verið vandamál, enda ræðst framboðið eingöngu af því hvað tekst að veiða af honum. Það eru góðir möguleikar á því að hér á landi sé umtalsvert magn af glerál. Menn gætu þá veitt hann og selt lif- andi til eldis. Eða, ef menn vildu ala álinn þá eru aðstæður tii þess góðar víða hér á landi og þekking á álaeidi fyrir hendi. Það hefur verið vöxtur í álaeldi og þar af leiðandi hafa orðið framfarir á því sviði, vitneskja urn sjúkdóma hefur aukist og þar með vamir gegn þeim, eldisumhverfi hefur verið bætt svo og vatnsöílun með tilkomu endumýtingarkerfa. Framfarir liafa einnig orðið í fram- leiðslu á gæðafóðri og allt stafar það af spám um að eftirspumin eftir eldisál muni enn aukast." Morgunblaðinu fyrir skömmu. í viðtaii við Helga Hallgríms- son í Morgunblaðinu kvaðst hann teija nauðsyníegt að slá af kröfum um hagkvæmni virkjunarinnar fil þess að mæta verndarsjónarmiðum. Benti hann á tillögu sem harin sagðist hafa bent Landsvirkjun á en ekki fengið svör við. Fólst hún í þvf að stífla Jökulsá í Fljótsdal við Hrakstrandar- foss, sem er nokkrum kíló- metrum neðar í farvegi árinnar en fyrirhuguð stífia Eyja- bakkalóns. Landsvirkjun hefur nú tekið hugmyndina til athugunar og látið reikna út helstu þætti hennar. Að sögn Helga Bjarna- sonar, deiidarstjóra umiiverfis- deildar Landsvirkjunar, yrði yf- irborðshæð lónsins 640 metra yfir sjávarmáli og myndi lónið ná inn að Eyjabakkafossi, þar sem fyrirhugað stíflustæði er nú. Flatarmái þess yrði 20 krn'- þar af færu 18 kma af grónu landi undir vatn. Til saman- burðar er flatarmál Eyjabakka- lóns 43 km2 og 27 km2 gróins iands fara undir vatn. Lónið myndi rúma 460 gígalífra en Eyjabakkalón rúmar 500 gíga- lftra. Orkugeta 10-15% miniii Dýpt lónsins yrði töluvert meiri en dýpt Eyjabakkalóns. Stífla þess yrði um 100 m á hæð og tæpir 4 km á lengd, en fyrirhuguð stífla Eyjabakka- ións er 25 m á hæð og 4,2 km á lengd. I stífluna þyrfti utn 20 milljónir ma af efni, en til sam- anburðar má geta þess að 1,5 mílljón m3 af efni þarf í fyrir- hugaða Eyjabakkastífiu. Vatnsborðssveifla í lóninu yrði um 40 m en í Eyjabakkalóni er hún 16 m. Meðalfallhæð virkjunarinnar verður 10-15% minni og orku- geta minnkar sem því nemur. Mcsta fallhæð lækkar um 23 metra frá núverandi tiihögun, verður um 600 metrar í stað 623 metra. Orkugeta núver- andi tilhögunar Fljótsdals- þessari hugmynd. Heigi Bjarnason segir að- spurður að helsti ókostur um- ræddrar hugmyndar sé kosln- aður. „Stofnkostnaður virkjun- arinnar yrði um 46 milljarðar króna sem er nálægt tvöfait meira en kostnaður núverandi tilliögunar, sem nemur 23 milij- örðum króna. Magn cfnisins sern þarf í stífluna er helsti valdur þess að kostnaðurinn fer upp úr öllu valdi en stífian er rneira en tvöfalt efnismeiri en Káralmúkastífla, samkvæmt núverandi áætiun. Hli'fir Eyjabökkum Helsti kostur tiihögunarinnar er hins vegar sá að við hiífum Eyjabökkum. En vegna þess hvað kostnaðurinn er mikið hærri er ekki ínni í myndinni að virkja með þcssari tilliögun með þessum kostnaði, Það er vegna þess að víð erum ekki samkeppnisfærir við erlenda aðila og aðra virkjunarkosti ef stofnkostnaðuiinn er þetta hár. Raunverulega má segja að verðið sem ber í miili sé sá fórn- arkostnaður sem þarf að greiða til að vernda Eyjabakkana, eða 20-23 miHjarðar. Að öðru leyti höfum við gert þennan samanburð þanrúg að virkjanirnar eru mjög sam- bærilegar, miðlunin er svipuð, stöðvarhúsið er á saina stað, göngin óbreytt nema hvað þau styttast um sex kílórnetra. Þó ber að hafa í huga að þcssi seinni kostur sekkur landi og gróðri sem er undir Fellum (Laugarfeili, Sauðafeili og Haf- ursfelli) sem er líka mikil fórn, og það land er ekki síðra en landið á Eyjabökkum að margra mati, en um það eru skiptar skoðanir. Þá vil ég benda á að svona kostir voru teknir til skoðunar á fyrri ár- um þegar verið var að leita hagkvæmustu lausnar á þess- ari miðlun. Þeir útreikningar sem við hofuin gert núna styðja því aðeins lauslegar áætlanir fyi’ri ára,“ segir Helgi Bjarnason. 130. löggjafarþing 2003-2004. Þskj. 792 — 437. mál. Svar landbúnaðarráðherra við fyrirspum Össurar Skarphéðinssonar um íslenska álinn. Leitað var svara hjá Veiðimálastofnun. 1. H vaða upplýsingar liggja fy r ir um lífshœ tti áls og á lagöngur í íslenskum ám og vot- lendi? Upplýsingar um lífshætti ála og álagöngur á íslandi er að fmna í nokkmm greinum í rit- rýndum tímaritum, bókaköflum, skýrslum, greinargerðum og gagnasöfnum. Þekking á lífs- háttum ála hérlendis er samt enn tiltölulega takmörkuð og ljóst að þörf er mun meiri rann- sókna. M ikilvæg vitneskja hefurþó aflast með þeimrannsóknum sem farið hafa fram síðustu árin. 2. H vaða rannsóknarverkefni varðandi íslenska álinn eru í gangi, hvar eru þ a u vistuð og hve m iklu fjá rm a g n i er ᜠtlað að verja tilþe irra? — Rannsóknir á útbreiðslu og lífsháttum ála á íslandi, Verkefnið er vistað á Hólum í Hjalta- dal og unnið í samvinnu við Tókíó-háskóla í Japan og Guelph-háskóla í Kanada. — Rannsóknir á sjávarálum við ísland. Verkefnið sem er nýtt er vistað á Hólum og unnið í samvinnu við Tókíó-háskóla í Japan og Guelph-háskóla í Kanada. — Rannsóknir á útbreiðslu og tíðni kynblendinga Evrópuáls og Ameríkuáls á Islandi. Verk- efnið er vistað á Hólum og unnið í samvinnu við Laval-háskóla í Kanada. — Rannsóknir á erfðasamsetningu ála á íslandi. Verkefnið er vistað á Hólum og unnið í sam- vinnu við Leuven-háskóla í Belgíu. — Rannsóknir á glerálagöngum til Islands. Verkefnið er vistað á Hólum og unnið í samvinnu víð Tókíó-háskóla í Japan og Guelph-háskóla í Kanada. — Veiðar á glerálum til álaeldis. Verkefnið hefst í vor og er vistað á Hólum og unnið í sam- vínnu við aðila í fiskeldi og veiðum. Til framangreindra verkefna sem vistuð eru á Hólum verður varið í íjárlögum 2004 einni milljón króna. — Rannsóknir á sníkjudýrum ála. Verkefnið er vistað hjá Rannsóknastöð háskólans í meina- fræðum að Keldum og kostað a f rannsóknastyrkjum. 3. H vaða rannsóknir hafa áður verið g erðar á lífsháttum íslenska álsins? A undanfömum áratugum hefur takmarkaðri athygli verið beint að rannsóknum á ál á íslandi og að mestu verið stuðst v ið rannsóknir erlendis á lífsháttum ála. A f og til hafa þó verið í gangi svæðisbundnar rannsóknir og átaksverkefni sem hafa miðað að því að auka nytjar a f ál á Islandi. Suðurlandsdeild Veiðimálastofnunar stóð fyrir rannsóknum á bjartála- göngum og m ögulegum nytjum a f álaveiðum á Suðurlandi fyrir um 10 ám m og smærri út- tektir á möguleikum á álaveiðum hafa farið fram á Vesturlandi. Úttekt á fæðuvali ála fór fram á Hólum í samstarfi við Líffræðistofnun HÍ og ým iss konar gögn um lífshætti ála hafa einnig safnast samhliða öðrum rannsóknum. M eð umfangsmestu rannsóknum sem farið hafa fram 2 á álum hérlendis eru rannsóknir á glerálagöngum til landsins sem vistaðar eru á Hólum í Hjaltadal og unnar eru í samstarfi við erlendar rannsókna- og háskólastofnanir. Þrátt fyrir að mikil þekking hafi aflast á glerálagöngum og veiðum á glerál á síðustu árum er ljóst að þörf er á mun meiri rannsóknum á lífsháttum ála hérlendis og þá ekki síst því sem snýr að öðrum lífsskeiðum álsins, gulálum og bjartálum. 4. H versu m iklum fjá rm u n u m hefur verið kostað til þeirra rannsókna sl. 10 ár? Ó skað er eftir að upphœ ðir séu tilgreindar fy r ir hvert ár. A safnlið landbúnaðarráðuneytisins hefur verið veitttil rannsókna á glerál: árið 2000 500 þús. kr., árið 2001 700 þús. kr., árið 2002 800 þús. kr. og árið 2003 800 þús. kr. 5. A hvaða svœ ðum landsins er einkum að fin n a ála? Til skamms tíma var talið að ála væri aðallega að fínna á suðvestanverðu landinu, Suður- landi og ekki austar en í Berufirði. Einnig að ála væri í takmörkuðum mæli að fínna á norð- vestanverðu landinu og þeir væru ekki á Austurlandi og Norðurlandi eystra. Nýlegar rann- sóknir og samantekt upplýsinga frá heimafólki víðs vegar um landið sýna að álar eru út- breiddir um allt land og nýta sér fjölbreyttari búsvæði en áður var talið, en mest er a f þeim á svæðinu frá Barðaströnd í vestri, um Vesturland, Suðurland og austur að Homafirði. Ein mikilvægasta viðbótin við þekkingu á útbreiðslu og búsvæðavali ála á Islandi er að talsvert er a f álum í sjó á strandsvæðum víða um land. 6. I hvers konar veiðarfœ ri og m eð hvers konar aðferðum er áll einkum veiddur? H afa verið gerðar einhverjar tilraunir m eð veiðitœ kni íþ v í skyni að auka afla? Gulálar og bjartálar eru nánast eingöngu veiddir í vængjagildrur í vötnum, eða ám og lækjum. Það em sömu veiðarfæri og mest em notuð erlendis. Vegna birtuskilyrða veiðast gulálar helst á vorin áður en nætur verða bjartar og síðla sumars þegar dimma fer að nóttu. Bjartálar veiðast frá september og fram í nóvember og dæmi em um að þeir hafí veiðst fram í desember. Veiðitím abil bjartála er því lengra en þekkist í öðm m Evrópulöndum. Aftur á móti era þeir tímar ársins sem henta til gulálaveiða takmarkaðri hér vegna bjartra sumarnátta og lágs vatnshita stóran hluta ársins. Álar hreyfa sig lítið um þegar vatnshiti er undir 5°C og varast gildrar í dagsbirtu. Fyrirutan hefðbundnar veiðiaðferðirhafa verið gerðartilraunirþar sem notuð em netbúr með beitu á stöðum þar sem erfitt er að koma við öðm m veiðiaðferð- um. Þær veiðiaðferðir hafa þó ekki gefíst vel. Einnig hefur verið beitt rafveiði við álaveiðar og gefast þær best í vatnsminni ám og lækjum. Ekki hafa verið gerðar tilraunir sérstaklega með önnur veiðarfæri. Umfangsmiklar tilraunir hafa aftur á móti farið fram með veiðitækni til glerálaveiða þar sem notaðar hafa verið ýmsar útgáfur a f gildrum, nótaveiði, rafveiðar og nokkrar gerðir háfa. 7. Liggja fy r ir upplýsingar um álaveiði sl. 10 ár? Ekki hefur verið fyrir hendi fast skráningarkerfi fyrir álaveiðar líkt og tíðkast m eð lax- og silungsveiðar. Því em upplýsingar um veiðitölur a f skornum skammti. Gróflega má þó áætla að síðustu 10 ár hafí verið veidd á bilinu 5 -1 5 tonn árlega a f álum hérlendis og þá aðallega bjartál sem veiddur er á haustin þegar hann fer a f stað á hrygningarstöðvamar. M est var á þessu tímabili veitt a f ál á ámnum 1996-1998 þegar félagsskapur álaveiðimanna, Norðuráll, stóð fyrir átaki í álaveiðum. 3 8. H vað m eta sérfrœ ðingar íslenska álastofninn stóran, og hve m ikið er lík leg t að m egi veiða á n þ e s s að ganga o f næ rri honum ? Rannsóknir á Suðurlandi benda til þess að þar megi veiða yfir 10 tonn af ál á ári án þess að ganga o f nærri stofninum og á Vesturlandi gæti það farið yflr 20 tonn. E f litið er til lands- ins alls gætu þessar tölur verið um 5 0 -8 0 tonn. Hér er miðað við ár, vötn, tjamir og ísölt lón víðs vegar um landið. Nýjar rannsóknir sýna að ál er að finna í sjó í kringum landið og gefa fyrirheit um að einnig megi veiða talsvert a f ál í sjó og auka þannig m ögulegt veiðimagn enn frekar. Áætlanir um stærð veiðistofns og veiðiþol byggjast þó á veikum gm nni vegna tak- markaðrar þekkingar á magni og lífsháttum áls á íslandi. Þörf er mun meiri rannsókna til að fá skýrari mynd a f mögulegum álanytjum hérlendis. 9. Telur ráðuneytið að veiðar á á l og vinnsla afurða séu líkleg til að g eta vaxið og staðið undir sér sem atvinnugrein? Veiðar á álum og vinnsla álaafurða hefur alla möguleika á að verða m ikilvæg aukabúgrein hérlendis en til að veiðam ar og vinnslan geti orðið öflug atvinnugrein vantar mikla rann- sókna- og þróunarvinnu. 10. H afa verió gerðar tilraunir m eð áfram eldi á íslenskum glerál? E f svo er, hver virðast helstu tœ knilegu vandam álin við eldið? Gefa niðurstöður tilrauna tilefni til að m eta hvort áfram eldi á íslenskum g lerá l væ ri lík leg t til að standa undir sér? Tilraunir með áframeldi á íslenskum glerálum hafa ekki farið fram til þessa. Gera má ráð fyrir að tæknileg vandamál við hugsanlegt eldi séu þau sömu og í þeim nágrannalöndum okkarþar sem slíkt eldi fer fram, svo sem Danmörku og Hollandi. V ið eldi hérlendis mundu menn hins vegar njóta þess hve mikið framboð er hér a f heitu vatni til slíks eldis og að hingað hafa ekki borist sníkjudýr sem valdið hafa veralegum skaða í álaeldi víða um heim, vegna flutnings glerála á m illi landa. Bann við innflutningi erlendra glerála hefur einmitt verið mikilvæg vöm gegn innflutningi sjúkdóma og sníkjudýra sem plagað hafa náttúralega fiskistofna og fiskeldi erlendis. Veiðar á íslenskum glerálum era því forsenda þróunar ála- eldis á Islandi. Kynákvörðun ála er umhverfisháð og ræðst snemma á lífsferlinum. Hrygnur vaxa mun betur en hængar í eldi og hátt hlutfall hrygna á íslandi getur gert íslenska glerála enn verðmætari fyrir áframeldi en ella. Hérlendis era aðstæður hagstæðar til álaeldis og lík- legt að við gætum verið samkeppnisfær við önnur Evrópulönd í álaeldi. Líkt og í öðra fisk- eldi á íslandi er fjarlægð frá markaðssvæðum einn helsti ókosturinn. Nokkur óvissa ríkir þó um hvem ig Evrópulöndum muni takast að mæta aukinni framleiðslu og samkeppni við Asíulönd og þá sérstaklega Kína þar sem framleiðslukostnaður er mjög lítill. Samkvæmt upplýsingum frá Asíulöndum hefur markaðseftirspum eftir álaafurðum þó aukist samhliða framleiðsluaukningu. 11. H afa verið gerðar rannsóknir á göngum glerá ls m eð þ a ð fy r ir augum að nota íslenskan g lerá l til á fram eldis? E r hæ gt á g rundvelliþe irra að m eta hversu m ikils m agns g leráls m egi afla ú r íslenskum ám til hugsanlegs á fram eldis? H vað gœ ti þ a ð m agn við hestu aðstœ ður staðið undir m iklu álaeldi? Síðustu þrjú ár hefur verið í gangi átak í rannsóknum á göngum gleráls til íslands. Áður en það verkefni hófst höfðu á undanfömum 20 áram verið gerðar nokkrar árangurslitlar tilraunir til veiða á glerál og vora tilraunaveiðar Jóns Gunnars Schram árin 1992 og 1993 í M eðallandi og Landbroti þeirra umfangsmestar. Þær rannsóknir á göngum gleráls sem hafa 4 verið í gangi síðustu þrjú árin hafa skilað góðum árangri og mikilsverðum niðurstöðum um göngur glerála til íslands. Eitt helsta markmið rannsóknanna var að kanna hvort hérlendis væri m ögulegt að veiða glerála í nægjanlegu magni til álaeldis og að þróa veiðiaðferðir til glerálaveiða. T akmörkuð þekking var áður á glerálagöngum til landsins og hvernig best væri að veiða þá, en hún er grundvöllur þess að hægt sé að veiða glerála í atvinnuskyni og for- senda þess að hægt sé að hefja samkeppnishæft álaeldi á Islandi. Tekist hefur í þessum rannsóknum að staðfesta að göngumar era árvissar, að hægt er að veiða glerála á fjölda staða á Islandi og í nægjanlegu magni til að helja tilraunir með álaeldi. A þessu ári mun sú þekking sem aflast hefur verða nýtt til veiða á glerálum í áframeldi. O f snemmt er að segja til um hve miklu magni gleráls verður hægt að ná og taka verður tillit til vemdunarsjónarmiða og þess að göngumar eru misstórar eftir áram. Fylgiskjal. B jarn i Jónsson, Veiðim álastofnun: MINNISBLAÐ Almennar upplýsingar um nytjar og lífshætti ála (Anguilia sp.). Þeir álar sem fmnast hérlendis hrygna í Þanghafmu en lirfur þeirra berast hingað ári síðar með hafstraumum um 5.000 km leið og nefnast þá glerálar. Þeir taka á nokkram áram út vöxt sinn í ferskvatni, ísöltum vötnum, árósum eða sjó og era á því æviskeiði kallaðir gulálar. Eftir um 5 tii 20 ára tíma umbreytast álamir í bjartála og ganga aftur á hrygningarslóð til hrygningar og ljúka lífsferli sínum. Álar era mest veiddir þegar þeir hafa náð nokkram vexti sem gulálar eða sem bjartálar á göngu sinni í sjó. Ekki hefur enn tekist að æxla saman álum og halda álalirfum lifandi nægjanlega lengi til að nota þær í álaeldi. Samkeppnisfært álaeldi byggist því að veiða glerála og nota þá í áframeldi. 110 N o. 67 (I) N o . 6 8 (III) N o .é 9 (I) N o. 70 (H) No. 71 (II) N o . 72 (IV) JA N BOÍ-TSUS II' Schm idt, 1913, ! VI, col. 4, St. Croix. 3 specimens: E. 1896.01,16. 6 specimcns: C 1906.02.14. (49-73). 92 specimens: smal! Y. 1911, june, July. Y. 1913-15. St. C roix and St. Tliomas. (9Í-540). Boetius & Boetius, 1967. Y. 1966. (180-580). E. + small Y. 58.8 mm (53-74). Reccived 1912 frotn U.-S. N at. M us. gi E. 4- small Y. M ud o f a M angrove swamp, Hungry Bay near Hamilton. 56.8 mm (54-60), . rcccivcd from Prof. M ark, 1915, Y. 1974. Shatk River. 35 and 43 cm. Borrowed for X-raying from Dr. G ordon R, Wilham. < son, U.K. References - ( Boétius. 1. & J . Boétius, 1967: Eels, Anguilla rostrata, LeSueurj in Bermuda. - Vidensk. M eddr Dansl N arurh . Foren. 130: 63-84 . / Boétius , / . , 1976: Elvers, Anguilla anguilla and Anguilla rostrata from two Danish iocaiities. Size, body c weight, devcíopnicnta/ stage and num ber o ( vertebrae re/ated to time o f asccnt. - M eddr Damn,|-; Fisk.- og H avuders. N .S. 7: 199-220. B n m n , A.F., 1937: C ontributions to the !ífe histories of the deep sea ecls; Synaphobrancbidae. - Dana ? í R eport No. 9. ■■ Ege, V., 1939; A revision o f the genus Anguilla Shaw. A systematic, phylogenetíc and geographíal’3. study. - D ana-R cport No. 16. Jensen, A.S., 1937: Rernarks on the G reenland eel, its occurrence and reference to Anguilla rosUata,- •' M edd. orn G ronland. 118(9). í, Jespersen , P., 1942: Indo-Pacific leptocephalids of the genus Anguilla. Systematic and biologica! stu*t dies. ~ Ð ana-R eport N o . 22. f , Jones, F.R.H ., 1968: Fish m igration. - London, Edw. Arnoid. 325 pp. V Jubb , R»A., 1961: The fccshwater ce/s (Anguffla spp.) o f Southern Africa. An inrroduction to thcif L' identification and biology. ~ Arm. o f the Cape Provincial M useums. I: 15-48. { ; Petersen, C.G.J., 1905: Larval ecls (Leptocephalus brevirostris) of the Atlantic coasts of Europe. M edd. Komm. H avunders. Ser. Fiskeri. 1 (5). i Scbm idt, / . , 1909: O n the distribution o f fresh-w ater eeís (Anguilía) throughout the w or/d. I. AtJanticf • O eean and adjacent regions. - M edd. Komm. Havtinders. Ser. Fiskeri. 3(7). Schm idt, J., 1912: D anish researches in the Atlantic and M cditcrrancan on the lifc-history o f th . , freshwater-eel (Anguilla vulgaris). - Int. revue d.ges. H ydrobiol. u. Hydrographie. 5: 317-342. Schm idt, / . , 1913: First rep o rt on eel investigatíons. - Rapp. et Proc.-verb. Cons. ín t. Expl. Mer. IS:1 1 1 -3 0 ,1 """. ' ............... ........... ' ' ■ Schm idl, J., 1915: Second report on ee! investigationS/V- Rapp. et Proc.-vcrb. Cons. Int. Expl. Mei. •* 23: 1-24. Scbm idt, / . , 1925: O n the distribudon o f the Fresh-water Ee!s (Anguilla) throughout the wotld. íí Indo-Pacific region. — D. KgL Danske Vid. Selsk. Skr., N aturvidensk. og M athem. Afd., 8 . Rækktj 10(4); 327-382. Sivcrúsen, E., 1938: Undersekelser ovcr forholder meliem spiss- og brcdhodct ál og dercs nænng.-ft: F iskeridirektoratets Skrifter, Serie Havundersokelser. (R cport on Norwcgian Fishery and Mannt' , fnvestigations 5 (8)) i : Tesch, F.-W ., 1973: D er Aal. Biologíe und Fischereí. - H am burg u.Berítn, Paui Parcy. 306 pp. j. Vladykov, V.D., 1964: Q uest for the true brecding area o f American Eel {AnguiUa rostrata LeSueur).~St‘ J .F ish . Res. Bd. Can. 27: 1523-1530. Vladykov, V.D. & Fl. March, 1975: D istribution of Lcptoccphali of the two specics of Anguilla in thíp wesrern N orth Arlantic based on coilections m ade between 1933 and 1968. — Syllogeus No. 6 . tiona! M useum o f N atura! Sciences. N ationa! M useums of Canada. Ottavva. J {• A T L A N T IC A N G V I L L A , V E R T E B R A E 111 Appendix by E.F. Harding gstimathn o f numbers o f A. r o s t r a t a in European material. It is assumed that , (i) any specimen with TNV less than 109 is certainly A. rostrata. (ii) theTNV numbers of genuine rostrata in Europe follow (proportionally) the saine frequencies as in America. . Of the American material in table 2, 86% have TNV less than 109. Working from the material in the Primary Table, and ignoring mixed samples, the cor- respondirtg proportion for elvers is 84 %, and for adults 88 %. >.'■ Of the European materíal in table 2, 17 specimens have TNV less than 109. By the above assumptions we may estimate these as being 86 % of the total number of rostrata present (or at least between 84 % - the elver figure - and 88 %, the adult figure). The total number may thus be estimated as 17/.86 = 19.8 (or at least between 17/.88 = 19.3 and 17/.84 = 20.2). Taking 20 as a round fígure, we have .13% of European material (15854 specimens) as rostrata. Tlie expected distribution of these 20 by TNV, compared with that observed, is as follows: roslrata rostrata ■ TNV observed expected 112 ■> .01 111 .11 110 ? .58 .. 109 J 2 .11 108 7 5.17 , 107 5 6 .10 106 3 4.36 105 1 1.21 104 1 .25 103 0 .09 The absence of an ‘expected mode’ at TNV — 107 in the total European material of table 2 is not surprising, the observed frequencies at 108,107, 106 (7,5,3) being well wíthin acceptable statistical variation from the ideal frequencies (5.17, 6.10, 4.36). Confidence limits for the expected number o írostrata per 1000 European speci- rnens have been calcuiated, on the basis of assumptions (i) and (ii) above, as con- fidence limits for the mean o f a Poisson distcibution (see Biometrika Tables for Statisticians, E.S. Pearson & H.O. Hartley (eds), vol. I, Cambridge University Press 1966, p.227). The central estimate is 20/15854. Numbers o f A , rostrata pcr 1000 E uropean specimens: Central estim ate and confidence limits (9 9 % , 9 5 % , 90%). Confidence Lower U pper Central . I-evel Limit Limii Estimate 99% .6 2.3 1.3 95% .7 2.0 9 0% .8 1.9 1 0 8 JAN BOETIUS Notes to primary table ,:k Symbols I-IV givcn in brackets aftcr samplc no.s stand for: 1: da ta citcd froin Hterature, II: unpuhlished data left by Schmidt and co-workers. Ilí: data w orked up by the au thor from preserved m aterial ieft by Schmidt. IV: da ta froin rcccnt m ateriaí worked up by rhe aurhor and others. O thcr symbols: E: elvers. Y: yellow eels. S: silvcr eels. f ; M casurem ents given /n nim indtcatc mcan total length. Ranges are given iri hnickets. ; Ko. 1 (III) E. 1906.01 ,30. ‘lcciand ' ~ no locality givcn. 70.3 itira (63-75). y ? N o .2 (II) Adult cels. 1906.12.?. Rcykjavik. Yj N o .3 (l) Schmirh 1 9 n . tab .IV , c o l . l . E + small Y. 1 9 1 1 ,0 7 .9 - 19 . á k fo s s , Faxa Bay. At leasttwö'fi' year classcs the youngest o f vvhich average 76 m m íö l -H6 ). In the prcsent tablc is added a,;:| specimcn w ith 109 vertcbrae which according to Schm idt’s prim ary notcs has been cxd|; cludcd w ith o u t comments. • V N o. 4 (IU) Dvatc and localiry as in no. 3 . Youngest year class avcragc 77 mm (64-92), thc rcmaining y part (abou t 20 % ) rangc from 95 to 135 mm. N o .5 (ÍV) Y. 1972.05 .10 . K oila jírd ir near Reykjavik. 302 mm (215-366). Received from Dr. G udjónsson. cV No. 6 (IV) Y. 1973, au tum n. Q rjndayik, thc harbour. N o .7 (IV) Y. 1973, aum m n. Freshw ater ncar Idvtragexdt. (about 100-400). Prof, C.G, Wilíiams.dy State (Jniv. N ew York a t Stony Brook, has kindly allowcd me to cite his couutings of A samples no.s 6 and 7 and to check thc principle of counting from his X-rays. No. 8 (IV) Y. 1975.08. Lóni lictimCiprcl, SE-Iceland. 330 mm (240-420). Received from Skúli j;. Pálsson. Reykjavtk, No. 9 (111) E. 1909.08.06. Thorshavn. 66.7 mm (60-73). No. 10 (I) Schmidt, 1913, tab. IV, col. 2. E, 1911.05.?. Thorshavn. 67.8 rnm (58-79). No. 11 (III) E, 1912.05.12. ‘Farocs’. 66.6 mm (59-75). No. 12 (III) E. 1912 .0 6 .04. Sandegærde near Thorshavn. 68.3 rnm (61-81). No. 13 (III) £ . 1912 ,08 .19 . Small river to Kalbaksfjord. 66.1 mrn (60-73). No. 14 (III) E. 1913.08.14. ICalbaksfjord. 66.1 mm (60-73). No. 15 (III) Small Y. 1925. Trangisvaag. 113 mm (92-135). N o. 16 (í) Schm idt, 1913, tab. IV, col. 3. E. 1906.06,27. Stronmcss, No. 17 (II) E. D ate and locality as in no. 16. N o. 18 (1U) E. D ate and locaíky as m no. 16, 68.0 ram (62-73). N ö. 19 (III) E. 190S.02.05. Stornow ay. 67.2 mm (6Ö-75)t j, No. 20 (II!) Ii. 1906.07.03 . Bergen. 68.7 mm (65-74) + 1 spcc. 113 mro. N o . 2 3 (I) S iv e rtse n , 1 9 3 8 , pp 1 0 - 1 1 . Y + S. 1 9 3 1 - 3 2 . P o o ied datíi o í 3 sa m p le s fro in the Arencialht; distríct. A bout 550 (abon t 250-900). * N o. 22 (1) Schmidt, 1913, tab. IV, col. 8 . S (9 2 ) . 1905.10.10. Thc Sound ncar Copenltagen. In tht|i present table is addttd a specimen with 106 vertebrae which according to Schm idt’s prim+í* ry notes has been cxciuded w ithout commcnts. (ii' N o .2 3 (I) Schmitlt, 1915, tab. II, col. 1. E. 1911. Nykolting, Scaland. 70.2 mm (59-81). N o . 24 (II) E. 1 927 .0J.05 . H ojer Sluse (N orth Sea). 70.4 mm (62-80). I N o .2 5 (I) Roctius, 1976. E and small Y. 1969.07.04. Esvom, Sealand. A bout 84 mm (62-119). |; No. 26 (IV) Y. 1971.07 .16. Lake Arrcso, Scaland. 225 mni (170-310), N o. 27 (I) Boetius, 1976. E. 1972. Pooled dara from 3 samples: 197’2.04 .24 , 72.05,14 and 7 2 .0 6 .0 7 : H ojcr Sluse (N orth Sca). 72 tnm (60-83). r No. 28(1) Schmidt, 1913, tab. IV, col. 4. S (9 2 ). 1905.10.30. Toom cbridge. :§ N o .2 9 (I) Schmidt, 1913, tab . IV, col. 5 , 6 an d 7. E. 1908, 1909 and 1911. Bristoi Channei. f N o ,3 0 (II) E. 1932.03 .25 . Epney, Sevcrn. 72.1 mm (59-83). N o .3 I (I) Schm idt, 1913, tab. ÍV, col. 9. E. 1906. Bayomte. N o .3 2 (III) E. 1932.03.?. Loirc. 77.1 mm (66-87). ATLANTIC A H G V I L L A , VERTEBRAE 1 0 9 M 33 (51) E. 1930.12.?. San Scbastian. 74.6 mm (65-83). M° 34 I) Schmidt, 1913, tab. IV, col. 1.1. E. 1909. T ' a q (II Schmidt, 1913, tab. IV, col. 11. E and small Y. 1912.01.04. 88 E: 61.8 ntm (51-73), N° 13 Y: (78-102). M 36(1} Schmidt, 1913, tab. IV, coí. 10, E. 1911.08.?, Funchal. 66.9 inm (53-75). NöÍ37 (»*) E' 1921-0 5 -0 2 * 6 5 3 mm (57-74). vj 38 (IV) Y. 1973.10.10. Funchal. M uscum specimcns (*VÍMF 23019) borrow cd fo rX -ray in g frorn Dr. G.E. M aul. 40 , 41 and 56 cm. No -V9 (II) Adult eeis. 1911. Sr. Cruz de Tenerife. No. 40 (H) A d u lt eels. 1911. Cadiz. No 41 (I) Schmidt, 1913, tab. ÍV, col. 12. E. 1911.01.26, Cette. 69.4 rnm (58-80). N o. 42(H ) E. 1930.01.25. Saiammbo. 69.4 mm (62-77). ' No.43 (I) Schmidt, 1913, tab . IV, col. 14. Y, 1906. Ravcnna. No.44 (I) Schmidt, 1913, tab. IV, coi. 13. E. 1911,01.27, Livorno. 67.7 mm (58-78). ' No. 45 (I) Schmidt, 1913, rab. IV, col. 15. E. 1911.02,23. Comacchio. 67.5 mm (58-73), No.46 (II) E* 1922.12.?. Livorno. 70.6 mm (58-82). ' |sj0 (47 (UI) E. 1931.05.16 , C om acchio. 61.0 mm (55-69). No.48 (H) E. ,1920.02.?. P o rtS a id . No. 49(H ) E. 1920.12.18. M cx, Alexandria. No.5Ö (11) E. 1922.01.01. M ex, A lexandria. 299 E: 59.3 mm (54-65) and 16 small Y: (67-96'). No.51 (I) Schmidr, 1913, tab. IV, col. 16, S. 1911.05.13. No.52 (I) Schmidt, 1925, p. 335 and Ege, 1939, p. 128: Red Sea, M assaua. 1870. 228 mm. 115 vertcbrae. Egc, 1939, p. 91, 129 and 149: Nairobi. 1931.12.03. 277, 290 nnd 298 mm. V ertehrae: 116, 117 and 115. ‘East A fríca’. 471-600 mm, Vertcbrae: 113-116. 6 speci- mens in sam ple, vertebrae counted in 5 sp. only. C om m ent. Tesch, 1973, p. 88 considcrs rhe two East African rccocds doubifu l. W ith reference to ju b b , 1961, p. 25 he rem arks that confusion with A. mossambica is possible. Vcrtebrac nurnbers of fhis species, howevcr, range between 100 and 1 0 6 .1 have consulted Ege’s prim ary notes on the East African ecls and also examined the 3 Nairobi speciinens (ZM UC P 31263-265). I can only confirm Ege’s statemcnrs. No.53 (1) Jcnsen, 1937. Adult eels. 1841-1920. (E ds from Grecrdand m ennoned by Schmidc, 1909, 1912 and 1913 are idcntical w ith ecls no. 4 and 5 in Jcnsen’s Iisr). N o.54(ÍV ) í specímen: Adult. 1965.08.28. ílua T unngdliarftk (ZM U C P3 1196). 22 spccimens: Y + S. The fjord K angcrdluarssoruscq. 452 mm (345-667). Reccivcd from M r. Bjnrne Pederscn, Færingchavn. No.55 (í) Schmidt, 1913, rab. V, coí. 1. Y. 1905. St\ Lawrence. (550-750). No. 56 (IV) Y. 1961, M ay-August. New Foundfand. (400-800). Vericbrae countcd by Dr. G ordon R. W illiamson w ho kindly has piaccd his data a t my disposal. N o.57 (IV) E. 1967,08.14. Topsail. New Foundland. 74.6 mm (69-79). Rcceíved froin G ordon R. W illiamson. ;N o.58 (I) Schmidt, 1909, p. 10 . E. 1872.03.01. W oods Hole. 5 7 .4 mm (52-63). No. 59 (I) Schinidt, 1913, rab. VI, col. 2. Y. 1906. Tisbury. (400-700). No.60 (í) Schmidt, 1915, tab. í,co l. 1. E. 1913.05.07. W .G ioucester, Little Rivcr. 57.1 mm (48-66). . No.61 (í) Ege, 1939, tab. 135. Y. 1935. M ass. (250-500). No.62 (il) E. 1921.04.18. potom ac River, Chain Bridgc. 54.7 mm (48-61). No. 63 (III) Datc and locality as in no. 62. 55.8 mm (50-64), No, 64 (1) Schmidt, 1913, tab. VI, col. 3. Small Y. 1905.05.?. Weldon. Nn.65 (IV) Y. '1971. A ugust-O ctober. Sapelo ísland. (310-510). Rcceived from Dr. E. Rasmussen. No.6 6 (n i) E. 1854. Biloxi. (45-53). 9 specímens, ZM U C 164-172. V ertebrae wcre countcd and publishcd by Petersen, 1905, as follows: 103, 104, 106, 106, 109, 109 and 113 (!). Latcr (unpublished) counts by Schm idt gave: 102, 104, 105,. 105, 108, 1 0 8 ,1 0 8 ,1 0 8 and 111. T he sample was re-counted by me frotn X-rays in 1970. 7 specimcns were casily couiued, 2 wece discarded, possibly thc same spccimcns discarded by Pctcrsen. The figures given in the prcsent tah le are thosc from 1970. !' 1 0 6 JA N BO ETIU S | ! ■■ •. 4. ír'-. .'■■ ■■ Total num ber of verte- brae Southern Area, cont. M adeira, cont. Canarylsl. Spain France Tunísia ítaiy n o .3 7 n o .3 8 no. 39 no. 40 no. 41 no. 42 /io. 43 no. 44 no. 4S 120 119 118 117 116 4 21 1 1 1 5 2 2 12 37 6 21 1 1 5 .3 14 24 15 29 61 33 115 114 113 112 111 46 50 2 16 4 2 1 4 6 4 43 36 18 4 29 27 11 6 1 33 130 70 33 122 42 14 49 28 7 15 5 1 3 1 110 109 108 107 106 105 104 103 N: M ean: 143 3 114.49 113 2 116.5 22 115.0 152 114.89 101 114.62 133 409 197 114.83 114.63 114.77 Total num ber of verte- brae Southem Area, cont. American material Italy, cont. Egypt Cyprus ! E. Africa Greenland //o. 46 no. 47 h o . 48 no. 49 //o. SO no. S1 /i o . 52 no. 53 no. S4 120 119 118 117 116 1 2 .3 24 9 65 40 1 1 2 3 3 3 12 21 18 44 45 70 >■ 2 6 15 1 2 115 114 113 112 111 106 75 66 66 27 42 10 9 2 1 54 89 97 44 69 82 17 28 35 6 5 9 2 1 28 26 9 2 3 2 1 110 109 108 107 106 1 1 1 2 5 3 7 1 6 105 104 103 2 2 N : M ean: 303 245 114.88 114.53 181 266 315 114.92 114.83 114.78 89 114.75 9 115.0 6 23 106.2 107.0 A TLA N TIC A N G U I L L A , VERTEBRAE 1 0 7 Total number of verte- brae American material, cont. Canada U.S.A. Mass. Wash. D.C. / io . SS /ío. 56 no. S7 no. S8 no. 59 no. 60 / io . 61 tio. 62 no. 63 . 120 119 118 117 116 • 115 ' 114 113 112 1 111 1 - 3 I 110 í 2 3 1 19 2 4 3 109 11 12 1 6 -7 61 9 15 24 108 18 21 1 6 23 131 24 36 59 . 107 24 24 2 2 34 162 35 31 76 106 23 30 1 1 16 107 19 27 61 : 105 8 4 11 16 9 3 19 104 1 3 .4 1 3 1 1 \ 103 3 1 1 1 N: 86 100 5 19 94 502 99 119 244 Mean: 107.01 106.96 107.4 108.6 106.95 107.35 107.08 107.35 107.04 Primary table___________________ , 1 V>, ,, í - - . -I I T? xt 1....... 4 ........ , A i - ,. , n ' \ } i% ... A v r ' ; ’r 1 0 4 JAN HOÍ-'Í ' V i Total European m alerial, N orthern Arca R’ ™ ~ num ber of vcrtc- brae -"'r i J 1 V .i& b '* ’ íU*?.> *■ >N&. ’ \ ' 6>* , ,*> •; Iceland^ J ; V f ^ t -V ' 'ið * Farocs íio. V • no)2 no.3 uo. 4 . no. S 110.6 tto.7 no. 8 no. 9 ’> 120 119 118 ■ 117- 116 1 1 2 3 t 10 11 1 7 5 2 30 27 2 4 20 ...... 59 3 115 114 113 ' 112 111 8 7 62 50 3 3 23 18 9 2 47 42 3 19 18 14 2 19 23 7 10 26 8 2 8 4 5 10 10 7 _ — 4 10 1 10 > 8 i' 1 ' 1 1 110 109 108 107 106 ') ' ’ 2 ’ ' S). 1 ' ■- : 2 : 'f."‘íl; 105 104 103 ■ N : , . M ean: 48 '15 180 162 6 26 107 99 112.9 114.3 114.69 114.68 : 115.7 113.3 113.89 114.31 Total N orthern Area, conr. nvtmber of verte- brae Faroes, cont. Orkncys no. 10 « 0 .11 « 0 .12 no. 13 no. 14 no. 1S no. 16 no. 17 »0 . 3á 120 ■ 119 •■T 118 3 1 1 1 117 22 7 2 3f 6' 2 116 55 8 40 7 18 í 15 5 .. * 115 75 25 88 11 28 1 "1 25 9 13 114 80 48 .98 13 24 3 20 8 19 113 42 39 76 5 4 1 7 5 13 112 3 16 29 2 5 1 1 4 ;; 111 7 8 1 , 110 1 3 109 - - t 108 _ - 107 - 1 106 1 105 104 103 N : M ean: 280 114.77 145 113.57 350 114.03 41 114,6 83 114.68 6 114.3 75 114.89 31 114.7 58 '■ 114.17; — ■ ■ — - *N o . of sample tefers ro notes pp 108-110 ATLANTIC A N G U I L L A , VERTEBRAE 105 102 JAN BOETIUS 111 vertcbrae as a maximum (see notes to no. 66). * Tlius the only possible A. anguilla (out of 1609) from Amcrican coastal areas seems to be the 112-eel from sample no. 58. Being accompanied by cels wit|, unusually high vertebrae riumbers it should possibly be considered a hybrid. Discussion Position and extension of the spawning area of A. anguilla is a rather well establ) lished result o f Schmidt’s classic investigations. Corresponding information abog| A. rostrata is very poor. Vladykov, 1964, has proposed the spawning area of A. r0.J strata to be situated south of that of A. anguilla (not west of A.a. as did Schmidt|| Spawning of the two Atlantic spedes are likely to overlap in space and possibly alsö| in time. ,-É Based on surface current studies, Harden Jones, 1968, has constructed the drift| of two patches of eel larvae, both hatched in March in each of the two supposcá| breeding areas. The main routes are re-drawn (from his fig. 21) in fig. 4 in thtj present paper. On both sides ofthe central A. anguilla-tomt marginal branches at| added by dotted lines. The northern branch (N) indicates, that A. anguilla larvat| emerging frotn the southern part of the breeding area end up in northern Europej As the northern branch has the closest relation to the A. rostrata route it í | Fig. 4. M ap ancl íully drawn routes o f drifting Atiantic eel larvae re-drawn from Harden Joncs, 1968. 'i’lie dotted lincs indicate thc supposed routes of A. anguilla frotn southernly and northcrnly situaced positions within che European brceding arca. Larvac of southernly origin are seen to form the northern branch supplying area N with clvcrs whiic iarvae hatchcd in the northern part of the breeding area end up in area S. AT LANT IC A N G U I L L A , VERTEBRAE 1 03 to t a l n u m b e r o f v e r t e b r a o Fig. 5. European elvers. Distributions o f rotal numbcrs o f vcrtcbrac of pooled samples with rneans á 114.0 and > 114.0. reasonable to expect a relatively high degree of mixing of the two species in northern Europe. This is actually what has been stated in the present paper. Overlapping of the w o breeding areas could possibly cause hybrydization. In this case also the hybrids vvould most likely end up in northcrn Europe. The presence of reiatively high numbers of eels with 111 vertebrae in northern and central areas (table 4) might indicate a small amount of hybrids. It' was.demonstrated earlier in this paper that samples from certain years showed low 1 NV values. In fig. 5 FNV distributions of the total material of European pure elver samples are given for samples with means = 1 1 4 and > 1 1 4 respectively, Tests for skewness have proved that both distrtbutions are highly symmetrical. There is hardly reason to believe, that the low vertebrae numbers in the = 1 1 4 group are due to mixing vvith hybrid specimens. Concludingly it is proposed , that in som e years the process o f d ifferentiation o f vertebrae num ber seem s to stop a little earlier than usual. Little is known about the larval TNV during growth. Jespersen, 1942, gave myomer counts of larvae (of total lengths > 4 0 mm) from the Danish expeditions 1913 and 1920-21. He concluded that for both species the number of myomers would exceed that of the final vertebrae number by about one. Vladykov &c March, 1975, however, have myomer counts which at an average were 3-4 myomers lower than those of Jespersen’s. This difference Vladylcov &c March attribute to several causes: ‘counting technique, different numbers of specimens, variation in size of specimens, and difference in coilecting localities.’ 100 JA N B O E T IU S A T L A N T I C A N G U Í L L A , V E R T E B R A E 1 0 1 A n g u illa ro s tra ta in Europe o SchmidtMs.djsoiSsed the problem ofjT>pjsihl£,.iaixinB.ojLAuieriom.attdJi.uxopQ9i-r StocKs of adult eels in his p apersl9Í2 (p. 337), 1915 (p. 5) and 1922 (p. 204),,) small overlapping (.5é '%]T)5tweenr3istributions of vertebrae numbers was takog by hím as an índicatíon of a possíble mixing. % ín no case did Schmidt publish records oí eels from European stocks with typics),:; A. rostrata vertebrae numbers. His primary notes (see NPT nos 3 and 22), how. ;: ever, indicate that eels from Europe with vertebrae numbers 109 and 106 wettiý present in hismaterial published in 1913. In 1922 he states ‘thatthe stock ofeelsi}| Europe is, practically speaking, pure, i.e., composed exclusiveiy of Anguilla vulgaris'.i. The first published evidence about an eel from Europe with TNV typical of ké rostrata was given by Bruun, 1937, who relates that a specimen (68 mm long, 10S| vertebrae) was present in a Spanish sample sent to Schmidt from A. Gandoli;;: Hornyold. This satnple is recorded here as no. 33. . Bpgrius^ 1 fnimd. that A..rostegfa-w.as.repjesenred.bv small numbers..(aboBfe •3T4)jn..eívers from two Danish localities. Eels-with4T0-ver.tebrae..werexonsiderel| ‘mos.t .likely’ Á. ras'trata, eels with TNV á 109 as true A. rostrata. This assumptiojj was supported by cieterminations ofano-dorsal distances. The material is recordcij here as samples nos 25 and 27. : j Inspecting the total European material presented liere in table 2 it is seen that anil expected mode of 107 vertebrae is not present at all. Judging from the table 2 datij only, the European materiai couid be considered as one (skew) dístribution. Coivj sequenriy the variation of TNV in AnguiUa anguilla would cover the full rangeolj the two species. The absence of a 107 modc, however, is not surprising accordin}| to the statistical considerations given in the appendix. if A clear 107 mode, however, is demonstrated fbr northern elvers in tabie Actually all 5 specimens with 107 vertebrae from the total European matcrial a»| elvers froin the northern area. When placed together with eels from different areaifi and at different ages the 107 mode is covered as seen in table 2. :) In table 6 eels with TNV § T10 and á 109 are listed for tbe total Europeaaj materiai covered by the primary tabie. (t is seen, that in each case the frequenqs decreases from rhe northern to the central area. In the southern area it cannot fc;2 Tablc 6 . European matcrial. Frequcucics of ccls wilti total mimber of vcrte- : , brac ~ 110 and § 109. , N um bcr o f ccls Area couuted S 110 vertebr.ic ú 109 vertebrae Ntim ber % Numbcr % N orthcrn 9580 47 .49 24 ,2S C entral 3400 4 .12 2 .06 Southem 2S74 2 .07 0 .00 Total 15854 53 .37 26 2 6 Table 7 . Ecls with 3 109 vertebrae from European material. Tot. nb. of Tota! PT No. Date Locality vertebrae length, inm Stage no. 1 1905.10.10 Denniark, Kallebod Sttand 106 silvcr 9 22 2 1911, Juiy Iccland, Faxa Bav, Alafoss 109 _ smal! ycllow 3 + < 3 1912.05.12 Faroes 106 68 eiver 11 4 1912.06.04 Faroes, Thorshavn 107 62 clver 12 5 1930, Dcc. Spain, San Sebastian 108 68 clvcr 33 6 1932, M arch Francc, Loire 104 73 elver 32 7 1969.07.04 Denniatk, Esrom 109 86 í-group 25 8 _ 108 90 i-grotip 25 9 1971.07.16 Denmark, Arrcso 1.09 218 ycllow 26 10 __ „ 109 247 yeíiow 26 11-23* 1972, Apr.-June Denmark, Hojer 105-109 63-75 elvers 27 24 1973, autum n íceíand, Hverngcrdi 108 - yeílow 7 25 - 108 - yellow 7 26 - - 109 - yeliow 7 *For dctaits, see Boétius, 1976 stated with certainty if A. rostrata is prcscnt at all. Details of the 26 specimens with vertebrae S 109 are listed in table 7. The specimens are seen to cover the full range of developmental stages. Of special interest is the Danish silver eel vvirh 106 vcrtebrae listed as no. 1 in table 7. The eel was caught together with 127 female silver .4. anguilla leaving the Baltic on their autumnal migration. 4 . rostrata thus seems capable not only to , sliare growth conditions witli 4 . anguUla but also to turn silver and leave (for the Sargasso Sea?) together with true European silver eels. The eel was caught in 1909. Future records of adult 4 . rostrata in European vvaters should be considered with a certain caution. During thc Jast decades adult Ámerican eels have been imported live into several European couritries on a cora- mercial scale. Ainerican material Fhe hitherto unpublished data on TNV of American eels given here do not add much to what was already known. Ncw data from Greenland (no. 54) and Bermu- • da (nos 70 and 71) confirm earlier siaternents, that these rvvo arcas are populated by A. rostrata solely. Mean TNV values of samples with more than 10 specimens all range betrween 107.0 and 107.5 except for sample no. 58. Thís sarnpie (from Woods Holc, Mass.) was counted and published by Schmidt, 1909. M eanTNVof the 19 specimens was extremely high, 108.6, and one of the eels had 112 vertebrae. Sample no. 66 (from Biloxi, Miss.) vvas originally counted and published by Petersen, 1905, and claimed to contain a spccimcn with 113 vertcbrae. The sarnple was recounted by Schmidt and latest from X-rays by me. Both recountings gave 98 J A N B O É T I U S A T L A N T I C A N G U I L L A , V ER TE B R A E 99 Tablc 4. European material.ÍElverstTotal numbers of vertebrae in northcrn, central and soutliern areas.'J T otal num bcr of vectebrae N orthern area Central area Southcrn area N um ber % of total Number % of total Numbcr o of total: 120 1 .04 ; 119 4 .07 6 .18 5 .20 ■ 118 58 .96 36 1.10 27 1.07 117 287 4.74 177 5.39 163 6.48 : 116 939 IS.SO 517 1S.7S 472 18.77 i 115 1673 27.61 917 2 7.93 808 32.13 114 1684 27.79 901 27.44 642 25.53 i 113 988 16.31 517 1S.7S 300 11.93 '} 112 323 S.30 163 4.96 82 3.26 '. 111 75 1.24 45 1.37 14 .56 110 13 .21 2 . .06 ...... 1 .04 109 4 .07 - - 108 3 .05 1 .03 107 5 .08 - - 106 2 .03 - - 105 1 .02 - _ 104 1 .03 N 6059 3283 2515 M ean 114.438 114.504 114.744 S.E. .018 .024 .026 ( jt jg , Jjv European m aterial. : Frequencies o f sample means of total numbers oí vertebrae. Sigitaturc: elvers are indica- tcd by blaclt circles, adiilts by wliitc circles and ‘mbted’ samp- les by black and white citcles. (Thc figure compríses all Eu- ropean samples except nos 5, 15,38,39 and 52 w herenum - her o f specimens in sample was below 10. Samples 3 and 4 were pooled.) 4 - 3 - 2 - 1 - « — T — i— I— i T T T 1 " 1 N o r t h o f n.. n t »-= •' • # o • O í . —,— ,—)—i r i [ i O O 0 ® O • • » 9 0 9 9 0 9 9 * r r r 0 O 4 - O 3 - 9 2— • lL~ $ • • - O 5- S o u t h u r n a r e a O — 0 • 3 - • • • 2 - • « • • - • • « ® o .1 1 1 I 1 1 1 1 I L 1 J _ _ _ L . J _ _ _ 1___ i_ _ _ 1__ _ 1- . j _ _ _ j _ _ _ i_ _ _ lo t i i l n u m b o r o l v o r to b fo e Elvers. In table 4 mean vaíues ofTNV are given for the total European materip of ‘pure’ 0-group elver samples. On average the vertebrae number incrcases fronig the northern to the southern area by about onc third of a vertebrae. A rnore detailed information, however, is given in fig. 3 where frequencies of| TNV means are given for the total European material. The elver material fronif table 4 is indicated by black circles. From figí 3 is seen, that elver samples with lovf| TNV means (i.e. á 114.0) occur predominantly in the northern area and are noij present at all in the southern. f In table 5 localities and dates are given for all samples with TNV means á lH.O.g Except for a single sample (France) they all origin from northwestern Europe. Itisf evident from the primary tablc, that the majority of samples from this region havj| quite ‘normal’ TNV means. The ascent of low TNV elvers thus seems to be áii| irregular phenomenon. Let us consider the year 1906. Referring to table 5 low TNV elvers ascendii# Iceland, Hebrides and Norway from January, 30th to July, 3rd. In the same yeart| however, ‘normal’ TSTV elvers ascend at the Orkneys (spi.nos .16-18) June, 27t|i|| i.e. 6 days before the Norwegian ascent. It seems reasonable to suggest that the lo|| TNV elvers from 1906 belong to one and same wave of invasion. The ‘normalg Orkney elvers could possibly belong to a Iater arriving invasion. : In table 5 the year 1912 is reptesented by two low TNV samples from the Faroes. Dates o f collection were May, 12th and june, 4th. From the same year a sample (no. 13) with ‘normal’ TNV mean was collected August, 19th at the Faroes. . As in 1906 elvers with iow TNV seem to precede the ‘normal’. Adults. Two samples from Iceland, 1973 had mean TNV values below 114 (spl.s nos 6 and 7). Eels from these samples no doubt represent more than one year class. A sample of adult eels from Iceland, 1975, (no.8) had ‘normal’ mean. Concluding this section it can be stated, that in some years (or short sequenccs of years) elvers with low TNV mcans occur in Europe as the firsdy arriving part of • the ascent. Invasion seems predominantiy to take place in northwestern Europe ; and apparently not at all in the Mcditerranean. Table 5. European m aterial. Localities and datcs o f all samplcs w ith m ean total number of vertebrac S 114.0. Stagc Elvers Total nb. o f vertebrae. M ean 112.9 113.1 113.2 1 13.6 113.6 114.0 Locality Date PT no. Iceland Hebrides, Stornoway Norw ay, Bergen Faroes France, I.oire I'arocs, Thorshavn 1906.01.30 1906.02.05 1906.07.03 1912.05.12 1932.03.? 1912.06.04 1 19 20 11 32 12 Adult 113.3 113.9 Iceiand, Grindavik Iceland, Hvcragerdi 1973, A utum n 1973, Autumn 9 6 J A N B O E T I U S A T L A N T I C A N G U I L L A , V E R T E B R A E 9 7 Fig. 1. Distribution o f to ta l num bers o f ve rteb rae in to ta l A m erican and E u ro p e an m a te ria l. A bso lu tc figures are given in tab le 2. 102 lOí 106 108 T c l a l n u m b ð r o f v u r i c b r a brae: 1.1 % of che European and 0.6 % of the American material share this nuniber o f vertebrae. Compared with Schmidt, 1913, and Ege, '1939, the present material representsí an extension by a factor 5.7 of the European matcrial and by a factor 1.7 o£ the; American. In spite of this, the European mean value of vcrtebrae number has; changed froin 114.73 to 114.62, the Atnerican meau frorn 107.23 to 107.19 onl)1, The present material contains samples of three categories: 1. pure 0-group elvers, 2. adult eels only, 3. ‘mixed’ samples where both eivers and small yellow; eels are present. In table 3 elvers and adults are treated separately and mixed: samples not considered at aií. t European adult eels have higher mean number of vertebrae than European elvcrs while American-aáuksjhaxe lower.mean than. Aroe.ricanÆlv_e.rs, A statistical treat- , Table L . European and Amcricau material. Total numbers of vettebrae in elvers and 'aduitíj-cxcluclmg mixeci samples with bofh elvers and adnlts. Europe Amevica Elvers Adults Elvers Adults Mean S.E. Nb. of eels 114.532 114,672 .012 .040 11840* 1398” 107.284 .042 896 ........- ................. - 107.044 .055 595 inent of the table 3 data indicate that the differences mentioned arc significant in both species. . goetius, 1976, analysed a ‘mixed’ sample (here given as PT no. 25) and statcd that vertebrae numbers of the I-group surpassed those of the 0-group elvets. Xhe ingpa.ta.ceJ.a..vert.eb.i:ae..numbers was suegested to be related to growth. The data . from table 3 arc consistent vvith this suggestíon. European material, geographical vartation For the present considerations the European material is divided in three geographi- cal uníts: the northern, the central and the southern area. The areas are given in fig. 2. They roughly correspond to three different migration routes of eel larvae invading the European continental shelf. In the text to foliow the symbol T N \? has been introduced for ‘total numbet of vertebrae’. 20 ________ 10________ 0 M 7 spccimens with vcrrcbrae » 109 excluded. > t - ^ 109 Fig. 2 . M ap presenting tbe threc areas rcferred Co in the tex t as norrhern, ! reniral and sotithern arcas. Figurcs indicate uumbecs o f ecls from thc area ; hstcd in primary tablc. Circles show sampic localitics. The hatched zonc inside the ccntral area indicates the so-caiied target arca wherc elvers have bccn fishcd commcrcialiy. 94 JA N B O É T IU S From 1915 to his death, 1933, Schmidt and his collaborators continued .1t work on meristic characters in Atlantic Anguilla, especially counts of total nun bers of vertebrae of eels from different geograpliica! areas. These data, howcvei were never published. Thus at his death Schmidt left several notes and protocoi and also a collection of preserved material of Atlantic elvers, which was nc worked up at all, About a decade ago Dr. E. Bertelsen, at that time the director of this instituti asked me to go through the material in question and decide if the rather scattere data couid be arranged in such a form, that a publication was justified. Thís paper ís my answer to Bertelsen’s question, and I have taken the opportunit to place together all data — published as well as unpublished - known by me abo\: total numbers of vertebrae in Atlantic Anguilla. Table 1. Sources and size of material. N um ber o / eels Source Europe America í. Previously published data Schmidt, 1909, 13 and 15 3041 882 Boétius, 1976 6460 O ther 427 184 II. D ata left by Schmidt 3496 141 III. N ew countings from Schm idt’s lcft colicction 1965 259 IV. O ther unpublished data 465 143 T otal 15854 1609 Sources of materíal Vertebrae counts of a total of 72 samples are arranged geographically in tlii primary table pp 104-107 (currently cited as PT). Additional information abou stage, season, locality and size is given for individual samples in the notes pp 10i 110 (NPT). In NPT the sample no.s are followed by the symbols I-IV given ii brackets. Symbois I-IV indicate the source of material and are explained as íollow ■ ■ I. Previously published material. Proper referehces to authors are given tn NPV (As I have had the opportunity also to consult the primary data of Schmidtii published work, I have been able to give information in NPT, which was no given by Schmidt himself.) II, Unpublished data left by Schmidt. III. New data from Schmidt’s left collection of preserved specimens worked ti for the present purpose. A T L A N T I C A N G U I L L A , V E R T E B R A E 95 jV. urner unpuousnea aata worked up trom samples recently received or data placed at my disposal by coileagues. Table 1 gives a survey of the proportions of sources I-IV. AU counts in III and tn ihe:greater part of IV were made by Mr. Paul Juhlin of this institute. Dr. Jorgen Nielsen arid Mr. G. Brovad, both of the Zoological Museum, Copenhagen, have kiiidiy given thetr help in preparing the X-rays used for vertebrae counting. Dr. ÉvF.-Harding, Statistical Laboratory, Cámbridge University, has made the appendix. The principle of counting was that of Schmidt’s, 1913: The short atlas was counted as no. 1 and the last hour-glass shaped verrebra was taken as the next but last vertebra. It has been carefully checked that all samples Iisted in PT have been cöunted in accordance w'ith this principle. CjTjble 22 European and American material. Total o f al! stagcs. D istribution o f totai jmbers o f vertebrae. h • , T o t a l a u m b e r of v e r t c b r a e E u r o p e a n m a t e r i a l A m e r i c a n m a t c r i a l N u m b e r % o f t o t a l * N u m b e r % o f t o t a ! 3 . 0 2 M l 9 ' ■ 3 0 . 1 9 2 1 1 1.33 Í Í Í Í 7 . . . 1 0 2 3 6 . 4 5 W l é - 2744 17.31 4 T Í T 5 - 7 4 6 1 1 29.08 4 0 9 3 2S.82 . 1 1 3 2 2 2 1 14.01 1 1 2 6 9 2 4.36 1 .06 ' f e i i i i . 1 7 3 1.09 9 . 5 6 ■ — 1 1 0 2 7 .17 4 7 2 . 9 2 • 1 0 9 9 .06 1 7 0 10.S7 1 , 0 8 : 7 .04 4 1 6 2 5 . 8 5 ■ 1 0 7 5 .03 4 9 1 3 0 . 5 2 , 1 0 6 3 .02 3 5 1 21.81 I J 0 5 . • 1 .01 9 7 6.03 Í 8 Í Ó 4 ' ' " 1 4 0 3 1 .01 20 7 1.24 .44 N 1 5 8 5 4 1 6 0 9 Mean 1 1 4 . 6 1 7 1 0 7 . 1 9 0 .011 . 0 3 2 American versus European vertebrae numbers in table 2 and fig. 1 distributions are presented of vertebrae numbers of the total matcrial o f eels from both sides of the Atlantic. Vertebrae numbers in the Am£ri.can..tna.teríal are secn to rangg_XQ:la.ll2q in the ^mBpeanmjateM-ai-l£láZL2í). The maximum overlapping taking place at 111 verte- . Atlantic Anguilla. A presentation of old and new data of total numbers of vertebrae With special reference to the occurrence oí Anguilla rostrata in Europe S j a n B o e t tu s V yfiíÐ anísh'Tnstítute for Fisheries and M arine Research, Charlottenlund C astle, "ÖK-Z920''C harlottenlund, D enm ark Abstract 'The author has placed together all published data know n by hím a b o u tja l^ ju ia i lK r íJ j fx s a e b r a c in ' turn. Arlantic sDedes-QLág.er«l/g. To this has been added unpublished results from J. Schmídt and iffoííTodKÍr sources. M oreover selectetl m aterial from Schmidt’s left collections has been w orked up for sa'lté4purpose. The materia! is presented in a prim ary table w ith notes to individual sampies. > ^The European material is considcred for three geoRraphical regions separateiy; a northern. a central ’ nndTsöútSiernTThe areás correspond to d te th re e main rpjjX eiairíM riim sirin Ju s .s ta fed ^ íh 3i:in-[Íte 7ji5ctKönréjpcinT « nmv3711|!SSgrg^^ S#!aslpresent, w tiile i’h the söuthern region specimens o f A . rostra ta were hardly present. ' Matetial o f A. rastra ta from Europe com ptises all developmental stages from 0-group elver to silver eel. ftpmNorthem sainples from certain years show ed relatively low numbers o f total vertcbrae ín A . anguilla . Contents : Preface................................................................................. 93 spSources of material ..........................................................94 Æ- •American. versus European vertebrae numbers 95 - European material, geographical variation . . . 97 ‘ *Aneutlla rostrata in Europe. ...................................... 100 íi Smertcan materTal ...................................... 101 Ðiscussion ................................................................ 102 Ptimary ta b le ................................................................ 104 Notes to primary ta b le ............................................... 108 ;\References...................................................................... 110 1V Appendíx......................... 1 11 M ' Preface í The total number of vertebrae was early pointed out by Johannes Schmidt as the , jbest distinguishing character between the American and European species of An- ̂ gutlla. Especially his classic documentations from 1913 and 1915 have been used i;.uP5o present days as a base of reference. VMST/11060 Ganga bjartáls niður úr Elliðaám og Elliðavatni Þórólfur Antonsson Veiðirpálastofnun Veiðinýting • Lífríki í ám og vötnum • Rannsóknir • Ráðgjöf Forsíðumynd: Hólmsá í vetrarbúningi /áll Myndataka: Sara Jonsson / Þórólfur Antonsson Efnisyfirlit 1. Inngangur .............................................................................................................1 2. Lífshlaup álsins og rannsóknir á íslandi..................................................... 1 2. Söfnun gagna.......................................................................................................3 3. Niðurstöður.......................................................................................................... 3 4. Umræða.................................................................................................................6 5. Þakkarorð.............................................................................................................7 6. Heimildir................................................................................................................7 Inngangur Gögnum um niðurgöngu ála (bjartál) hefur verið salhað samhliða öðrum rannsóknum Veiðimálastofnunar á lífríki Elliðaánna (Þórólfur Antonsson og Friðþjófur Amason 2011). All fer í göngubúning líkt og gönguseiði laxins þegar hann er að búa sig til ferðar til sjávar og nefnist þá bjartáll. Það kemur til af því að hann verður ljós eða silfraður á kvið og undirgengst margháttaðar lífeðlisfræðilegar breytingar sem gera honum kleift að breyta úr umhverfí ferskvatns yfir í sjávarlíf. Hér verður gerð grein fyrir göngum bjartáls niður Elliðaámar yfír nokkurra ára tímabil en til þess að setja þessi gögn í samhengi verður farið í stuttu máli yfír lífhlaup áls og vitnað til þeirra rannsókna sem til em um hann hér á landi og að nokkm til erlendra rannsókna einnig. Lífshlaup álsins og rannsóknir á íslandi Tvær tegundir ála, sem ganga í ferskvatn, em í Atlantshafí þ.e. Evrópuáll (Anguilla anguilla) og Ameríkuáll (Anguilla rostrata). Island er talið eina landið þar sem blendingar þessara tegunda finnast (Avise et al. 1990) og var hlutfall blendinganna metið 15,5% en annað hreinn Evrópuáll (Albert o.fl. 2006). Áður var talið að hluti ála hérlendis væm Ameríkuáll (Boetius 1980). Hérlendis er állinn algengur frá Suðausturlandi vestur um til Snæfellsness en fínnst að nokkm marki í öllum landshlutum. Áll hrygnir í sjó en elst upp í fersku vatni (kallast catadromous), öfúgt við laxfískana sem hrygna i fersku vatni og fara svo til sjávar til að taka út megnið af vextinum þar, en það kallast anadromous. Menn vom lengi að átta sig á lífsferli álsins og hafa raunar ekki lokað þeim hring alveg. Eftir miklar rannsóknir Johannes Schmidt fyrir rúmri öld síðan, einangraði hann svæði í Þanghafinu þar sem hann náði nýklöktum seiðum (Tesch 1977). Nýklakin em seiði álsins gjörólík fúllorðnum álum, en þau em flöt og glær á litinn. í árdaga vom þau talin sér fisktegund og kölluð Leptocephalus en síðar kom hið sanna í ljós. Seiðin fylgja Golfstraumnum frá Þanghafinu en synda einnig með straumnum því ferðahraði þeirra er meiri en straumhraðinn. Út frá rannsóknum á mynstri í kvömum áls er talið að hann sé rétt um ár á leiðinni (Jónsson og Noakes 2001, Kuroki o.fl. 2008) en áður var talið að ferðalagið tæki 2-3 ár. Þegar hin flötu og glæm seiði nálgast strandsvæði Evrópu þá myndbreytast þau og taka á sig hið sívala form fúllorðins áls en em enn glær á litinn og kallast þá gleráll. Glerállinn gengur síðan upp í ferskvatn og tekur út megnið af sínum vexti þar. Þó hefur reyndin verið sú hérlendis 1 að hluti hans heldur sig í ísöltum lónum og jafnvel í fullsöltum sjó á strandsvæðum (Ámi Kristmundsson 2003, Ámi Kristmundsson og Sigurður Helgason 2007). Gerðar hafa verið rannsóknir á komum gleráls upp í ferskvatn hérlendis (Linton o.fl. 2007, Kuroki o.fl. 2008). Aðalgöngutími glerálanna er frá apríl og fram í byrjun júlí en þeirra verður fyrst vart í mars og um miðjan júlí em göngumar yfirstaðnar. Þeir þættir sem ráða hvað mestu um hvað örvar göngumar upp í ferskvatn em sjávarfoll og vatnshiti (Linton o.fl. 2007, Kuroki o.fl. 2008). Samkvæmt niðurstöðum Kuroki o.fl. (2008) var meðallengd evrópska glerálsins var 68,3 mm en 67,1 mm hjá blendingunum. Eftir að í ferskvatn er komið getur glerállinn sigrast á ótrúlegum hindmnum á leið sinni að heppilegu búsvæði. Virðist þá sem hitastig vatnsins þurfí að vera orðið nokkuð hátt til að hann ráði við klifur mikils halla og gangi best við hitastig um eða yfír 20°C (Lington o.fl. 2007). Gömul ömefni benda einnig til að glerállinn hafí lengi skriðið yfír hindranir t.d. Álafoss í Mosfellsbæ. Síðan sest hann að í lækjum og stöðuvötnum og dökknar á litinn en kviður verður gulleitur og kallast hann þá guláll. Fæða álsins hefur verið könnuð í Vífílsstaðavatni af Stefáni Má Stefánssyni (2000). Fæðan var nokkuð fjölbreytt en helstu fæðugerðir vom rykmýslirfur, vatnabobbar, homsíli og hrogn annarra físka, en sýni vom einungis tekin að haustlagi. Einnig hafa Ámi Kristmundsson og Sigurður Helgason (2007) gert allítarlega úttekt á sjúkdómum og sníkjudýmm sem hrjá álinn og vom sýni tekin á fímm stöðum á sunnanverðu landinu. Niðurstaðan varð að tuttugu og þrjár tegundir sníkjudýra greindust í þessari rannsókn. Níu þessara tegunda vom fmmdýr en fjórtán fjölfrumungar. Þetta em mun færri tegundir en fundist hafa erlendis en þar hafa 170 tegundir sníkjudýra verið greindar í álum (Anguilla sp). Ekki var að sjá alvarleg áhrif sníkjudýranna á álinn nema lítilsháttar vefjaskemmdir frá einni framdýrategundinni. Eftir margra ára dvöl í fersku vatni fer állinn að búa sig til farar í sjó á nýjan leik, verður þá silfraður á kvið og byrjar að ganga niður ámar til sjávar. Verður hér greint frá nokkmm upplýsingum um niðurgöngu hans. 2 Söfnun gagna Söfhun gagna fór þannig fram að á vissum árstíma fengu starfsmenn rafstöðvarinnar í Elliðaánum bjartál í síur vatnsinntaks og einnig í gegnum vélar virkjunarinnar. Frá árinu 1998 voru þeir beðnir að safna ál sem kæmi í síur stöðvarinnar og þeim ál sem hefði farið í gengum vélamar og oft laskast þannig að þeir náðu honum. Þetta vom allt bjartálar sem bámst til Veiðimálastofnunar. Eftirfarandi þættir vora skráðir um álana: göngudagur, lengd (cm), þyngd (g), kyn og magafylling. Kvamir voru teknar til aldursgreininga. Ami Kristmundsson fisksjúkdómafræðingur á Keldum las hluta kvamanna og bar niðurstöður undir erlendan sérfræðing, Christopher Moriarty. Gert var ráð fyrir því að þar sem rafstöðin var rekin með svipuðum hætti árin 1998-2005 (en það vora þau ár sem sýni bárast), þá hafi fjöldi þeirra ála sem náðust gefið réttar upplýsingar um göngutíma álanna og úrtakið endurspeglað stærðir, kyn og aldur einstaklinganna í göngunni. Þó er ekki loku fyrir það skotið að stærri álar hafi náðst í meira mæli en smærri álar þar sem stærð fiska skiptir máli upp á hve vel þeir sleppa óskaddaðir í gengum vélar virkjunarinnar. Niðurstöður Alls bárast 105 bjartálar til skoðunar, vora flestir árið 2005 eða 29 en enginn árið 2002 og einn árið 2000. Meðallengdir vora breytilegar milli ára, en yfir allt tímabilið var meðallengdin 75,4 cm (SD=11,0) en spönnin var frá 54,5-103,0 cm (tafla 1 og mynd 1). Allir fiskamir vora hrygnur. Magainnihald var skoðað hjá öllum fiskunum og reyndust þeir allir vera tómir. Tafla 1. Meðallengdir og meðalþyngdir bjartáls eftir áram í Elliðaánum yfir árabilin 1998-2001 og 2003-2005. Meðal- SD af Meðal- SD af Ár N lengd (cm) lengd þyngd (g) þyngd 1998 15 77,2 5,02 926,7 251,6 1999 15 72,8 7,85 756,8 254,6 2000 1 92,0 1350,0 2001 4 83,0 5,35 1095,0 263,5 2002 0 2003 28 76,1 12,76 843,4 516,2 2004 13 73,3 13,16 822,7 479,4 2005 29 74,3 12,08 860,7 477,7 AUs 105 75,4 11,02 867,1 432,2 3 Þy ng d (g ) 12 Lengd (cm) l.mynd. Lengdardreifingbjartála úr Elliðaám 1998-2001 og 2003-2005. Lengd (cm) 2. mynd. Samband lengdar og þyngdarhjá bjartál úr Elliðaám. Jafna línunnar er inn á myndinni. 4 Þegar lengdar - þyngdar samband bjartálsins (2. mynd) var kannað reyndist jafna sambandsins vera veldisfall: Y = 25,2 e°’0458X Samband lengdar og þyngdar er ólíkt hjá ál miðað við margar aðrar fisktegundir eins og lögun hans gefur til kynna. Göngutími bjartálsins var frá 247. ársdegi til 363. ársdags en megingangan var frá um miðjum september (260. ársdegi) til miðs nóvember (3. mynd). Samkvæmt 3 mynd. Göngutími bjartáls niður úr Elliðaám og Elliðavatni. fyrirliggjandi gögnum gengu flestir fiskar þann 14. október. Aldur var lesinn af 33 bjartálum og var niðurstaðan sú að aldursbilið var frá 13 upp í 40 ár. Lengd jókst með auknum aldri en samt voru nokkrir fískar sem voru hlutfallslega stórir miðað við aldur (sjá 4. mynd) á bilinu 18- 21 cm. Þrátt fyrir þetta var marktækt samhengi milli lengdar og aldurs (R2=0,57 og P<0,001). 4. mynd. Meðallengd eftir aldri hjá bjartál í Elliðaám. 901 n n 80 ■ n n 70 ■ ~ 1 60 ■ r i — 5oJ l . l 1 . 1 I . . L J J l . l 1 .1 1.1 1. 1 l . l . I I . 13 19 21 23 25 29 31 33 36 38 40 Aldur (ár) 3 0 ' 2 5 ' 2 0 ' 1 5 ' 1 0 ' Std. Dev = 18,95 Mean = 291 N = 104,00 Dagur ársins 5 Umræða Ekki eru til miklar upplýsingar um bjartál á íslandi. Helst er að finna nokkrar niðurstöður úr rannsókn Magnúsar Jóhannssonar o.fl. (1996) um grundvöll fyrir veiðum á ál. I þeirri rannsókn var veitt í tveimur vötnum á Suðurlandi, Ásgautsstaðavatni og Kakkarvatni en einnig í affalli nokkurra vatna sem heitir Skerflóð. Lengdir bjartála úr þessu verkefni voru heldur minni en frá greinir í þessari rannsókn eða mest á milli 50-75 cm og að meðaltali um 60 cm en bjartállinn úr Elliðaám var um 75 cm að meðaltali og spönnin frá 50-100 cm. í umræddu verkefni voru bæði veiddir gulálar og bjartálar. Reyndist bjartállinn umtalsvert þyngri miðað við lengd og því feitari, enda er hann að safna orku til fararinnar miklu til Þanghafsins. Magnús o.fl. (1996) komust einnig að því að helsti göngutími bjartáls var frá síðari hluta september fram í viku af október. Gangan hætti því nokkuð fyrr en í Elliðaám en þar var megingangan frá miðjum september, líkt og í Skerflóði, en hélst fram í miðjan nóvember með hámarki um miðjan október. Miðað við rannsóknina á Suðurlandi er mikill munur á vexti álsins. Aldursdreifing er allt önnur í bjartálnum þar heldur en var í Elliðaám. Aldur bjartáls í Skerflóði var frá 6 -15 ára en til samanburðar var hann frá 13 - 40 ára í Elliðaám. Geta verður þess þó að aldursgreining álakvama er ekki auðveld og Ámi Kristmundsson sem aldursgreindi álinn í Elliðaám bar sínar greiningar undir sérfræðing erlendis sem vanur er aldursgreiningum á ál. Einnig hefur komið til ný og betri tækni til aldurgreininga eftir að hægt var að taka skýrar myndir af kvömum og lesa aldur af tölvuskjá. Vert væri því að greina aldur úr kvömum Magnúsar og félaga með sama hætti og bera saman niðurstöður þessara tveggja rannsókna á þeim gmnni. En hverju sem því liður er aldur áls í Elliðaám mjög hár miðað við aldur annarra ferskvatnsfiska sem hérlendis lifa. Miðað við að álar sem era orðnir 40 ára og að nálgast 100 cm að lengd (að ffádreginni lengd glerálsins) þá er vöxtur þeirra ekki nema 2,0-2,5 cm á ári. 5. mynd. K vöm úr bjartál í Elliðaám. Árin merkt m eð gulum punktum. 6 Taka verður fram að þó rætt hafí verið um ál í Elliðaám er líklegt að mestur hluti hans hafi alist upp í Elliðavatni. Lítið hefur orðið vart við ál þegar rannsóknir hafa farið fram á seiðum laxfíska í ánum, þó þær hafí staðið yfír í rúm tuttugu ár, en nokkuð hefur veiðst af ál í Elliðavatni þegar það hefur verið reynt. Þó enn vanti umtalsvert upp á heildstæða mynd af lífsferli álsins hérlendis hafa samt aflast upplýsingar um glerál, gulál, fæðu áls, erfðafræði og sjúkdóma á síðustu tveimur áratugum. Þær niðurstöður sem hér birtast, auka nokkuð við þá þekkingu. Þakkarorð Starfsmenn við rafstöðina í Elliðaám söfnuðu bjartál. Samstarfsmenn mínir á Veiðimálastofnun aðstoðuðu á margan hátt við sýnatökur og Ámi Kristmundsson fisksjúkdómafræðingur aldursgreindi álinn. Guðni Guðbergsson og Ámi Kristmundsson lásu yfír handrit og færðu margt til betri vegar. Þessum aðilum öllum er kærlega þakkað. Heimildir Albert, V., Jónsson, B. and Bematchez, L. (2006). Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Molecular Ecology 15: 1903-1916 Avise, J.C., Nelson W.S., Amold J., Koehn, R.K., Williams, G.C. and Thorsteinsson V. (1990). The evolutionary genetic status of Icelandic eels. Evolution 44:1254-1262. Ámi Kristmundsson 2003. Sjúkdómar/sníkjudýr í villtum álum, Anguilla spp., á íslandi. M.Sc. ritgerð við Raunvísindadeild Háskóla íslands. 78 bls. Ámi Kristmundsson and Sigurdur Helgason 2007. Parasite communities of eels Anguilla anguilla in freshwater and marine habitats in Iceland in comparison with other parasite comminities of eels in Europe. Folia Parasitologica 54: 141-153. Boetius, J. (1980). Atlantic Anguilla. A presentation of old and new data of total numbers of vertebrae with special reference to the occurrence of Anguilla rostrata in Europe. Dana. Charlottenlund 1:93-l 12. Jónsson, B. and Noakes, D.L.G. (2001). Icelandic eels. In: Proceedings o f the Intemational Symposium: Adcances in eel biology (Y. Auditorium, ed.), pp. 33-35, Tokyo, Japan. Kuroki, M., Kawai, M., Jónsson, B., Aoyama, J., Miller, M.J., Noakes, D.L.G. and Tsukamoto, 7 K. (2008). Inshore migration and otolith microstructure/mircrochemistry af anguillid glass eels recruited to Iceland. Environmental Biology of Fishes 83:309-325. Linton, E.D., Jónsson, B., and Noakes D.L.G. (2007). Effects of water temperature on the swimming and climbing behavior of glass eels, Anguilla spp. Environmental Biology of Fishes 78:189-192. Magnús Jóhannsson, Róbert Jónsson og Björn Ingi Bjömsson (1996). Veiðar, vinnsla og sala á ál. Skýrsla Veiðimálastofnunar VMST-S/96001. 24 bls. Stefán Már Stefánsson 2000. Fæðuval álsins (Anguilla sp.) í Vifilsstaðavatni. Ritgerð fimm eininga rannsóknarverkeínis. Háskóli Islands, líffræðiskor, Hólum. Tesch, F.W. (1977). The eel, biology and management of anguillid eels. Chapman and Hall, London. 434 bls. Þórólfur Antonsson og Friðþjófúr Ámason (2011). Elliðaár 2010. Rannsóknir á fiskistofnum vatnakerfísins. VMST/11030. 38bls. 132 | Joint EIFAAC/ICES/CFCM WCEEL REPORT 2 01 4 9 ToR g) Provide guidance on managem ent measures that can be applied to both EU and non-EU waters 9.1 In troduction The information in this chapter will be important in guiding new participants to WGEEL and non-EU countries as to the possible management options that could be applied in their regions and to considerations of future post-evaluations of EU eel man- agement plans, and of other management plans outside of the EU. It should be noted that there is some disparity among Member States regarding the degree of realisation of these measures: some Members States appear to be implement- ing the foreseen measures according to their schedule, while others are lagging behind. However in the following analysis, the apparent absence of management measures of a particular type does not necessarily indicate a lack of appropriate action, since, for example, a country that has never had a commercial fishery could not be expected to take management measures to control one. During the creation of the Eel Regulation in 2007 the Council of the European Union noted that in relation to eel there are diverse conditions and needs throughout the Community which will require different specific solutions. That diversity should be taken into account in the planning and execution of management measures to ensure protection and sustainable use of the eel population. In order to ensure that their eel recovery measures were effective and equitable, it was necessary that Member States identified the measures they intended to take and the areas to be covered, that this information be communicated widely and that the effectiveness of the measures be evaluated. To that effect Articles 2(8) & 2(10) of the 2007 Eel Regulation 1100/2007 state that: (8) An Eel Management Plan may contain but is not limited to, the following measures: • Reducing commercial fishing activity. • Restricting recreational fishing. • Restocking measures. • Structural measures to make rivers passable and improve river habitats, to- gether with other environmental measures. • Transportation of silver eel from inland waters to waters from which they can escape freely to the Sargasso Sea. • Combating predators* • Temporary switching off hydro-electric power turbines. • Measures related to aquaculture. (10) In the Eel Management Plan, each Member State shall implement appropriate measures as soon as possible to reduce the eel mortality caused by factors outside the fishery, including hydroelectric turbines, pumps or predators, unless this is not neces- sary to attain the objective of the plan. *Given that the ToR for this section related only to anthropogenic impacts, man- agement actions undertaken or proposed in relation to Combating Predators were not included. Joint EIFAAC/ICES/GFCM WCEEL REPORT 2 01 4 | 133 9 .2 Analysis o f M anagem ent Measures reported Differing management structures within the EU mean that EMPs and assessment pro- cedures vary between Member States. Information and data relating to management measures were obtained from ICES WKEPEMP report (ICES, 2013a), previous ICES Reports and the Country Reports to the WGEEL from 2013 & 2014, with the list of Countries included in the analysis derived from Table 10.3 of the WGEEL 2013 report (ICES, 2013b). A total of 1362 individual management actions were reported from the 81 EMUs estab- lished by Member States for the implementation of their EMPs, the precise details of which can be found in ICES (2013a). Given the voiume of management measures adopted across the EU, it was decided for the purposes of this report to filter the available data under the classification of man- agement actions listed in ICES WKEPEMP (ICES, 2013a), which were: • Commercial fishery • Recreational fishery • Hydropower and obstacles • Plabitat improvement • Stocking • Others Management actions aimed at control of commercial and/or recreational fisheries were the most commonly adopted, with slightly fewer measures addressing hydropower and obstacles to eel movements, and fewer still implementing habitat improvement or stocking measures (Figure 9.1). Figure 9.1. The proportion of management actions of various categories implemented in EMPs across the EU. | Commercial fishing Recreational fishing Hydropow er and obstacles Habitat im provem ent Stocking a Others 134 | Joint EiFAAC/ICES/CFCM WCEEL REPORT 2 0 1 4 9.2.1 Aquaculture Though listed in the Eel Regulation as a possible feature of management measures no Member States reported any direct actions related to aquaculture. 9.2.2 Fisheries 9.2.2.1 Commercial fishery Across the EU, 17 countries have adopted management measures to reduce the impact of commercial and recreational fishing on the eel stock (Figures 9.2 and 9.3). Despite the large variety of measures proposed by each country, they are in general devoted to reducing fishing effort, size limit, and to implementing national registers for catches. In the majority of cases such actions were driven by: • improvements in fishery administration systems; • the introduction or extension of closed seasons; • a reduction in fishing effort.. The diversity of commercial fishery management measures was large but the variation within these different categories was even larger, ranging from the prohibition of spe- cific fishing gears such as fykenets in a particular fishing area, to a total ban of com- mercial eel fisheries (e.g. Norway and Ireland). Figure 9.2. EU and non-EU countries adopting management measures affecting commercial eel fisheries: green = measures either in place or intended; white = no known measures; grey= no data. (Distribution of countries taking measures remains the same, for all life stages of eel). jo in t EIFAAC/ICES/CFCM WGEEL REPORT 2 014 9.2.2.2 Recreational fishery I 135 Figure 9.3. EU and non-EU countries adopting management measures affecting recreational fishing for eel: green = measures either in place or intended; white = no known measures; grey= no data. The management measures adopted to reduce the impact of recreational fishing on eel populations covered a wide range of actions, similar in many ways to those used in the commercial fisheries, and included: • a complete ban on targeting or capturing eel; • restricting the fishery at certain periods or liíe stages (e.g. implementing closed seasons); • introducing a quota to reduce the numbers caught; • adjusting gears and hours of fishing thereby reducing their efficiency; • regulating the fisheries by implementing systems to report catches; • increase minimum size limit. 9.2.3 Hydroelectric turbines, pumps and obstacles The impact of hydroelectric turbines and proposed mitigation measures to aid eel movements were the subject of previous reviews by WGEEL (ICES, 2004; 2008). Exten- sive reviews focusing on eel passage were produced by the UK Environment Agency as part of their Eel Manual in 2011; https://www.gov.uk/govemment/uploads/system/uploads/attach- ment_data/file/297341/geho0411btqb-e-e.pdf eel passage https://www.gov.uk/govemment/uploads/system/uploads/attach- 136 jo in t E1FAAC/ ICES/GFCM WCEEL REPORT 2 0 1 4 EMP measures that are intended to mitigate for the problems caused by hydropower, pumps and obstacles are detailed in Country Reports and their distribution across the EU is illustrated in Figure 9.4. It should be noted that whilst coverage of these measures looks w'idespread across Member States, many of the measures proposed in national or EMU eel management plans have not yet been implemented or are oniy partially implemented. All continen- tal life-history stages of eel can be adversely affected by these type of migratory im- passes. Juvenile eels (glass eei and small yellow eeis) may be obstructed in their upstream migrations. Silver eels, and large yellow eels in some locations, can be de- layed in downstream migration due to river discharge regulation and they are likely to experience significant mortality rates associated with passage downstream through power generation facilities. Such mortalities, and non-fatal injuries, can result from ei- ther impingement at turbine intake screens or following entrainment and passage through turbines. Similar adverse effects on eels can occur at pumping stations, though generally EMP measures do not specifically address these. However, many of the hy- dropower mitigation measures are also relevant to problems associated with pumping stations and other anthropogenic obstacles impeding riverine eel migrations. Facilitation of natural upstream migration in hydropower impacted eel populations has been proposed by eight countries in respect of giass eel and nine countries in re- spect of small yellow eel. This involves either removal of barriers or installation of ap- propriate eel pass structures. Likewise, removai of obstacles and/or provision of eel pass facilities has been proposed by nine countries for larger yellow eels and by five countries for silver eei migrating downstream. Management measures involving hydropower plant operational protocols or design features are proposed measures in eleven Member States, though the specific details are unciear or are subject to future technology advances. A short to medium-term measure included in the EMPs for several countries is the trapping of silver eels up- stream o£ hydropower dams for release downstream. This measure aiso provides in- come for eel fishermen affected by EMP restrictions on commercial eel capture as their skills are re-employed in such conservation fisheries. Research and surveys to docu- ment the impact of hydropower on eel populations of individual EMUs have been pro- posed by seven countries and a number of others lísted a small number of "other" related measures that appear to be of limited applicability to EMPs elsewhere. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2 01 4 137 :•*. / Figure 9.4. EU and non-EU countries adopting management measures relating to hydropower and obstacles: green = measures either in place or intended; white = no known measures; grey= no data. 9.2.4 Habitat improvement Measures categorised as habitat improvement in the ICES WKEPEMP report (2013a) and the Country Reports to the WGEEL in 2014 (see Annex 10) were reported by only six Member States. The specific measures taken comprise a variety of actions that are often somewhat vague in nature, ranging from those broadly relating to increasing habitat connectivity, and water quality improvement, to the adoption of protected ar- eas, and the benefit to the eel as a consequence of the application of the Water Frame- work Directive. Broad similarity of measures between countries cannot be assumed. The distribution of habitat improvement measures by country affecting all eel life stages is showm in Figure 9.5. Maps for individual life stages are identical, since habitat improvement measures generally have wide ranging impacts that affect all life stages. 138 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2 0 1 4 Figure 9.5. Management measures related to Habitat Improvement taken by country affecting all eel life stages: green = measures either in place or intended; white = no known measures; grey= no data. 9.2.5 Stocking In 2008, prior to the inception of EMPs in 2009, twelve countries proposed the use of stocking in their management plans to enhance eel populations. In 2013, stocking of glass eel was undertaken in 16 Member States (Figure 9.6). Whilst stocking is a measure featuring in virtually all of the EMPs for which there are data, only six achieved their EMP stocking target. Most EMUs have partially reached their targets and a few have yet to implement the action (ICES, 2013a). The most common reason given for a country being unable to achieve its stocking tar- get was a lack of funding to buy glass eel. The impact of holding and maintenance- feeding of elvers in aquaculture needs to be addressed with regard to their potential adaptation to culture conditions which are subsequently deleterious when stocked out, as known from other fish species like salmon and trout. Given the unknown nature of some of the eel pathogens in the wild, biosecurity must be of highest priority in any transport/translocation or eel culture system. All equip- ment, vehicles, tanks, personnel and clothing must be thoroughly disinfected before and after any contact with eels and critical control points should be established at all rearing/holding fadlities. Stocking with on grown young yellow eel carries the risk of spreading disease, reduced genetic fitness and skewed sex ratios, while the stocking of wild-caught yoimg yellow eels from clean donor sites may be deleterious if they are stocked in contaminated recipient sites (Walker et al., 2009). Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 I 139 Concems about current eel stocking practices have been expressed and its effective contribution to ensure increased silver eel production has been raised. It has been rec- ommended that there should be a co-ordinated marking programme of stocked eel and thereby separable from wild eel in subsequent sampling. The effects of stocking under EMPs cannot be demonstrated immediately because of the generational lag time but recent Swedish work indicates that stocked eels behave in the same way as natural recruits (ICES, 2013b).WGEEL reviewed the use of stocking as a management measure in their reports from 2010 and 2013 (ICES 2010 & 2013b). There was almost no new evidence available to WGEEL in 2013 that was not consid- ered by ICES WGEEL in its 2010 report and the conclusions of both are similar, i.e. that there is evidence that translocated and stocked eel can contribute to yellow and silver eel production in recipient waters, but that evidence of further contribution to actual spawning is limited (by the general lack of knowledge of the spawning of any eel). Figure 9.6. Management measures related to Stocking taken by country: green = measures either in place or intended; white = no known measures; grey= no data. 9.2.6 Other management options Other management options listed by Member States in their EMPs and associated Re- ports, include a wide range of actions, none of which effectively refer strictly to man- aging an anthropogenic impact but mostly to other issues ranging from legal framework enhancement to monitoring and research. Other management options essentially fall under eight main subgroups: 1) Strengthening of the framework, including: 1 .1 ) Reinforcement of legal framework; 140 | jo in t EIFAAC/ICES/CFCM WCEEL REPORT 2 0 1 4 1.2 ) Reinforcement of co-ordination among agencies and interested par- ties; 1.3 ) Dissemination, raising of awareness; 1.4) Stakeholders' involvement. 2 ) Reinforcement of fishery reporting structures, including 2.1) Setting up of fisheries reporting systems (other than DCF); 2.2) Use of import/export data to monitor commercial fisheries; 2 .3) Use of catch/retum logbooks to monitor commercial fisheries; 2.4 ) Improvement of fisheries control (enforcement); 2.5 ) Control and contrast of illegal fisheries (enforcement). 3 ) Reinforcement of monitoring frameworks, including 3.1) Catchment surveys, by fykenet or electrofishing (both multispecific or eel-specific) in defined catchments; 3.2) Establishment of new, or the continuation of existing recruitment monitoring, most specific for glass eel and many aiming at investigat- ing potential new sites; 3.3 ) Assessment of sites for silver eel monitoring, the implementation of or continuation of escapement monitoring; 3.4) Continuation of monitoring of index rivers. 4 ) Assessment of efficacy of technical actions, to 4.1) Enhance accessibility and migration routes; 4.2) Reduce impacts and iosses on eel populations. 5 ) Actions related to restocking, including 5.1) Identification of areas for restocking; 5.2) Implementation of restocking plans; 5.3 ) Investigations of contribution of stocking to the eel stock; 5.4) Pilot studies for restocking actions. 6 ) Actions related to eel quality issues and fish health, such as 6.1) Monitoring of Anguillicola crassus; 6.2 ) Investigations on pathogens and contamination; 6.3) Implementation of sanitary agreements specific for dealers; 6.4 ) Assurance of compliance to Fish Health Directive. 7 ) Inclusion of eel within specific conservation or species protection pro- grammes. 8 ) Research actions, generic or specifically aimed at: 8.1) Development of models for the assessment of stock indicators; 8.2 ) Development of models to assess compliance with targets; Joint EIFAAC/ICES/GFCM WGEEL REPORT 2 01 4 8.3 ) Development of indices for assessing management effectiveness; 8.4 ) Setting up of river or basin indexes for recruitment and escapement quantification; 8.5 ) Development of ecosystem-based models specific for eel; 8 .6 ) Retrieving and analysing historical data. Some of these actions refer specificaliy to eel stage, i.e. glass eel, yellow and silver eel: such is the case with specific monitoring targeting recruitment, yellow eel stock or es- capement. Most of the management options listed here refer to all eel life stages be- cause they are generic or aimed at enhancing the knowledge base or the general working framework. 9 .3 Post-evaluation Ln 2013, the European Commission stated that Member States have been progressively implementing more and more management measures as foreseen in their EMPs. These measures include fisheries restrictions, restocking, facilitation of upstream and down- stream migration, etc. There is however some disparity among Member States regard- ing the degree of realisation of these measures: some Members States appear to be implementing the foreseen measures according to schedule, while others are lagging behind. Some of the most challenging measures to implement are the removal or mod- ification of large obstacles, usually due to technical and finandal constraints. The re- covery plans have oniy been in place for several years with many having been submitted late (ranging from several months to almost two years after the deadline). Given that it will take at least 2-3 eel generations (i.e. at least ten years) before any significant trends in the stock status can be observed, it is too early to draw conclusions as to the effectiveness of these measures. Of the 81 EMUs established by Member States for the implementation of their EMPs, progress was made in implementing management measures related to fisheries, but other anthropogenic management measures, such as improving habitats and passage, or achieving stocking targets have often been postponed or only partially imple- m e n t e d . _______ ___________ —— --------------------------------------------- —---- Following the 2012 EMP Reviews (ICES, 2013a) it remains difficult to asses; come of EMPs against the 40% escapement target spt by the F.ei Regulation. Jhe scien- tific advrce gleaned from £Ee" sources examined underlines that the effectiveness of individual management measures cannot always be demonstrated: necessary data are missing or the measures concerned are not expected to produce their effects immedi- ately or in the short term. For instance, there is high probability that restrictions on fisheries for silver eel have contributed to increase in silver eel escapement. However, management measures targeting eels prior to the silver eel stage (e.g. stocking) are not expected to have yet contributed to increased silver eel escapement due to generational lag time (ranging from approximately five years in the Mediterranean lagoons to 25- 30 years in Northem Europe). Non-fisheries measures related to hydropower, pump- ing stations and migration obstacles are also difficult to evaluate at this point in time, mainly due to the site specific nature of potential impacts and lack of post evaluation data. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2 01 4 The post-evaluation process commencing with the reporting by Member States in 2012 has been first and foremost a synchronized process of national post-evaluations. Na- tional reports have evaluated to what extent the implementation of the EMP(s) has been successful, and whether the targets have been achieved. Conclusions The stock in the whole distribution area is considered to constitute one single panmictic population (Palm et al., 2009; Als et al., 2011). This contrasts strongly with the scattered, small-scale pattem of the continental stock and the national/regional scale of manage- ment (Dekker, 2000; 2008). Management of the stock by uniform measures all over the EU (e.g. a common minimum legai size, a common closed season or a shared catch quotum, etc.) were not feasible or applied, since uniform measures cannot be designed in a way that would be effective all over the EU (or the wider range of the eel) due to large variations in eel life history over its natural range. Regionalised management (a common objective and target, but local action planning, local measures and local implementation) is central to the EU Eel Regulation (Dekker, 2004; 2009) and on this basis Eel Management Plans have been developed per coun- try/region. Few cross-boundary EMPs exist. Note, however, that the European eel range extends beyond the EU and that the management of the eel and anthropogenic impacts are necessary throughout its range. As such it is hoped that the information above will be an important and useful reference to new participants to WGEEL and non-EU countries, suggesting possible management options which could be applied in their regions and to considerations of future post-evaluations of implemented manage- ment actions. Recom m endations We recommend a comprehensive evaluation of the effectiveness of various manage- ment measrues across EU and non-EU waters facilitating the prioritisation of manage- ment actions. Management guidelines have been produced on various topics; it is recommended that these are hosted on the EIFAAC web site, so that their specific details can be scruti- nised. Heredity (2016), 1 - iO € 2016 Macmillan Publishers Limited. part of Springer Nature. All rights reserved 0018-067X/16 w w w .n a tu re .co m /h d y ORIGINAL ARTICLE Assessing pre- and post-zygotic barriers between North Atlantic eels (Anguilla anguilla and A. rostrata) M W Jacobsen1,5, L Smedegaard1,5, SR Sorensen2, JM Pujolar1, P M unk2, B Jónsson3, E Magnussen4 and M M Hansen1 E lucidating barriers to gene flow is im portant for understanding the dynamics of speciation. Here we investigate pre- and post-zygotic mechanisms acting between the two hybrid izing species of A tlantíc eels: Angu illa angullla and A. rostrata. Tem porally varying hybrid ization was examined by analyzing 85 species-díagnostic s ing le-nucleotide polymorphisms (SNPs; FSx > 0 ,9 5 ) in eel larvae sampled in the spawning region in the Sargasso Sea in 2 0 0 7 (/V = 9 2 ) and 2 0 1 4 ( /V = 460 ). We further investigated whether genotypes at these SNPs were nonrandomly d istribu ted in pos t-F l hybrids, ind ica ting selection. F inally, we sequenced the m ítochondria l ATP6 and nuclear A T P 5 c l genes in 19 hybrids, identified using SNP and restriction site associated DNA (RAD) sequencing data, to test a previously proposed hypothesis of cytonuclear incom patib ility leading to adenosine triphosphate (ATP) synthase dysfunction and selection against hybrids. No F1 hybrids but only later backcrosses were observed in the Sargasso Sea in 2 0 0 7 and 2 0 1 4 . This suggests tha t interbreeding between the two species only occurs in some years, possibly contro lled by environm ental cond itions at the spawning grounds, or th a t interbreeding has d im in ished through tim e as a result of a dec lin ing number of spawners. Moreover, potential selection was found at the nuclear and the cytonuclear leveis. Nonetheless, one glass eel ind iv idua l showed a m ism atch, involving an Amerícan ATP6 haplotype and European A T P 5 c l alleles. This contradicted the presence of cytonuclear incom patib ility but may be explained by th a t (1) cytonuclear incom pa tib ility is incom plete, (2) selection acts at a later life stage or (3) other genes are im portant fo r protein function . In to ta l, the study demonstrates the u tility o f genom ic data when exam ining pre- and post-zyotic barriers in natural hybrids. Heredity advance online publication, 9 November 2016; d o i:10 .1038 /hdy .2016 .96 INTRODUCTION B lucidating tlie d iffe ren t ty'pes o f p re - o r p o st-zygo tic rep ro d u c d v e iso la ting b a rrie rs is crucia l fo r u n d e rs ta n d in g sp ec ia tio n (R am sey e t al., 2003; C o y n e an d O r r 2004; N osil e t a l., 2005; R ieseberg an d W illis, 2007; L ow ry e t a l , 2008). P rezygo tic m e c h an ism s im p ed e m a tin g th ro u g h , fb r ex am p le , h a b ita t, te m p o ra l o r sexual iso la tion , o r m ech an ica l iso la tion because o f genita lic in c o m p a tib ility (N osil e t a l., 2005; Lessios, 2011). O n th e o th e r h a n d , p ostzygo tic selection acts a fte r tlre zygote has b een fo rm e d because o f red u c ed fitness o f h yb rid s th a t m a y ev en tually lead to re in fo rce m e n t a n d spec ia tion . H e re a d is tin c tio n is m a d e b e tw een ex trin s ic a n d in tr in s ic postzygotic b a rrie rs (M ayr, 1963; N o sil e t al„ 2005; S eehausen et a l , 2014). In ex trin sic postzygo tic iso la tio n , h y b rid p h en o ty p e s a re m a lad ap te d to the e n v iro n m e n t re la tive to p a ren ta l p h e n o ty p e s (N osii c t al., 2005; S ch lu ter, 2009). In tr in s ic p ostzygo tic b a rr ie rs involve g enetic in c o m - p a tib ility w h en su b o p tim a l allelic c o m b in a tio n s a re b ro u g h t to g e th e r in hyb rid s . D eleterious co m b in a tio n s wili lead to red u ced fitness o r in fertility , as d e m o n s tra te d b o th th eo re tica lly (G avrilets, 2003, 2004; C o y n e a n d O rr , 2004) a n d em piricaU y (B rideau e t al„ 2006; Presgraves, 2007; M ah e sh w a ri a n d B arbash , 2011). A special case, th e so -called cy to n u c lea r in co m p a tib ility , involves m ito c h o n d ria l an d n u c le a r genes (B u rto n e t til., 2013). G en es ffo m b o th g en o m es in te rac t w ith in p ro te in com plexes o f th e ox ida tive p h o sp h o ry la tio n pa th w ay th a t is re sponsib le fo r energy (ad en o sin e tr ip h o sp h a te (A T P )) p ro d u c - tio n (S araste 1999; B allard a n d W h itlo c k , 2004). T h u s , c o ad a p ta tio n w ith in p o p u la tio n s o r species m ay re su lt in m ism a tch es a n d p ro te in d y sfu n c tio n in h v b rid s lead ing to re d u c ed fitness (B u rto n et a l , 2013). E vidence fo r su ch m ism a tch es has b e en sh o w n in several o rgan ism s, in c lu d in g flies (M eik le jo h n et al„ 2013 ), c o p ep o d s (E llison an d B u rto n , 2006) a n d m o n k ey flow ers (F ish m an a n d W illis 2006). N one lheless, th e absence o f co ev o lu tio n is n o t alw ays dele terious. F o r exam ple, a re c en t s tu d y o f th e redbelly dace (C hrosom us eos) sh o w ed th a t in tro g re ss io n o f a fo re ign m ito g e n o m e , o f u p to 10 M yr o f in d e p e n d en t ev o lu tio n , is n o t necessariiy d e le te r io u s b u t m ay ra th e r h ave benefic ial effects (D e re m ien s et al., 2015). In to ta l, few g o o d cases o f cy to n u c lea r in co m p a tib ility exist o u ts id e th e la b o ra to ry a n d m o re em p irica i ev idence is n e ed e d to u n d e rs ta n d th e significance o f th is m e c h an ism in sp ec ia tio n (B u rto n e t al„ 2013). H ere w e investigate p re - a n d post-zygo tic b a rrie rs b e tw een th e tw o siste r species o f N o r th A tlan tic eels: E u ro p ea n (A nguilla anguilla) an d A m erican eel (A . rostrata) (T esch , 2003). B oth species a re p an m ic tic (Als et al„ 2011; C ó té e t a l , 2013 ), sh o w h íg h effective p o p u la tio n siz.es (C ó té e t al„ 2013; P u jo lar e t al., 2013; Jacobsen e t al„ 2014b) an d spaw n in th e th e rm a l fro n ts o f th e s o u th e m Sargasso Sea (M cC leave 'Department of Bioscience, Aarhus University, Aarhus, Denmark: "’National institute of Aquatic Resources, Charlottenlund, Denmark; '’ Northwest lceland Nature Research Centre, Saudárkrókur, iceland and '"‘Faculty of Science and Technology, University of the Faroe islands, Torshavn, Faroe Islands Correspondence: Dr MW Jac.obsen. Departrnent of Bioscience. Aarhus University. Ny Munkegade 114, DK-8000 Aarhus C, Denrnark. E-mail magnus.jacobsen@bios.au.dk ’These authors contributed equally to this work. Received 14 April 2016; revised 13 August 2016; accepted 22 August 2016 http://www.nature.com/hdy mailto:magnus.jacobsen@bios.au.dk Reprodudive isolating barriers in North Atlantic eeis MW Jacobsen e í al 2 e t al„ 1987; T esch , 2003). T h e ir sp aw n in g show s extensive overlap in space (S chm id t, 1923; T esch , 2003; M iu ik e t a l , 2010) a n d tim e, w ith peak sp aw n in g tim e in F e b ru a ty -A p ril fo r A m erican a n d M a rc h -Ju n e fo r E u ro p ean eel (M cC leave e t a l , 1987; T esch , 2003; M ille r e t al„ 2015). A fte r spaw n ing , th e la n 'a e (lep to cep h ali) a re tra n sp o rte d by ocean c u rre n ts b a ck to th e ir respec tive feed ing g ro u n d s (S chm id t, 1923), w h e re th e y e n te r fresh o r b ra c k ish w a ter as glass eels. A fter a p e rio d o f 4 -2 0 years as yellow eels, th e y m e ta m o rp h o s e in to silver cels th a t m ig ra te b a ck to th e Sargasso Sea to sp aw n an d su b seq u en tly d ie (T esch , 2003). T h e sp aw n in g a n d la rva l m ig ra tio n s a re h igh ly d iffe ren tia ted in A tlan tic eels w ith a sp aw n in g m ig ra tio n o f ~ 5000 k m fo r E u ro p e a n eel a n d 2500 k m fo r A m e rican eel (A oyam a, 2009) a n d a s u b se q u e n t d u ra tio n o f larval phases o f ~ 2 years a n d 7 -9 m o n th s (T esch , 2003), respectively , a lth o u g h th is is still d e b a ted (T esch , 2003; Z e n im o to e t al„ 2011). M ito g e n o m e seq u en c in g suggests th a t species d ivergence o f A tlan tic eels w as in itia ted ~ 3 .3 m iilio n years ago (M y r) (Jacobsen e t al„ 2014b). H ow ever, g ene flow still o ccu rs, as h y b rid s have b een rc p o rte d in several s tu d ies (A vise ct aL , 1990; A lb e rt e t a l , 2006; G agnaire e t al„ 2009; P u jo la r et aL , 2014a, b ). T h u s , a lth o u g h te m p o ra l a n d spatial s ep a ra tio n a t th e sp aw n in g g ro u n d s likely c o n stitu te s p rezygotic b a rrie rs , they a re n o t ab so lu te . N o n e th e less, th e freq u en cy o f h y b rid iza tio n is u n k n o w n a n d , to d a te , n o F1 h y b rid s have b een fo u n d in th e Sargasso Sea, w h e re m ere ly tw o seco n d -g e n e ra tio n backcrosses p rev iousiy have b e en d e tec ted based o n 86 species- d iag n o stic (Fyx > 0 .9 5 ) s in g le -n u c leo tid e p o ly m o rp h ism s (S N P s) in sam pies fro m 2007 (P u jo la r e t al„ 2014a). T h e fin d in g o f on ly backcross ind iv id u a ls b u t n o F1 h y b rid s m ay be exp la ined by tem p o ra lly vary ing h y b rid iza tio n (P u jo la r e t aL , 2014a). T h is cou ld re su lt fro m d ifferences in te m p o ra l overiap o f sp aw n in g tim e betw een th e species across years, p o te n tia lly m e d ia ted b y a n n u a l d ifferences in th e lo c a tio n o f th e ih e rm a i fro n ts th a t a re h ig h ly d y n a m ic across years (T esch , 2003; U llm an e t al„ 2007). F1 h y b rid s have o n ly b een ob serv ed in Ice land (Avise e t al„ 1990; A lbert et a l , 2006; P u jo la r e t al., 20.14a). T h is is possib ly a co n seq u en ce o f an in te rm e d ia te la rva l m ig ra tio n b eh aw o r, w h e re F1 h y b rid s e ith e r actively o r passively ge t t ra n s p o r te d to Ice land , a p p ro x im a te ly lo ca ted lo n g itu d in a lly in tc rm c d ia tc be tw een N o rth A m erica a n d E u ro p e (Avise et a l , 1990; P u jo la r e t al„ 2014a). In c o n tin e n ta l E u ro p e and N o rth A m erica , o n ly few la te r-g e n e ra tio n backcrosses have b een ob serv ed (A lbert et al„ 2006; P u jo la r e t a l , 2014b), suggesting s tro n g postzygo tic b a rrie rs . O n e su ch b a rr ie r has b een p ro p o se d to be cy to n u c lea r in c o m p a tib ility (G ag n a ire e t al„ 2012), b ased o n th e fin d in g o f s ig n ifican t in te r-sp ec ies n o n sy n o n y m o u s d iffe ren tia tio n in genes invo lved in th e A T P syn thase co m p lex (G ag n a ire e t a l , 2012). T h is p ro te in co m p le x is p a r t o f th e ox ida tive p h o sp h o ry la tio n chain a n d catalyzes th e syn thesis o f A T P f ro m a d en o s in e d ip h o sp h a te (Saraste, 1999). T h c tvvo genes sh o w in g h ig h est n o n sy n o n y m o u s d iffe ren tia tio n in A tlan tic eels a re th e m ito c h o n d ria l A T P 6 (A T P synthasc F0 su b u n it 6) a n d the n u c le a r ATP5cL (A T P synthase F1 su h u n it g a m m a ) genes. T h u s, c o ev o lu tio n likely has o c cu rre d betw een th ese genes a n d m ism a tch es in h y b rid s a re expec ted to be associaled w ith postzygo tic selection . S u ch selec tion m ay be lin k ed to the possib ility o f c o m p le tin g th e m ig ra to ry lo o p ; e ith e r th e sp aw n in g m ig ra tio n o r th e su b se q u e n t larval phase . B o th life-h isto ry tra its m ay be associated w ith energetics a n d are sign ifican tly co rre la ted w ith a m in o acid changes in A T P 6 in fresh w ater eeis (A nguillidae) (Jacobsen e t al„ 2015 ). A lth o u g h E u ro p ea n eel c an b e re a re d 'm vitro th ro u g h th e p re lep to cep h a li stage (S o ren sen e t al„ 2016), th e sam e is n o t yet p ossib le fo r th e A m erican eel an d n o n e o f th e m can p re sen tly be rea red artificially . T h u s , h y b rid s c an on ly be s tu d ied fro rn w ild -cau g h t sp ec in ten s (T esch , 2003). H e re rec en t s tu d ie s b ased o n re s tric tio n site assoc iated D N A (R A D ) seq u en c in g (P u jo la r e t al„ 2014b) an d analysis o f a su b se t o f sp ec ies-d iagnostic SN Ps (P u jo la r e t al„ 2014a) have d e tec ted h y b rid s fro rn b e y o n d th e F1 g en era tio n b ackcross levei. S creen ing fo r u n u su a l A T P 6 ~ A T P 5 cl co m b in a tio n s in su ch hy b rid s c an be u sed fo r investigating th e possib ility o f cy to n u c lea r in c o m p a t- ib ility in A tlan tic cels (B licr e t al„ 2001, G ag n airc e t aL , 2012). T h e use o f sp ec ies-d iagnostic SN Ps to d e tec t h y b rid s m ay , how ever, involve p o te n tia l p ro b lem s. G e n o m e-w id e d iffe ren tia tio n be tw een A m erican an d E u ro p ean eel is h ig h ly h e te ro g en eo u s w ith an average F j t o f 0.041. N evertheless, th o u s a n d s o f SN Ps sh o w fixed differences a n d are c an d id a te s fo r b e in g u n d e r ciivergent se lec tion be tw een th e species (Jacobsen e t al„ 2014a). H en ce , it is likely th a t selection acts on these loci in hyb rid s . As su ch , w h ereas FI h y b rid s sh o u ld be h e te rozygous fo r all d iag n o stic loci, se lec tion a n d co ad a p ta tio n rnay d is to r t g eno type frequencies in p o s t-F l hy b rid s , Iead ing to increased in accu racy in e s tim a tin g n u m b e rs o f g e n era tio n s since in itial h y b rid iza tio n . H e re w e ad d ressed th e fo llow ing q u estions. (1) Is th e degree o f h y b rid iza tio n tem p o ra lly vary ing in th e Sargasso Sea? (2) D oes selec tion affect d iag n o stic SN Ps an d th e re b y ca teg o riza tio n o f po st- F1 hybrids? (3) A re A T P 6 ~ A T P 5 c l co m b in a tio n s in p o s t-F l hyb rid s in a cco rd an ce w itli th e hy p o th esis o f cy to n u c lea r in c o m p a tib ility pa rtly u n d erly in g postzygo tic b a rr ie rs be tw een th e species? U sing a panel o f 96 n ea r-d iag n o stic SN Ps (P u jo la r e t al„ 2 0 14a) w e analyzed eel larvae sam p led in th e Sargasso Sea in 2014 ( N = 460), in a d d itio n to new sam ples fro m M o ro c co (Ar= 2 1 ) a n d th e F aroe Islands ( N = 30). D a ta w ere u sed fo r assessing te m p o ra l v a ria tio n in h y b rid iza tio n a n d selec tion in c o m b in a tio n w ith p rev iously p u b lish ed d a ta , in p a rtic u la r fro m larvae co llected in th e Sargasso Sea in 2007 ( N = 92) and Ice land ic eels co llected in th e early 2000s ( N = 159). W e ex p ec ted th a t F1 hy b rid s sh o u ld be o v e rrep re sen te d c o m p a re d w ith backcrosses a t th e sp aw n in g g ro u n d s b ecause o f postzygo tic barrie rs , in case o f c o n tin u o u s gene flow b e tw een th e species. F u r th e rm o re , vve sequenced th e A T P 6 an d A T P 5 c l genes fro m 19 hy b rid s in o rd e r to te st for species-specific A T P 6 ~ A T P 5 cl m a tch es a n d th u s in d irec tly fo r cyto- n u c le a r in co m p a tib ility . T hese h y b rid s w ere id en fified in th e p re sen t an d p rev io u s stud ies (Jacobsen e t al„ 2014a; P u jo la r e t al„ 2014a, b ) by analyzing spec ies-d iagnostic SN Ps using S T R U C T U R E (P ritch a rd e t a l , 2000; F a lu sh et a l , 2003, 2007) and N E W H Y B R ID S (A n d e rso n a n d T h o m p so n , 2002). O verall, o u r s tu d y p ro v id es new in sigh ts in to th e p re - a n d p o st-zygo tic b a rrie rs invo lved in spec ia tion ín th e case o f N o r th A tlan tic eels in p a rticu ia r, a n d sp ec ia tio n in th e o ceans in general. MATERIALS AND METHODS Id e n tify in g sp ec ie s a n d h y b r id s a m o n g eel la rv a e f fo m th e S a rg asso Sea A total o f 472 candidate Anguilla sp. larvae (leptocephali), sampled in the Sargasso Sea from 18 March to 15 April 2014, were analyzed io this study. They represent 47 different Localities along 7 transects at longitude: 68.5°W, 65.5°W, 62.7°W, 59.5°W, 57.0°W, 53.5°W and 50“W (Figures 1 and 2a) and cover the main part o f the spawning ground shared by the two species that historicatly híis been ranging from ca. 70 to 58°W (Miller et a l, 2015). A sínglt' sampling station at longitude 5 i .8°Wr was also included. Sampiing was conducted using a ring net (diameter: 3.5 m, length: 25 m and nresh size o f 560 pm). Larvae werc stored in separate eppendorf tubes in either ethanol (96%) or RNAlater. In addition, new sanrpies also included glass eels colíected in Morocco (Oved Sebou; íV =21) and yellow eels collected in the Faroe Islands (Streymnes; N = 15 and Miðvágur; JV= 15) in 2011 (Figure 1 and Table 1). DNA vvas extractcd using E.Z.N.A. purifications columns (OMEGA Bio-Tek, Norcross, GA, USA). Species identification was based on PCR o f the Heredity Reproductive ísolating barriers in North Atlantic eels MW Jacobsen et at 3 • n □ L t1 " i f □ R H t C R B f C M I + CSTJ • S A + □ G G 1 □ g a + \ \ w s>míu>i Q . SNP sicnoivping □ RAD scqucncmg BLACK i New data CiRF-Y t \ e w data publishcd data WHITT ' Publushcd data ■f j ATP6-ArP5cl sequcncing Figure 1 Map showing ail íocalities o f new and previously published data anaiyzed ín th is study. Black circles denote localities with new data; gray circles denote localities with both new and aiready published data and white squares show localities with only data already published. See Table 1 for information on exact sampling location and sample size. m itochondriaj cytochrome h gene (CytB) according to Trautner (2006). A total o f 96 species-diagnostic SNPs (F$y 0.95) developed by Puiolar et a l (2014a) based on RAD sequencing were then genotyped on 96.96 Dynamic Arrays (Fluidigm Corporation, San Francisco, CA, USA) using the Fluidigm EPI instrum entation according to the rnanufacturer’s recommendations. In addi- tion, genotype data from Pujolar ct al. (2014a), who analyved 280 European ee!s tor the same 96 SNPs, were reanaiyz.ed in the study. These data consisted o f ecl larvae collected in the Sargasso Sea (N = 92) in 2007 (caught between 70 and 64°W), yellow and glass eels collectcd in Iceland ( N = 159) in 2000-2003 and yellow ecls collected in the Faroe Islands (N = 29) in 2011 (for details on exact sampiing localities see Pujolar et aí., 2014a). ín total, the data set encompassed 803 individuals (Figure land Tahle 1). All individuals were analvzed using NEWMYBRIDS (Anderson and Thom pson, 2002). N o prior iníorm ation on ihe origin of individuals was uscd and an a.ssignment threshold o f >0 .95 was applied. The software assigns individuais to different hybrid ciasses by calculating the probability o f the indivídual belonging to a specific hybrid categoiy. In this studv we uscd the same hybrid categories as i.n Pujolar ct al. (2ÖI4a); pure European eel (AA), pure American eel (/VR), ftrst-generatson hybrids A A xA R (F l), F1 x f l (F2), A A x F l (bAA), A R x F l (bAR), bAAxAA, bAA x AR, bA R xAR, bARxAA, bA A xp'l ancl b A R x F l. T ‘his means that, for example, bA R xA A is an individual resulting from a pure European eel (AA) mating with a hybrid backcross (bAR) that again is the result o f a pure American eel (AR) mating with an F1 hyhrid. Seven hyforids were assigned to the ‘unusual’ bA RxAA ciass and showed seven loci that were homozygous in all individuals for the European eel aiiele. As this is unlikely to happen by chance, and may indicate selection, we examined these loci further. First, we calcuiated the probability o f observing the homozygote genotype in all seven individuals. Assuming Hardy-W einberg proportions we ftrst estimated genotype frequencics in American and European eel bascd on the allele frequencies observed in each o f the seven bialklic loci. Subsequently, we used these frequencies to estiniate genotype frequencies in F1 hybrids, backcrosses to American eel (bAR) and bA R x AA hybrids and fm.úly the individual probabilities (see Supplementarv Notes S1 and S2). Second, the positions o f alí SNPs were matched to the predicted complementary ÐNA annotation lile o f the European eel draft genome (Henkel ct. aL, 2012) (http:// www.zfgenomics.com/sub/eel). This allowed us to investigate: (I) whether SNPs were located within genes (introns+exons) or in noncoding regions; and (2) the possible íunction o f the gcncs in which those SNPs wcre locatcd. We were particularly interested in testing whether these genes matched the Gene Ontology (GO) terms ‘development’ and ‘phosphorylation’ as the recent study o í Jacobsen et a l (2014a) showed thcse two GO term groups to be overrepresented in F$-[■ outlier SNPs between European and American eel. Cytonuclear incompatibility in hybrids A total o f 19 hybrid individuals were analyzed for the mitochondrial ATP6 and interacting nucicar ATPScI genes (Table 2). These individuals corresponded to all previously analyzed hybrid individuals from which DNA or tissue was still available. The individuals belonged to samples genotyped based on either the Fluidigm 96.96 Dynamíc Arrays ( N - 12) (Pujolar et al., 2014a; this study) or RAD sequencing (N = 7) (Pujolar et al., 20i4b). The seven RAD sequenced individuals from Pujolar eí al. (2014b) were previously analyzed using STRUCTURE and the ‘gensback’ (G) option. This option aliows testing whether an individual ha.s an immigrant ancestor in the last G generations (Pritchard et a l , 2000; Falush et a l , 2003, 2007). However, the study by Pujolar et al. (2014b) only used a G o f five (corresponding to the fourth-generation backcross category), and thus some individuais potentially having an older immigrant ancestor may have been wrongly assigned. As erroneous hybrid assignment may bias the assessment o f possible cytonuclear selection, we reanalyzed the data using a G option o f 9 (corresponding to the eight- generatíon backcross category) and furtherm ore evaluated assignnient power in STRUCTURE, This is described in detail in Supplementary Note S3. Both the mitochondrial ATP6 gene that contains five species-diagnostic nonsynonymous changes and the pait o f the nuclear interactor ATPScl that Heredity http://www.zfgenomics.com/sub/eel Reproductive isolating barriers in North Atiantic eels MW Jacobsen et al USA TRANSECTS: T1 T2 T3 T4 T5 T6 T7 4- i CUBA 0 H aiti DO M . R£P. t# J J ( 7 4 ) -68.5 4 (1) J 2 < 2 5 ) -65.5 4- J 3 (1 9 8 ) -62.7 4 (5 /ÍHYÍC) J 4 ( 8 0 ) -59.5 4 T5(47) -57.0 4 T6(47) -53.5 4 T7(5) -50.0 Longitudes 4 Lattitude 430.0 •k 1211 w (31) (6) 4 (16) ^ ( 12) (5) ' : . (I) ■ %(6) 9 ^ . ''ii;: (3) ^(9) k 1125 1(2X3) (2X11) 1(6) SYM BOL SPECIES % Angnilla rostrata c % A nguilla anguilla •k Hybrid caught in 2007 O H ybrid caught in 2014 I 428.9 427.9 ( 1 ) <3> 426.8 ( 1 ) 425.8 424.7 Figure 2 Maps showing (a) sampling localities of the leptocephali larvae caught during the 2 0 1 4 expedition and genotyped in th is study, and (b) the frequencies of the two species at each of the localities sampled during the 20 1 4 expedition. The two red circles denote the localities from which hybrids (bARxAA) were detected in 2 0 1 4 and red asterisks show the positions of two hybrids found among larvae sampled in 2007 . The numbers in brackets denote sample sizes of analyzed larvae for each locality. covers two quasi-diagnostic nonsynonymous SNPs positioned in the seventh exon were sequenced. Primers developed by Gagnaire et al. (2012) were used (Supplementary Table Sl). PCR was perform ed in 20 pl reactions containing 10 pl RedTaq mix (SIGMA-ALDRICH, Brondby, Denmark), 0.25 mw o f each prim er and 50-100 ng o f DNA. The amplification parameters were: 94 °C for 5 m in, followed by 38 cycles (94 °C for 30 s, 60 °C o r 30 s, 72 °C for 45 s) and finally 5 m in at 72 °C. Sequencing was conducted using the commercial service provided by Macrogen (Amsterdam, Holland). The forward primers Ang- ATP6-L and ATP-ATP5cl-6L were used íor sequencing. Sequence identity was assessed using BLAST (AlLschul et a l, 1997) (http://blast.ncbi.nlm.nih.gov) for the ATP6 gene and by evaluating the genotypes at the two quasi-diagnostic SNPs for ATP5cl gene. For all analyzed hybrids, the probability o f obtaining the observed ATP5cl genotypes was calculated based on the assigned hvbrid classes, and the observed species-specific allele frequencies o f ATP5cl from Gagnaire et al. (2012) (American = 1/120 and European eel = 76/0 (the numbers correspond to the frequency ofE uropean and American alleles observed in each species)). H ardy- Weinberg proportions were assumed. The subsequent P-vitlues were used to infer deviations from neutral expectations and in combination with the mitogenome data used to assess possible cytonuclear incompatibility. RESULTS Species distribution in the Sargasso Sea and identification of hybrids Species id en tifica tio n o f th e eel larvae co llected in 2014, b a sed o n th e m ito c h o n d ria l cytochrome b gene, revealed a h ig h e r p ro p o r tio n o f A m erican th a n E u ro p ean eel in th e tw o w e s te rn m o s t tran sec ts (F igures 2a a n d b ). T h e freq u en cy o f E u ro p ean eel in c rea sed in the eastw ard d irc c tio n a n d re ach ed 100% fo r th e fo u r e a s te m m o s t tran sec ts (F igu re 2b). A t tran sec ts 1 -4 , larvae fro m b o th species w ere fo u n d , in d ica tin g so m e spatia l ov e rlap o f sp aw n in g g ro u n d s . A m o n g 460 larvae, 358 sh o w ed the E u ro p ean eel CYTB gene, w hereas 102 sh o w ed th e A m e rican eel CYTB gene. T h e d ifference in th e n u m b e r o f E u ro p ean a n d A m erican eel c au g h t is to so m e ex te n t re la ted to sam pling , as th e e a s te rn m o s t localities sam p led are expec ted to be d o m in a te d b y E u ro p e a n eel. A qualita tive ly s im ila r d is tr ib u tio n o f species in th e Sargasso Sea w as observed in 2007 (M u n k et a l, 2010), a lth o u g h th e h y b rid la rvae w ere cau g th slightly m o re w estw ards in 2007 (F igure 2b). Heredity http://blast.ncbi.nlm.nih.gov Reproductíve isolating barríers in North Atlantic eels MW Jacobsen et ai 5 Table 1 Overvtew over samplirtg localities, sample sizes and sequencing approaches of new and reanalyzed data Locaiity Country Codes Year Sample sizes New data Published data Life stage Sequencing approach Oved Sebou Morocco MA 2011 21 — G SNP genotyping Faroe Isiands Faroe islands Fi 2011 30 29 Y SNP genotyping Sargasso Sea — SA 2014/2007 460a 92 L SNP genotyping iceland Iceland IL 2000-2003 _ 96/63 G/Y SNP genotyping Lough Erneb Northern Ireiand LE 2008 — 7 G RAD sequencing Canetb France CA 2008 _ 2 G RAD sequencing Valenciab Spam VA 2008 _ 7 G RAD sequencing Rlnghals!> Sweden RH 2008 _ 8 G RAD sequencing Girondeb France GG 2008 _ 1 G RAD sequencing St. John riverb USA STJ 1999 — 2 Y RAD sequencing Mira Riverb Canada Ml 2007 _ 8 G RAD sequencing Ríviere B!ancheb Canada R8 2007 5/7 G/Y RAD sequencing Abbreviations: G, gíass eei; Y, yeiiow eei; L, iarvae (leptocephaius); SNP genotyping, Fluidigm singie-nucieotide poiymorphism genotyping; RAD, restriction site associated DNA. dlnitia!iy, 472 anaiyzed individuais but somewhere discarded because of data quaiity (see results). bRAD sequenced mdividuals used for hybrid assessment and power anaiysis m STRUCTURE (Suppiementary Note S3). Table 2 Results of ATP6 and ATP5cl sequencing from the 19 hybrid samples Individua! Information on individuals Country Information on estimated hybrid classes Sequencing resuits Location Life stage Year Hybrid cias^ Vaiidation method ATP6 ATP5c1 Steíni Steinsmyrarfljot Y 2000 lceland F1 SNP genotyping AA Heterozygote Vogsi9 Vogslaekur G 2001 iceíand F1 SNP genotyping AA Heterozygote Vogsíii Vogslaekur G 2001 iceland F1 SNP genotyping AA Heterozygote Vifi!2 Vifilsstadvatn G 2002 lceland F1 SNP genotyping AR Heterozygote STG3 Stokkseyri G 2001 lceland F1 SNP genotyping AA Heterozygote SSG7 Seijar G 2001 iceíand F1 SNP genotyping AA Heterozygote SSG10 Seijar G 2001 iceland F1 SNP genotyping AA Heterozygote Vogsl5 Vogsiaekur G 2001 Iceiand bARxAA SNP genotypíng AA Homozygote AA VífiiS Vifiisstadvatn Y 2002 lceland bARxAA SNP genotyping AA Heterozygote STG2 Stokkseyri G 2001 lceland bARxAA SNP genotyping AA Heterozygote L211 Sargasso Sea L 2007 — bARxAA SNP genotyping AA Homozygote AA 40-450-L2 Sargasso Sea L 2014 — bAR x AA SNP genotyping AA Homozygote AA NEG3 Mira River G 2007 Canada Third-generation backcross AR RAD sequencing AR Homozygote AR GG14 Gironde G 2008 France Fourth-generation backcross AA RAD sequencing AA Homozygote AA RH24 Ringhals G 2008 Sweden Fourth-generation backcross AA RAD sequencing AA Homozygote AA Cag25 Canet G 2008 France Fifth-generation backcross AA RAD sequencing AA Homozygote AA C ag l17 Canet G 2008 France Fifth-generation backcross AA RAD sequencing AA Homozygote AA RBG10 Riviere Blanche G 2007 Canada Later or equal to síxth-generation backcross AR RAD sequencing AA Heterozygote LEG29 Lough Erne G 2008 North Ireland Later or equal to sixth-generation backcross AA RAD sequencing AR Homozygote AA Abbreviations; AA, European eel í'A ngu ilia angu illah AR, American ee! ÍAnguilia rostrata); ATP6, m ito c h o n d r ia fA T P S c l, nuciear: G, glass eei; Y, yeiiow eei; L, iarvae (leptocephaius); SNP genctyping, Fiuidigm smgle-nucleotide poiymorphism genotyping; RAD, restriction site associated DNA. Tlie presented hybrid ciasses are the ones estimated in this study (see Materíals and methods and Supplementary Notes S3 and S4). ,:The 'bAR x AA' category denotes a second-generatíon backcross; the resuit of a mating beíween a backcrossed male American individua! (F1 xAR) and a female European eel (AA). O f th e 96 S N Ps g en o ty p ed o n tlie F lu id ig m array , 11 sh o w ed e ith e r n o v a ria tio n o r h ad h igh levels o f m issin g d a ta across ind iv id u a ls and w ere o m itte d fro m s u b se q u e n t analyses. T h e final SN P d a ta set en co m p assed 85 spec ies-d iag n o stic SN Ps. A to ta l o f 12 larvae sh o w ed a h igh p ro p o r tio n o f m iss in g d a ta a n d w ere o m itle d fro m all fu r th e r analyses. Five o f th ese re p re sen ted larvae o f o th e r d eep sea (n o n - Anguilla) eel species sp aw n in g in th e Sargasso Sea, as fu r th e r va lidated by seq u en c in g th e m ito c h o n d ria l 16S rR N A gene u s in g th e L1854 an d H 3059 p rim ers (A oyam a et al., 2000) S u p p iem en ta ry T ab le S2). A to ta i o f 460 eel la rvae fro m 2014 w ere analyzed. A m o n g th e 460 larvae sam p led in 2014, a to ta l o f 2 ind iv íd u a ls w ere id e n tified as hyb rid s . B o th sh o w e d th e E u ro p ea n eel m ito c h o n d ria l g eno type (F igu re 2 b ). U sin g N E W H Y B R ID S , th e tw o h y b rid s w ere classified as sec o n d -g e n e ra tio n backcrosscs (bA R x AA) be tw een a firs t-g en e ra tio n back cro ss (A m erican e e lx F1 h y b rid ) m a le a n d a p u re E u ro p ean eel fem ale. T h is h y b rid class was th e sam e, as fo r th e tw o Heredity Reproductive isolating barriers in North Atlantic eels MW Jacobsen et al L ater o r cqual to 6lh generation b ackcrosses A R L ater o r equal to 6lh generation b ackcrosses AA | Homozygotes, AR gcnotype □ Hctcrozygotcs □ Homozygotcs, AA genotypc * Cytonuclear mismatch P < 0.032 5 generation backcrosses AA 4 “ gencration backcrosses AA 3"1 generatíon b ackcrosses AR bA R x A A F i hybrids 0.0 0.2 0.4 0.6 0.8 Expected genotype frequencies — I ■ ■ ■ ■ ■ -V / ■ ..............i ■ ■ >0.995 0.940 0.880 0.860 0.093 0.943 1.0 0.0 0.2 0.4 0.6 0.8 Observed genotype frequencies 1.0 Figure 3 Expected and observed genotype frequencies at A TP 5c l of the examined hybrids, given the estimated hybrid classes. The estimated expected frequencies are based on assumed Hardy-Weinberg proportions and previously reported allele frequencies of the A TP 5c l gene in American eel (Gagnaire e t a l„ 2012). The probabilitíes of the observed genotype combinations are shown to the right and the individual showing ATP6~ATP5cl mismatch is denoted by an asterisk. Sample sizes (/V) are shown in íhe respective histograms. AA, European eel (A. Anguilla ); AR, American eel (A. rostrata). Table 3 Allele frequencies of the seven candidate locí for selection and estimated genotype frequencies in bARxAA hybrids Locus name Allele frequencies AA Allele frequencies AR Expected genotype frequencies in bARxAA hybrids Estirnated probability for 7 índividuals being AA AR allele AA allele AR allele AA allele AA homozygotes Heterozygotes AR homozygotes AD272530 0 1 0.995 0.005 0.2538 0.7463 0 [0 .2 5 3 8 ]% 6 .7 7 x 10 AD50216 0 1 0.995 0.005 0.2538 0.7463 0 [0,2538J7 = 6 .7 7 x 1 0 6 AC195199 0.028 0.972 1 0 0.2366 0.7438 0.0212 (0.2366]7 = 4 . 1 5 x l0 - 5 AA69202 0 1 1 0 0.2500 0.7500 0 Í0 .2500í7 = 6 .1 0 x l0 - '5 AA99082 0 1 0.971 0.029 0.2718 0.7283 0 !9.2718]7= 1.09 x 10 " 4 AD148173 0.078 0.922 0.962 0.038 0.2403 0.7044 0.0556 i;0.2403]7 = 4 ,ó 3 x l0 '- 5 AC82954 0.009 0.991 0.986 0.014 0.2559 0.7372 0.0066 [Q.2559]7 = 7 .1 9 x 1 0 5 Abbreviations: AA, European eei (Anguilía a ngu illak AR, American eei (Anguiila rostrata). Caiculations of the probabiiities for ali seven individuais being homozygotes for the European aiieie (AA homozygotes) are shown in the rightmost coiumn. For aii Notes S1 and S2. ;alcu!ations see Supplementary h y b rid larvae sam p led in 2007 (sam p le L125 and L211, F igu re 2b) (P u jo la r et a l, 2014a), th a t w ere also reanalyzed in th is s tudy . N o hyb rid s w ere fo u n d a m o n g th e n ew sam p les analyzed from M o ro cco o r th e Faroe Islands. T h e p e rcen tag e o f b A R x A A h y b rid s in th e Sargasso Sea w as lo w er in th e 2014 sam p le c o m p a re d vvith 2007: 0 .43% (2 /460 ) vs 2 .17% (2 /92 ). T h is w as also th e case w h en o n ly u sing th e m o re a b u n d a n t E u ro p ean eel sam ples: 0 .56% (2 /358 ) vs 4 .08% (2 /49 ). H ow ever, ín b o th cases th e d ifference w as n o t sign ifican t (F ish e r’s exact test; P = 0.077 a n d P = 0 .136). A m o n g th e reanalyzed lc e lan d ic h y b rid s , 13 w ere classified as F1 hybrids, 1 as bA A a n d 3 as bA R x AA, as p rev io u s ly fo u n d by P u jo lar et al. (2014a) analyzing th e sam e ind iv idua ls . F u r th e r analyses o f th e 7 bA R x AA h y b rid s (3 fro m Ice land a n d 4 fro m th e Sargasso Sea) sh o w ed th a t a t 7 o f th e analvzed 85 loci, all ind iv iduals w ere h o m o zy g o u s fo r th e E u ro p ea n eel-specific allele (see S u p p lem en ta ry T ab le S5). T h e p ro b a b ility th a t all 7 ind iv id u a ls a re h o m o zy g o a s a t th c sam e locus is b e tw een 1.09 x 1 0 “ 4 a n d 4.15 x 1 0 ~ 5 d e p e n d in g o n th e locus (T able 3, see S u p p le m e n ta ry N o tes S1 an d S2 fo r specific details a b o u t th e calcu la tions) a n d th e re fo re h igh ly un like ly to o c cu r by chance . Six o u t o f seven o f these SN Ps w e re lo c a ted inside an n o ta ted genes. A m o n g these genes, fo u r in c lu d e d G O te rm s re la ted to dev e lo p m en t, a n d o n e g ene re la ted to p h o sp h o ry la tio n (S u p p lem en ta ry T ab le S3). T h e freq u en cy assocíated w ith d ifferen t types o f gene categories w as h ig h e r a m o n g th e seven SN Ps b u t d id n o t d iffer s ign ifican tly c o m p a re d w ith th e re s t o f th e analyzed SN Ps (S u p p lem en ta ry T ab le S4). Assessment o f cytonudear selection and incompatibility O u t o f th e 19 hyb rid s analyzed , 7 w ere assigned to th e F1 h y b rid category , 5 to th e sec o n d -g e n e ra tio n b ack cro ss catego ry (b A R x A A ) a n d 7 to th e th ird -g e n e ra tío n backcross c a tego ry o r la te r (T ab le 2). E stim a tio n o f h y b rid classes fo r th e R A D seq u en ced ind iv idua ls is desc ribed in detail in S u p p le m e n ta ry N o te S3. O u t o f all Iiybrids, 3 h ad A m erican a n d 16 h a d E u ro p ea n m ito c h o n d ria l D N A ATP 6 Heredity Reproductive isolating barriers in North Atlantic eels MW Jacobsen er a/ hap lo types. O bserv 'ed geno tvpes a t th e n u c lea r A ’J 'P Scl g ene overail fo ilow ed n e u tra l exp ec ta tio n s given th e e s tim a ted h y b rid classes (F igure 3). H o w ev er, o n e in d iv id u a l in fe rred to be a s ix th g e n era tio n o r la te r A m erican b ack cro ss (in th e fo llow ing d e n o te d > 6 th ) (RBGIO T ab le 2 a n d F igu re 3) sh o w ed a n in tro g re ssed E u ro p ean m ito g en o m e a n d w as he te rozygo te a t A T P S c l (see S u p p le m e n ta ry N o te S4 an d S u p p lem en ta ry T ab les STl a n d S12 fo r th e calcu la tions o f th e p ro b ab ilities). C alcu la tio n o f th e p ro b ab ility fo r o n e in d iv id u a l o f b e in g a n A T P S c l h e te ro zy g o te in th e s ix th o r ia te r gen era tio n A m e ric an b ackcross levei is !ow , w ith a n e stim ated p ro b a b iiity o f ^ 0 .0 3 2 (F igu re 3). O verall, all in d ir id u aJs sh o w ed a m a tch be tw een m ito c h o n d ria l a n d n u c lea r gen o ty p e w ith o n e excep tion : o n e indiv i- dual sam p led in E u ro p e (LEG29; T ab le 2) sh o w ed a co m p le te m ism a tch be tw een th e A T P 6 a n d A T P 5 c l geno types. T h is ind iv idua l w as in fe rred to b e a ^ 6 th -g e n e ra tio n E u ro p ea n b ackcross a n d was h o m o zy g o u s fo r th e E u ro p ea n A T P 5 c l gen o ty p e b u t sh o w ed an A m erican A T P 6 h a p lo ty p e (F igu re 3). DISCUSSION Temporally varying hybridization in North Atlantic eels O n e in te re s tin g fin d in g in o u r s tu d y is th e lack o f f ir s t-g en e ra tio n (F l) hyb rid s fo u n d in the Sargasso Sea in 2014 d esp ite th e large n u m b e r o f eel larvae analyzed ( N = 4 6 0 ) . T h is is in a c co rd an ce w ith th e s tu d y o f P u jo la r c t al. (2014a) a n d Als c t al. (2 0 1 1), w h o also re p o rte d n o F1 h y b rid s in tiie Sargasso Sea in 2007, a lth o u g h re ly ing o n sm aller sam p le sizes ( N — 9 2 a n d 388). Su rp ris ing ly , o n ly b A R x A A hybrid s w ere ob serv ed in th e Sargasso Sea in b o th 2007 a n d 2014. A ithough the freq u en cy o f th ese h v b rid s dccreased fro m 2007 to 2014, the d ifferences w ere n o t sign ifican t a n d th e re su lt d o es n o t in itse lf favo r te m p o ra lly vary ing h y b rid iza tio n . N o n e th e less, a lth o u g h F1 h y b rid s o f A tlan tic eel m a y sh o w a n inc rease in fitness, th e so -called h y b rid v igor (see, lo r ex am ple, T e m p le to n , 1986; J o h n so n e t a l , 2 010), p o s t-F l h y b rid s a re likely to be selected against because o f ex trin sic selection , o r in trin sic se lec tion b ecau se of, fo r ex am ple, genetic incom patib ilities . In d eed , th e p resence o f s tro n g postzygo tic b a rrie rs seem s s u p p o rte d in A tlan tic eels th a t, d esp ite low average genetic d iffe ren tia tio n , sh o w m a n v d iag n o stic a n d n e a r-d iag n o stic SN Ps d is tr ib u te d across th e g e n o m e (Jacobsen e t a l , 2014a). T h e rcsu lts in th is s tu d y also su p p o r t a postzygo tic c o m p o n e n t o f se lec tion in h y b rid s , as 7 o f th e analyzed 85 loci show ed s tro n g ev idence fo r se lec tion fo r th e E u ro p ean eel- specific allele. M o re d ire c t s u p p o r t fo r postzygo tic selection can be fo u n d in Iceland . H e re b o th am p lifie d frag m en t length p o ly m o rp h - ism - a n d S N P -based s tu d ies o f glass a n d yellow eels re p o r t m o re th an tw o fo ld h ig h e r ffequencies o f F1 hyb rid s c o m p a re d w ith co m b in e d first an d seco n d b ackcrosses (A lbert e t a l , 2006; P u jo lar e t a l , 2014a). Besides b e in g th e on ly p iace w h e re F1 h y b rid s h ave b een fo u n d , Ice iand is a lso th e o n ly loca lity w h e re firs t- (bA A ) a n d second- g c n era tio n b ackcrosses (b A R x A A ) h ave b e en d c te c ted o u ts id e th c Sargasso Sea. A lth o u g h th is m a y b e because o f d ifferences in h y b rid ffeq u en c ies b e tw een Ic e lan d an d C o n tin e n ta l E u ro p e a n d N o r th A m erica , th e re is c u rre n tly n o ev idence fo r th is . in fact, o u t o f several s tud ies investigating h y b rid iza tio n in A tlan tic eels fro m the m a in la n d (excl. Ice land ) u s in g m ic ro sa te llite (Als e t a l , 2011: N = 1 0 1 0 ) , am p lified ffag m en t len g th p o ly m o rp h ism (A lbert e t a i , 2006: iV = 379) o r SN P m a rk e rs (P u io la r e t al„ 2014a, b: N = 3 1 0 ) , n o n e have o b serv ed a n y su ch ind iv idua ls . G iven th ese o b servations, w e fin d it likely th a t F1 h y b rid s s h o u ld exist in h ig h e r freq u en cy c o m p a re d w ith la te r-g en e ra tio n b ackcrosses if h y b rid iza tio n is c o n tin u o u s over tim e . As su ch , w e fin d th a t th e a p p a re n t la ck o f F1 h y b rid s in th e Sargasso Sea in 2007 a n d 2014 is su rp ris in g an d b e st exp la in ed by tem p o ra lly vaiyáng h y b rid iza tio n . T em p o ra lly vary ing h y b rid iza tio n m ay be m e d ia ted by d ifferences in te m p o ra l o r spatia l overlap o f sp aw n in g b e tw een th e species o v e r tim e. T h is c o u ld be a re su lt o f a n n u a l v a ria tio n in th e lo ca tio n o f the th e rm a l fro n ts (P u jo la r c t al„ 2 0 l4 a ) th a t sh o w c o n sid e rab le d ifter- ences in in ten sity a n d geog raph ical p o s itio n across years (T esch , 2003; U llm an e t a l., 2007; M u n k e t al„ 2010). In d eed , te m p e ra tu re has inc reased stead ily o v e r th e p a s t d ecad es in th e Sargasso Sea (B o n h o m m e a u e t al„ 2008; H u ffa rd e t al„ 2014), w here th e 22.5 °C iso th e rm m o re o v e r h as m o v e d n o r th w a rd s since ~ 1970 (F ried lan d et al„ 2007), As th e 22 .5 °C iso th e rm is generally c o n sid e red to b e n e a r th e n o r th e m iim it o f sp aw n in g o f A tlan tic eels (K leckner and M cC leave 1988; T e sch a n d W eg n er, 1990), th ese changes a re likely to b e associated w ith a m o re n o r th e rn d isp lacem e n t o f th e shared sp aw n in g g ro u n d s . As sucli, the d is tan ces th a t A m erican a n d E u ro p ean eel n eed to cover to reach th e Sargasso Sea m a y h ave ch an g e d recently , p o ten tia lly affecting tim e o f a rriva l a n d h y b rid iza tio n , re su ltin g in few er hy b rid s b e in g p ro d u c e d . T e m p o ra lly vary ing h y b rid iza tio n has also been suggested by A lbert e t al. (2006) to exp ia in the decrease in p ro p o r tio n o f h y b rid s o b serv ed in Ice land fro m 2000 to 2003 w hen c o m p a rin g glass eei sam ples, a p a tte rn th a t w as fu r th e r su p p o rte d w hen c o m p a rin g d iffe ren t c o h o rts c o m p ris in g glass eels a n d yellow eels. Y e ar-to -y ea r v a ria tio n in p o p u la tio n d en sity co u ld a lso explain th e lack o f F1 h y b rid s in o u r s tudy . In th is sense, b o th E u ro p ean an d A m erican eel have experien ced d ras tic declines in th e p a st ca. 30 years (Á s trö m a n d D ekker, 2007), possib ly lin k e d to ín la n d p o ilu tio n , d am s an d fisheries (B usch a n d B rau n , 2014; L ap o rte e t a l , 2016). T h is decline suggests possib le red u c ed densities o f sp aw n in g eels th a t cou ld lead to a red u c ed spatia l overlap a n d h y b rid iza tio n (A lbe rt e t al„ 2006; Jacobsen e t al„ 2014 b ). As e n v iro n m e n ta l ch an g e w ith in the Sargasso Sea itse lf m a y affect eel p o p u la tio n sizes (F ried lan d e t al„ 2007; B o n h o m m e au e t al„ 2008), th ese tw o scen ario s m ay n o t be m u tu a lly exclusive a n d th e lack o f hy b rid s c o u ld be a co n seq u en ce o f d ifferen t en v iro n m e n ta l effects. S am pling b ias in e ith e r space o r tim e m a y also exp la in th e lack o f F1 h y b rid s in o u r s tudy . H o w ev er, a lth o u g h a d is tin c t h y b rid z o n e in th eo ry c o u ld go u n n o tic e d , th e re is little ev idence fo r th is . I f it d id in d e e d cxist, it w o u ld be expec ted to b e p re sen t in th e co re a rea o f th e tw o o v e rla p p in g sp aw n in g areas th a t h is to rica ily h as b een ran g in g fro m 70 to 58°W (M ille r et al„ 2015), an d th a t w as extensively sam p led d u r in g ex p ed itio n s in b o th 2007 a n d 2014 (Als e t al„ 2011; P u jo iar c t al„ 2014a; th is s tudy: F igure 2). A n o th e r p ossib ility is th a t h y b rid iza tio n o ccu rs as a last o p tio n , w h en in d iv idua ls a re u n a b le to loca te conspecifics. I f so, F1 h y b rid s s h o u ld b e th e p to d u c t o f e ith e r E u ro p ean eels a rriv in g to o early o r A m erican eel a rriv in g to o la te a t th e sp aw n in g area , o r w h e n b o th species a rrive o u ts id e th e p rim a ry sp aw n in g season . A re c cn t analysis o f all p u b lish ed rcco rd s o f larvae ( c l O m m ) co llected in th e Sargasso Sea suggests th a t th e sp aw n in g season ex tends fro m 13 F e b ru a ry to 27 A pril in A m erican eel a n d 27 F eb ru a ry to 21 Ju ly in E u ro p ea n eel, w ith ra re sp aw n in g even ts possib ly o c cu rr in g o u ts id e these p e rio d s (M ille r e t a l , 2015). T hus, given th a t s am p lin g to o k p lace fro m M arch to A pril d u r in g the 2007 an d 2014 exp ed itio n s to th e Sargasso Sea, a te m p o ra l sam p lin g bias c a n n o t be ru le d o u t. A w ay o f investigating th is p ossib ility w o u ld be to analyze n io re sam ples fro m Ice land th a t so fa r is th e o n ly place w here F1 h y b rid s h ave b e e n o b serv ed (A vise e t al„ 1990; A lb e rt e t al„ 2006; G agnaire ct al„ 2009; P u jo la r e t al„ 2014a). I f th e a p p a re n t lack o f F1 h y b rid s in 2007 a n d 2014 is tru e , th e n th is p a tte rn sh o u ld also be re flec ted fo r th e sam e c o h o rts in lce lan d . Heredity Reproductive isolating barriers in North fltlantic eels MW Jacobsen et al S e le c tio n a t lo c i in n a tu r a l h y b r id s Id en lif ica tio n o f h y b rid s w as b ased o n a set o f SN Ps th a t sh o w ed a lm o s t fixed d ifferences b e tw een th e fw o species a n d a re likely to m a rk c h ro m o so m a l reg ions u n d e r d ív e rg en t se lec tion in A tlan tic eels (Jacobsen e t a l , 2014a; P u jo la r e t a l., 2014a). T h e use o f genetic m a rk e rs u n d e r se lecd o n e n h an c e th e ab ility to d e te rm in e th e p o p u la - tio n o f o rig in o f in d iv id u a ls w ith in specics (N ie lscn e t a l., 2012) a n d d e tec t p o s t-F l h y b rid s (P u jo la r e t al„ 2014a). H ow ever, it m ay also invoive p o tc n tia l p ro b le m s w h e n u sed fo r h y b rid a ss ig n m en t by affecting th e g eno typ ic p ro p o r tio n s th a t h y b rid id en tifica tio n is based on . Even if n e a r fixa tion o f d iffe ren t alleles in th e tw o species reflects se lection , i t does n o t in fe r w h e th e r se lec tion is w eak o r s trong . In fact, even w eak d irec tio n a l se lec tion m a y lead to fixation given suffic ient tim e a n d low genetic d r if t a n d gene flow . Specificaliv in ou.r s tudy , all p u ta tiv e sec o n d -g e n e ra tio n bA R x A A b ackcrosses w ere h o m o zy g o u s fo r th e E u ro p ea n eel allele a t th e sam e 7 S N Ps (o u t o f 85 SN P loci). T h is o b se rv a tio n is h igh ly u n lik e ly to h a p p e n by ch an ce (T ab le 3) a n d s tro n g ly suggests a ro le o f se lection . W e find th e m o s t p a rs im o n io u s ex p lan atio n to be th a t the seven SN Ps a re linked , o r p a rt of, lo fu n c tio n a l alleles th a t a re c o d o m in a n t a n d sub jec t to s tro n g selection be tw een the species. T h is co u ld re su lt in ail geno types be ing h o m o zy g o u s, w hereas a t th e sam e tim e th e geno types a t o th e r loci a re m o re in acco rd an ce w ith n e u tra l ex p ec ta tio n s , given th e specific crosses u n d erly in g th e h y b rid s . H ow ever, a lth o u g h th is m a y explain th e specific geno tvpes a t th ese loci, o m iss io n o f th e loci w o u ld n o t cause th e h y b rid s to b e assigned to a less co m p le x h y b rid class th a n b A R x A A , su ch as, fo r exam ple, f irs t-g en e ra tio n AA backcross (F1 x AA). N o n e th e less, it d e m o n s tra te s th e p o ten tia l p itfalls w h e n using su ch m a rk e rs in h y b r id a ssessm en t a n d suggests an in c reasin g b ias w h en a tte m p tin g to id en tify h y b rid s several g en era tio n s b ack in tim e. F u r th e r inv estig a tio n o f th e g en o m ic p o s itio n s o f th e 7 SN Ps su p p o rts th a t se lec tion is p lay ing a ro le as (1) 6 o u t o f th e 7 S N Ps w ere lo ca ted in genes (as o p p o se d to b e in g ra n d o m ly lo ca ted in n o n c o d in g reg ions) a n d (2) 4 genes m a tc h e d G O te rm s re la ted to d e v e lo p m en t a n d o n e gene m a tc h e d G O te rm s re la ted to p h o sp h o ry la tio n /e n e rg y p ro d u c tio n . T h is is in c o n c o rd a n c e w ith th e re c en t s tu d y o f Jacobsen e t al. (2 0 14a) investigating s p e r ia t io n in N o rth A tlan tic eels, in w h ich th o se tw o G O te rm catego ries w ere o v errep re sen te d a m o n g genes associated w itli c a n d id a te SN Ps fo r d ifferen tia l se ie rt io n sh ow ing FSt = 1 w h en c o m p a rin g E u ro p ea n a n d A m erican eel sam ples. C y to n u c le a r in c o m p a tib il i ty ' in N o r th A tla n tic eels T h e cy to n u c lea r in c o m p a tib ility h ypo tlie s is s tates th a t th e re n eed s to be a m a tc h be tw een c o a d a p te d in te ra c tin g n u c le a r a n d m ito c h o n d ria l genes th a t m ig h t o th e rw ise lead to p ro te in m a lfu n c tio n a n d conse- q u e n tly re d u c ed fitness (B lier e t al„ 2001). R esults from o u r s tu d y are overall in acco rd an ce w ith th is hy 'pothesis as h y b rid ind iv id u a ls generally sh o w ed a m a tc h b e tw ee n th e p u ta tiv e iy co ad ap ted species- specific n u c lea r a n d m ito c h o n d ria l alleles. H ow ever, in m o s t cases th e observed A T P 5 c l geno types, fo u n d w ith in each h y b rid category , fo llow ed n e u tra l ex p ec ta tio n s a n d d o th u s n e ith e r su p p o r t n o r co n tra d ic t th e cy to n u c lea r h ypo thesis. In te resting ly , how ever, on e A m erica n glass eel b ack cro ss (R BG 10; T ab le 2 an d F igure 3) sam p led in R iviere B lanche w as h e te ro zy g o u s fo r th e n u c lea r A T P 5 c l gene, b u t sh o w ed an in tro g re ssed E u ro p e a n m ito c h o n d ria l D N A A T P 6 gene. C o n sid e rin g th a t th is in d iv id u a l w as e s tim a ted to b e lo n g to a > 6 th - g e n era tio n backcross, th e p ro b ab ility o f b e in g h e te rozygous a t A T P 5 c l is lo w ( P ^ 0.032, F igure 3). T h is p o in ts to w a rd selec tion fo r a m a tch be tw een c o rre sp o n d in g A T P 6 h a p lo typ es a n d A T P S c l allcles a n d th u s su p p o rts the h y p o th e sis o f cy to n u c lea r incom patib ility '. O n th e o th e r h a n d , o n e glass eel co llected in Ire lan d a n d iden tified as a > 6 th -g e n e ra tio n E u ro p ea n back cro ss (LEG 29; T ab le 2 an d F igure 3) rep re sen ted a c o m p le te m ism a tch , as it sh o w e d the A m erican m ito c h o n d ria l h ap lo ty p e b u t w as h o m o zy g o u s fo r the E u ro p ean n u c le a r allele. T h is d e m o n s tra te s th a t th e co m b in a tio n o f an A m erican A T P 6 h ap lo ty p e a n d tw o E u ro p ean A T P S c l alleles is n o t im m ed ia te ly le thal, a n d th is is in o p p o s itio n to th e exp ec ta tio n s o f cy to n u c lea r inco m p a tib ility . T h is can p o ten tia lly b e exp la ined if in co m p a tib ility is in co m p le te . In su ch a case, ind iv id u a ls sh ow ing m ism a tch cou ld be viable , a lth o u g h fitness is red u ced . N one theless, w ith o n ly o n e in d iv id u a l in c lear favo r a n d o n ly o n e th a t co n trad ic ts the expec ted p a tte rn o f m ito n u c le a r in co m p a tib ility , th is possib ility c a n n o t be verified a n d th e hy p o th esis o f c y to n u c lea r in co m p a tib ility c a n n o t be fully accep ted o r re jec ted b a sed o n th e resu its in th is s tudy. N onetheless, th e fin d in g o f an A T P 6 - A T P 5 c l m ism a tch is su rp ris - ing, as th e fin d in g o f s ign ifican t in te rspecies n o n sy n o n y m o u s d iffer- e n tia tio n in genes invo lved in th e A T P syn thase co m p le x (G agnaire e t a l , 2012), in c o m b in a tio n w ith s tu d ies sh o w in g s tro n g ev idence fo r positive selec tion w ith in A T P 6 (Jacobsen c t a l , 2014b, 2015), is d ifficu lt to exp la in w ith o u t cyTonuciear in co m p a tib ility . H ow ever, th re e ex p lan a tio n s m a y a c c o u n t fo r th e fin d in g o f a co m p le te A T P 6 - A T P 5 cl m ism a tch even in case o f c o m p le te cy to n u c lea r in c o m p a t- ibility: (1) c y to n u d e a r se lec tion m ig h t first a c t in a ia te r life stage b ey o n d th e glass eel stage, (2) c o m p e n sa to ry in te rac tio n s involving o th e r n u c iea r su b u n its o f th e A TP sy n th ase p ro te in co m p lex m ig h t o c cu r o r (3) u n id irec tio n a l in co m p a tib ility . G iven th e fu n c tio n o f the A T P syn thase co m p lex , A T P 6 - A T P 5 c l m ism a tc h is expec ted to lead to re d u c ed cnergy p ro d u c tio n (Saraste, 1999). H ow ever, i t is possib le th a t c o m p en sa to ry m e c h an ism s exist eariy in life. F o r exam ple, D ro so p h ila m u ta n ts sh o w m etab o lic c o m p e n sa tio n th ro u g h increased glycolytic flux, ke togenesis a n d K rebs’ cycle activ ity d esp ite A T P 6 d y sfunc tion , a lth o u g h severely d e le te r io u s p h en o ty p e s a re a lready ob serv ed after few days a n d m u ta n ts d ie p re m a tu re ly (C e lo tto e t al„ 2011). I f a s im ila r m e c h an ism ac ts in A tlan tic eels, A TP 6-A TP 5cl m ism a tch m ay be ob serv ed in ju v en iie ind iv idua ls , w h ereas selection m ay act against th ís genetic co m b in a tio n la te r in life. C o m p e n sa to ry m ech an ism s m av also exist, in v o lv ing o th e r n u d e a r su b u n its . In a d d itio n to A T P S c l , 13 o th e r n u c lea r genes a re invo lvcd in th e A T P syn thase p ro te in com p lex (B allard an d W h itlo ck , 2004). A lth o u g h tra n sc r ip to m e analysis has sh o w n th a t A T P 5 c l is th e m o s t d iv e rg e n t su b u n it in te rm s o f d iag n o stic n o n sy n o n y m o u s su b s titu tio n s b e tw een E u ro p ea n and A m erican eels, d iag n o stic changes also exist in a t least fo u r o th e r s u b u n its (G agnaire e t al„ 2012). T h u s , A TP syn thase fu n c tio n a n d h en ce postzygo tic se lec tion m a y d e p e n d o n th e gen o ty p es o f these su b u n its in co m b in a tio n w ith A T P S c l. A last possib ility is th a t c y to n u c lea r in co m p a tib ility is u n íd irec tio n a l in A d an tic eels, w ith A T P 6 - A T P 5 c l m ism a tch b e in g fa ta l in A m e ric an eel, b u t n o t in E u ro p ea n eel. T h is c o u ld p o te n tia lly exp la in th e observed asy m m e- Irical p a tte m s o f in tro g re ss io n , f ro m A m erican to E u ro p ea n eel, re p o rte d in so m e s tu d ies (G agnaire et al„ 2009; W ielgoss e t a l , 2014). O n th e o th e r h a n d , if u n id irec tio n a l cy to n u c lea r in co m p a tib iiity o ccu rre d w e w o u ld expect in tro g re ss io n o f th e A m erican m ito g e n o m e in E u ro p ean eel. H ow ever, Iittle e r id e n c e o f th is exists. In fact, the ind iv idual seq u en ced in th is s tu d y (LEG 29) sh o w in g A T P 6 - A T P 5 c l m ism atch is, to o u r know ledge, th e o n iy E u ro p ean ind iv idua l to da te th a t sh o w th e A m erican m ito g e n o m e (see, fo r exam ple, Avise e t a l , 1990; D a e m e n e t al„ 2001; Jacobsen e t al„ 2 0 1 4b) besides F1 hyb rid s fro m Ice land (Avise e t a l , 1990; A lb e rt e t al„ 2006; dfis s tudy). As su ch , w e fin d th e p ossib ility o f u n id irec tio n a l cy to n u c lea r in c o m p a t- ib ility unlikely. Heredity Reprodudive isolating barriers in North Atlantic eeis MW Jacobsen et a/ CÖNCLUSION In co n clu s io n , o u r resu its p ro v id e n ew in sigh ts in to the p re - a n d po st- zygotic b a rr ie rs a cting be tw een th e tw o species o f A tlan tic eels. T he lack o f F! hyb rid s , b u t p resen ce o f a few la te r-g e n e ra tio n h y b rid s in th e Sargasso Sea in b o th 2007 a n d 2014, suggests th a t in te rb reed in g b e tw een th e tw o species is re s tric te d to so m e years, w hereas in o th e r years o n ly b ackcrosses o c cu r th a t a re th e re su lt o f in te rb ree d in g in past g en era tio n s. W e ftn d th e m o s t likely e x p ian a tio n to b e in te ra n n u a i va ria tio n in th e lo ca tio n o f th e th e rm a l fro n ts in w h ich sp aw n in g takes p lace th a t m a y su b seq u en tly lead to inc reased o r decreased overiap o f sp aw n in g tim e of th e tw o species. M o reo v er, o v e rre p re sen ta tio n o f h o m o zy g o tes fo r so m e SN Ps u sed fo r h y b rid assessm en t w as o bserved th a t w e in te rp re t as d iv e rg e n t se iec tion be tw een species b e in g p a rticu la rly s tro n g a t so m e loci. O n o n e side, th is p ro v id es ev idence fo r postzygo tic b a rrie rs , b u t o n th e o th e r s ide com plicates accu ra te id en tifica tio n o f p o s t-F l h y b rid classes. Finally, w e fin d so m e ev idence s u p p o rtin g th e su ggestion o f c y to n u c lea r in c o m p a tib ility invo lv ing th e m ito c h o n d ria l A TP6 g ene a n d th e n u c le a r ATPScl in te ra c to r gene (G agnaire et al> 2012 ), b u t m ism a tch es b e tw een th e tw o are n o t necessarily lethal a n d th e resuJt s h o u ld b e in te rp re te d w ith p recau tio n s u n ti l m o re d a ta a re available. T h e resu lts o b ta in e d in th is s tu d y are n o t o n ly im p o r ta n t fo r u n d e rs ta n d in g sp ec ia tio n in A tlan tic eels, b u t also fo r u n d e rs ta n d in g th e varie ty o f iso la ting b a rr ie rs a c tin g in n a tu re (C oyne a n d O rr , 2004; N osil et a l , 2005) a n d especialiy in th e m arin e e n v iro n m e n t (P ueb ía , 2009). H ere , o rg a n ism s like m a n y fishes an d in v e rteb ra tes sh o w severaí tra its in c o m m o n w ith A tlan tic eels: they a re d ifficu lt to re a r in captiv ity , sh o w la rge p o p u la tio n sizes, have no obv ious geog raph ic b a rr ie rs to gene flow a n d sh o w lo n g larval p hases (P a lu m b i, 1994). All th ese fea tu res p ro m o te lo w genetic drift, efficiency o f even low selec tion a n d in c reasin g possib ilities fo r sp ec ia tio n w ith gene flow (P ah m ib i, 1994; R iginos a n d V ic to r, 2001; Jacobsen et aL> 20L4a). T h u s , b o th th e difficulti.es in s tu d y in g these o rg an ism s a n d th e overall ev o lu tio n a ry fo rces invo lved in th e ir spec ia tion m a y b e q u ite s im ila r to th e s itu a tio n in A tlan tic eels. DATA ARCHIViNG T h e seq u en ce d a ta a re d e p o sited in G e n b a n k accessions n u m b e rs K X 818059-K X 818096. T h e FL U ID ÍG M SN P a n d th e RAD SN P da ta sets a re d ep o sited in D R YAD: D G I:10 .5061 /d ryad .v5m 24 . CONFLICT OF INTEREST T h e a u th o rs d eclare n o con fiic t o f in te res t. ACKNOWLEDGEMENTS W e acknowledge funding from the Carlsberg Foundation (Grant 2012_01_0272), the Danish Centre for M arine Research, the Danish Council for Independcnt Rescarch, Natural Scienccs (Grants 09-072.120 and 1323- 00158A to M M H) and EU Interreg (Öresund-Kattegat-Skagerrak) funds (MARGEN). Wc thank Henrik Sparholt, Peter Rask Moller, jon Svendsen, Magnus Bohr, Daniel )iro Ayala and Cornelia jaspers for assistance with sorting o f samples during an. expedition to the Sargasso Sea in 2014, Annie Brandstrup, Karen-Lise Mensberg, Dorte Meldrup and Dorte Bekkevold for technical assistance and Louis Bematchez for providing samples o f American eels. Finally, we thank three anonymous referees for vaiuable com m ents on the manuscript. AUTHOR CONTRIBUTIONS MWJ, M MH, PM, LS, and JMP conceived and designed the study. LS and MWJ conducted the molecular work. MW E LS, M MH, SRS and jM P conducted the statistical analyses. MWj wrote the manuscript with contributions from MMEI, LS, SRS, JMP, PM, BJ and EM. A ibert V. Jónsson B, Bernatchez L (2 0 06 ). Naturai hybrids in A tlan tic eels (Anguilla anguiila , Arostrata): evidence for successful reproduction and fluc tua ting abundance in space and tim e. M ol Ecoi 15: 1 9 0 3 -1 9 1 6 . Als TD, Hansen MM, Maes GE, Castonguay M, Rieman 1, Aarestrup K et al. (2011 ). All roads iead to home: panmixia of European eeí in the Sargasso Sea. M oi Ecoi 20: 1333-134-6 . Altschul SF, Madden TL, Schaffer AA, Zhang Z. M ille r W. Lipman DJ (1 9 97 ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucieic Acids Res 25: 3 3 8 9 -3 4 0 2 . Anderson EC, Thompson EA (2002 ). A model-based method fo r identify ing species hybrids using m uítilocus genetic data. Genetics 160: 1 2 1 7 -1 2 2 9 . Aoyama J (2009 ). Life history and evolution o f m igration in Catadromous eels (genus Anguillá). Aqua-B iosci Monogr 2. 1. Aoyama J, Watanabe S, N ishida M, Tsukamoto K (2 0 00 ). D lscrim ination o f catadromous eels of genus Anguilla using polymerase chain reaction-restriction fragm ent length polymorphism analysis o f the m itochondria l 16S ribosomal RNAdom aín. TransAm Fish Socy 129: 8 7 3 -8 7 8 . Áström M, Dekker W (2 0 07 ). When w ili the eel recover? A fu ll life-cycle model. ICES J Mar Sci 64: 1 4 9 1 -1 4 9 8 . Avise JC, Nelson WS, Arnold J, Koehn RK, W illiam s GC, Thorsteinsson V (1 9 90 ). The evolutionary genetic status o f lce land ic eeis. Evoiution 44 : 1 2 5 4 -1 2 6 2 . Ballard JWO, W hitlock MC (2004 ). The incom plete natural history o f m itochondria. Mo! Ecol 13: 7 2 9 -7 4 4 . B lier PU. Ðufresne F, Burton RS (2 0 01 ). Natural seiection and the evolution o f mtDNA- encoded peptiaes: evidence for intergenom ic co-adaptatíon. Trends Genet 17: 4 0 0 -4 0 6 . Bonhommeau S, Chassot E, Rivot E (2 0 08 ). F luctuations in European eei (Anguiila anguiila ) recru itm ent resu lting from environmental changes in the Sargasso Sea. Fish Oceanogr 17: 3 2 -4 4 . Brideau NJ. Flores HA, Wang J e t al. (2 0 06 ). Two Dobzhansky-Mulier genes in teract to cause hybrid le tha lity in Drosophila. Science 314: 1 2 9 2 -1 2 9 5 . Burton RS, Pereira RJ, Barreto FS (2 0 13 ). Cytonuciear genom ic interactions and hybrid breakdown. Annu Rev Ecol Evo! Syst 44 : 2 8 1 -3 0 2 . Busch W-DN, Braun DP (2 0 14 ). A case fo r acceierated reestablishment of American eel in the Lake Ontarío and Cham plain Watersheds. Fisheries 39: 2 9 8 -3 0 4 . Ceiotto AM, Chiu WK, Van Voorhies W, Palladíno MJ (2 0 11 ). Modes o f m etabolic compensation during m itochondria i disease using the Drosophiia modei o f ATP6 dysfunction. PLoS One 6: e25823 Cðté CL, Gagnaire PA, Bourret V, Verreault G, Castonguay M, Bernatchez L (2013 ). Population genetics o f the American eel (Angu illa rostrata): F S T -0 and North A tlantic Oscilia tion e ffects on demographíc fluctua tions o f a panm ictíc species. M ol Ecoi 22. 1 7 6 3 -1 7 7 6 , Coyne JA, Orr HA (2 0 04 ). Speciation. Sinauer: Sunderíand, MA, USA. pp 1 2 5 -1 7 8 . Daemen E, Cross T, O llevier F, Volckaert F (2 0 01 ). Anaiysis o f the genetic structure of European eel (Anguilla anguilla) using m icrosatellite DNA and mtDNA markers. M a rB io í 139: 7 5 5 -7 6 4 . Deremiens L, Schwartz L, Angers A, G iémet H, Angers B (2 0 15 ). in teractions between nuciear genes and a foreign m itochondria l genome ín the redbeíiy dace Chrosomus eos. Comp Biochem Physio! B 189: 8 0 -8 6 . Eilison CK, Burton RS (2006 ). Disruption o f m itochondria l function in interpopulation hybrids of Tígriopus caliform cus. Evolution 60: 1 3 8 2 -1 3 9 1 . Falush D, Stephens M, Pritchard JK (2 0 03 ). Inference o f popuiation structure using m uítilocus genotype data: iinked loci and correlated alle le frequencies. Genetics 164: 1 5 6 7 -1 5 8 7 , Fatush D, Stephens M, Pritchard JK (2 0 07 ). inference o f population structure using m u ltilocus genotype data: dom inant markers and null a lleles. M ol Ecoí Notes 7: 5 7 4 -5 7 8 . Fishman L, W illis JH (2006 ). A cytonuclear incom pa tib ility causes anther s terility in M im uius hybrids. Evolution 60: 1 3 7 2 -1 3 8 1 . Friedland KD, M ille r MJ, Knights B (2007 ). Oceamc changes in the Sargasso Sea and declines in recru itm ent o f the European eei. ICES J M ar S ci 64: 5 1 9 -5 3 0 . Gagnaire PA, A lbert V, Jónsson B, Bernatchez L (2 0 09 ). Natural selection influences AFLP intraspecific genetic variability and introgression patterns in A tian tic eeis. Mol Ecol 18: 1 6 7 8 -1 6 9 1 . Gagnaire PA, Normandeau E, Bernatchez L (2 0 12 ). Comparative genom ics reveals adaptlve protein evolution and a possible cytonuclear incom patib iiity between European and American eeís. M ol B io l Evoi 29 : 2 9 0 9 -2 9 1 9 . Gavrilets S (2 0 03 ). Perspective: Models o f speciation: what have we learned m 4 0 ysars? Evolution 57: 2 1 9 7 -2 2 1 5 . Gavniets S (2004 ). Fitness Landscapes and the Origln o f Species. Princeton University Press: Princeton, NJ. Henkel CV, Burgerhout E, de Wijze DL, D irks RP, M inegishí Y, Jansen HJ et al. (2012 ). Prim itive dup lica te Hox clusters in the European eel's genome. PLoS One 7: e32231 . Huffard CL, von Thun S, Sherman AD, Seaiey K, Sm ith KL (2 0 14 ). Pelagic Sargassum com m unity change over a 40-year period: tem poral and spatial variability. M a rB io i 161: 2 7 3 5 -2 7 5 1 . Jacobsen MW, Pujolar JM, Bernatchez L, Munch K, J isn J, Niu Y e t al. (2014a). Genomic íootprin ts o f speciatíon in A tiantic eels (Anguilla anguilla and A. rostrata). M oi Ecol 23: 4 7 8 5 -4 7 9 8 . Heredity Reproductive isolating barriers in North Atlantic eeis MW Jacobsen et aI 1 0 Jacobsen MW, Pujoiar JM, G iibert MTP. Moreno-Mayar JV, Bematchez L, Lobon-Cervia J et al. (2014b). Speciation and dem ographic history of A tiantíc sels (Anguil/a anguilla and A. rostrata) reveaied by m itogenome sequencing. Heredity 113: 4 3 2 -4 4 2 . Jacobsen MW, Pujolar JM, Hansen MM (2 0 15 ). Relationship between amino acid changes in m itochondria i ATP6 and life history variation ín A ngu illid eels. B io i Le tt 11: p ii; 2 0 1 5 0 0 1 4 . Johnson JR, F itzpatrick BM, Shaffer HB (2 0 10 ). Adm ixture dynamics o f tiger salamanders: fitness o f early-generation hybrlds and retention of íow-fitness genotypes in contempor- ary populations. BMC Evoí B io l 10: 147. Kieckner RC, McCleave JD (1988 ). The northern lim it o f spawning by A tian tic eels (A nguiila spp.) in íhe Sargasso Sea in relaíion to therm al fronts and surface water masses. J M ar Res 46: 6 4 7 -6 6 7 . Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H et al. (2016 ). RAD sequenclng reveais w ith in-generation polygenic seiectíon m response to anthropogenic organic and metai contam m ation m North A tlan tic Eels. M ol Ecol 2 5: 2 1 9 -2 3 7 . Lesslos HA (2 0 11 ). Speciation genes in free-spawning marine ínvertebrates. Integr Comp B io i 51: 4 5 6 -4 6 5 . Lowry DB, Modliszewski JL. W right KM, Wu CA, W iliis JH (2 0 08 ). The strength and genetic basis of reproductlve isoiating barriers in ftowering plants. Philos Trans R Soc B B io ! Sci 363 : 3 0 0 9 -3 0 2 1 . Maheshwari S, Barbash DA (2011 ). The genetics o f hybrid incom patib ilities. Annu Rev Genet 45 : 3 3 1 -3 5 5 . Mayr E (1 9 63 ). A nim al Species and Evoiution. Beíknap: Cambridge. McCieave JD, Kleckner RC, Castonguay M (1987 ). Reproductive sympatry of American and European eeis and im plications fo r m igration and taxonomy. A m Fish Soc Symp 1: 2 8 6 -2 9 7 . Meikle john CD, Holm beck MA, S iddiq MA, Abt DN, Rand DM, Montooth KL (20135. An m com patib ility between a m itochondria l tRNA and its nuciear-encoded tRNA synthetase compromtses developm ent and fitness m Drosophiia. PLoS Genet 9: e !0 0 3 2 3 8 . M iile r MJ, Bonhommeau S, Munk P, Castonguay M, Hane! R, McCieave JD (2015). A century o f research on the larval d is tributions o f the AtJantic eels: a re-exammation of th e d a ta . B io l Rev 90: 1 0 3 6 -1 0 6 4 . Munk P, Hansen MM, Maes GE, N ielsen TG, Castonguay M. Rieman L (2010 ). Oceanic fronts in the Sargasso Sea control the early life and d r ift o f A tíantic eeís. Proc R Soc B B io l S ci 2 77 : 3 5 9 3 -3 5 9 9 . Nielsen EE, Cariani A, Aoidh EM, Maes GE, M ilano I, Ogden R (2012 ). Gene-associated markers provide toois for tack ling illegai físhing and false eco-certification. Nat Communs 3: 851 . Nosil P, Vines TH, Funk DJ (2 0 05 ). Perspective: Reproductive isolatíon caused by naturai selectíon agaínst im m igrants from divergent habstats. Evolution 59: 7 0 5 -7 1 9 . Palumbi SR (1 9 94 ). Genetic-divergence, reproductive ísolation, and marine speciation. Annu Rev Ecoi Syst 25: 5 4 7 -5 7 2 . Presgraves DC (2 0 07 ). Speciaíion genetics: Epistasis, con flic t and the origin o f species. C u rrB io l 17: R 1 2 5 -R 1 2 7 . Pntchard JK, Stephens M, Donnelly P (2 0 00 ). ínference o f population structure usmg m u ltiiocus genotype data. Genetics 155: 9 4 5 -9 5 9 . Puebía 0 (2009 ). Ecoiogicai speciation in marine v. freshwater fishes. J Fish B io i 75: 9 6 0 -9 9 6 . Pujoiar JM, Jacobsen MW, Als TD, Frydenberg J, Magnussen E, Jónsson B e t al. (2014a). Assessing patterns o f hybridization between North A tlan tic eels usíngdíagnQstic singíe- nucleotide polymorphisms. Heredity 112: 6 2 7 -6 3 7 . Pujoiar JM, Jacobsen MW, Als TD, Frydenberg j , Munch K, Jónsson B e t al. (2014b). Genome-wide single-generation signatures o f iocai selection in the panm ictic European eel. Mol Ecoi 23: 2 5 1 4 -2 5 2 8 . Pujoiar JM, Jacobsen MW, Frydenberg J, Ais TD, Larsen PF, Maes GE e i ai. (2013 ). A resource o f genome-wide sm gie-nucleotide poiymorphisms generated by RAD tag sequencing in the critica iíy endangered European eel. Mol Ecol Resour 13: 7 0 6 -7 1 6 . Ramsey J, Bradshaw HD, Schemske DW (2 0 03 ). Components o f reprcductive isolation between the monkeyflowers M im uíus íewts 'u and M. caro ina lis (Phrymaceae). Evoiution 57: 1 5 2 0 -1 5 3 4 . Rieseberg LH, W illis JH (2007 ). P lant speciation. Science 317 : 9 1 0 -9 1 4 . Riginos C. V ictor BC (2 0 01 ). Larval spatia! d istríbutíons and other early life-history characteristics predict genetic d iffe ren tia tion in eastern Pacific b íennio id fishes. Proc R Soc B B ío i Sci 268 : 1 9 3 1 -1 9 3 6 . Saraste M (1999 ). Oxidative phosphorylation a t the fin de siecíe. Science 283: 1 4 8 8 -1 4 9 3 . Schluter D (2009 ). Evidence for ecologlca! speciation and its alternative. Science 323: 7 3 7 -7 4 1 . Schm idt J (1923 ). The breeding piaces of the eel. Philos Trans R Soc Lond B 211: 1 7 9 -2 0 8 . Seehausen 0 , B utim RK, Kelier I, Wagner CE, Boughman JW, Hohenlohe PA e ta l. (2014 ). Genomics and the orígin o f species. Nat Rev Genet 15: 1 7 6 -1 9 2 . Sprensen SR, Tomkiewicz J, Munk P, Butts IA, Nielsen A, Lauesen P, Graver C (2016 ). Ontogeny and growth o f eariy life stages o f captive-bred European eel. A quacuíture456: 5 0 -6 1 . Templeton AR (1986). Coadaptation and breeding depression. Jn: Soulé ME (ed.). Conserva- tion Biotogy: The Science o f S cardty and Diversity. Sinauer-. Sundedand. pp 1 05 -1 16 . Tesch F (2003 ). The EeL Oxford: Blackweli Science Ltd. Tesch FW. Wegner G (1 9 90 ). The d is tribution o f smali larvae o f A nguilia sp. related to hydrographic conditíons ín 1981 between Bermuda and Puerto Ríco. In t Rev Gesamten Hydrobioi 75: 8 4 5 -8 5 8 . Trautner J (2 0 06 ). Rapid iden tifica tion o f European (Angu ilia anguiila) and North American eel (Anguiiia rostrata) by poiymerase chain reaction. In f Fischereiforsch 53: 4 9 -5 1 . Uilrnan DS, Cornílíon PC, Shan Z (2 0 0 7 ). On the charactenstics o f subtropical fronts in the Noríh A tíantic. J Geophys Res 112: C01Ö10. Wíelgoss S, G ilabert A, Meyer A, W irth T (2014 ). introgressive hybridization and la titudm al adm ixture clines m North A tlan tic eeis. BMC Evol B io l 14: 61. Zenimoto K, Sasai Y, Sasaki H, K imura S (2011 ). Estimation o f larvaí duration in Anguilla spp., based on cohort anaíysis, o to lith m icrostructure, and Lagrangian sim ulatíons. M ar Ecol P ro gS e r 4 38 : 2 1 9 -2 2 8 . S u p p le m e n ta ry In fo rm a tio n acco m p a n ie s th is p a p e r o n H e re d ity w ebsite (h ttp ://w w w .n a tu re .c o m /h d y ) http://www.nature.com/hdy Veiðar, vinnsía og sala á áL Magiiús jóhannssoii, Róbert Jónsson og Björn Ingi Bjömsson. Selfossi, ágúst 19% VMST-S/9Ó00I V E I Ð I M Á I A B ókas Veiðimálastofnun - Suðurlandsdeild Austurvegi 1 800 Selfoss 2. In n gan gu r. 3. A lm en n t um á la ve ið ar. 4. S ta ð h æ ttir o g ran n só k n ara ð ferð ir. 5. Niðurstöður. 5. I T ilra u n a ve ið a r. 5. 1. I A fli í tilrau n aveiðu n i. 5. I. 2 V in n a v ið veiðar. 5 . 1 . 3 L e n g d o g þyn gd. 5. 1 . 4 A ld u r , v ö x tu r o g kyn. 5. 2 U tb re ið s la áls í vö tn u m a Suóurlan di. 5. 3 T ilrau n avin n sla . 5. 4 M a rk a ð sa th u g u n . 6. U m ræ ð a . ó. 1 V e ið a r. 6. 2 S tæ rð , a ld u r o g v ö xtu r. ó. 3 V e ið im ö g u le ik a r á Suðurlan di. ó. 4 V e r k u n o g m arkað u r. 7. Þ a k k a ro rð . 8. H eim iid ir. 1. Á g rip . Á1 e r a ð íin n a v íð a um iand en þ ó a ð a lleg a á láglendi sunnan- o g vestanlands. Áll er v íð a v e id d u r erien dis, þ a r er hann e ftirsó ít n ey slu va ra o g selst á háu v e rð í. L ítilsh áttar er veitt a f ál en en n þ á er veiðanlegt m agn ó þ e k k t. Verkefni þ essu v a r æ tla ð að sk ý ra h v o rt g ru n d v ö llu r sé fy rir v e ið u m , vinnslu o g sö lu á ál á S u ð u rla n d i. G e r ð a r vo ru tilrau n ir m eð v e ið a r o g vin nslu . E in n ig v o m a th u g að ir sö lu m ö g u íe ik a r o g v e rð á unninni atlirð . I tilra u n av eið u m v a r lö g ð áhersla á tilra u n a v eið a r á b jartál o g lag t m at á h versu m ik ið m æ tti v e ið a á rle g a a f ál á svæ ðín u . V e r k e fn ið v a r sa m vin n u v erk efh i V e ið im á la sto fn u n a r , á ta k sv e rk e fn is í atvin n um álum á S e lfo s s i, b æ n d a i S to k k se y ra rh re p p i o g H afh a r-Þ ríh yrn in g s lt/f. T ílra u n a v e ið a r fó ru fram : n o kk ru m v ö tn u m í S to k k se y ra rh re p p i su m arið 19 9 5 . A fli v a rð 392 áiar o g 103 k g e ð a 1,8 k g á ha. A íl i v a r að ja fn a ð i 0 ,20 álar, 0,05 k g í h v e ija á lag ild ru e ft ir n æ tu ria n g a leg u . M in n a v e id d ist a f b jartál en v o n ir stó ð u til, eð a 2 7 k g sem g e rir um 0,5 k g a fra k stu r á ha. L ít ið er h æ g t að fuliyrða um h v o rt slíks m eg i v æ n ta á rle g a eð a að bjartálagengd sé b re y tile g á m illi ár B jartáiiin n v a r a ó a lle g a á ieið út síðari h lu ta se p íe m b e r o g fyrstu v ik u í o k tó b e r . Flestir álarnir v o ru 45 til 55 sin o g 150 til 2 5 0 g, Guiáíar voru að ja fn a ð i m inni en bjartálarnir. M e ð a ls tæ rð g u lá la v a r 2 4 2 g o g b jartáia 3 7 1 g. A f heiidarafla v a r 73 % a f nýtanlegri stæ rð. Ú tffá tilraunaveiðum o g flatarmáli v a tn a þar sem ál er a ð finn a er raun hæ ft að ársafli a f ái á S u ð u rla n d i g e ti v e r ið 5 til 10 íon n, Möguleikar fil veiða eru d re ifð ir o g víðast hvar er veiðanlegt magn tiltö lu le g a lítið á hverjum stað. M e s tu möguleikar virð a st í lá g sv e itu m Rangárvallasýslu, Flóa, Ölfusi o g S k a ftá rh re p p i. H v o rt g n in d v ö ilu r er fyrir v e ið i fyrir b æ n d u r b y g g is t a ð m iklu lefy i á a ð stæ ð u m h já h verju m b ón d a. L jó s t vsrðist að ek k i er u m m ik la r te k ju r að ræ ð a ly rir h vern o g einn landeiganda. Samhliða gulálaveiði æ tti að reyna fre k a bjartálaveiðar þ ví tiikostnaður v ið þ æ r v e ið a r æ tti í flestu tiífeilum að v e ra minni en v ið gulálaveiðar. M ik ill b re y tile ik i v a r í h v e á la n iir léttu st í ve rk u n , en þ u n gi e ftir v e rk u n v a r ailt frá 63 % til 74 % a f upphaflegum þu n g a. R ýrn u n virtist fara eftir stæ rð , þ. e. smærri állinn rýrn a ð i meira en sá stæ rri. L a u s le g a th u gu n á m a rk að í sýndi að m a rk a ð u r er lítil! fyrir ál in n an ian ds o g fra m b o ð v irð ist einnig lítið. Þ ví er ekki ó lík le g t a ð e f áll væ ri v e id d u r o g verkaður h ér heima, v æ ru möguleikar á að byggja upp markað. E m s er líkiegt að e in h v e r m a rk a ð u r sé fyrir fersk a n ái, en auk þ e ss g æ ii ú tfiu tn in g u r k o m ið til gre in a sem þ ó er ó k a n n a ð . N ið u rstö ð u r h a g k væ m n ism ats b en d a til þ e ss a ð m e ö 10 to n n a v e ið i á árí e ð a meira, g e ti vinnsla á ál verið h a gk væ m . Þ ví virðist Ijóst að h æ p ið sé að byggja vin n slu e in g ö n g u á su n n len sk u m ál. H u g sa n ieg t er að sam h lið a á la v e ið u m m æ tti stu n d a áiaeld i. G ru n d v ö liu r siíks eid is hérlen dis er hins v e g a r ó k a n n að u r. 2. ínngangur. E v r ó p s k i állinn (Anguilla anguilla L .) er ein a f fim m fisk íe g u n d u n i sem lifa í fersk u vatn i hér á landi. A1 er a ð finn a v íð a um íand en þ ó a ð a lle g a á lág len di sunnan- o g vesían lan d s. A ll er v íð a v e id d u r erlen dis, þar er hann eftirsó tt n ey slu v a ra o g selst á háu v e rð i. L itilsh á tta r er v e itt a f ál en en nþá er v e ið a n le g t m agn ó þ e k k t. A llin n h rygn ir í sjó (í Þ a n g h a fm u út a f au stu rströn d M ið -A m e rík u ) en elst upp í fersk u vatn i. L ífs ferill á lsins er þ a n n ig fráb ru g ð in n lifsferli ann arra te g u n d a ísien sk ra fe rsk v a tn sfisk a sem alast u p p , ým ist í fersk u vatn í e ð a s jó , en h y g n a á va llt í fersk u vatn i. L ir fú r á lsin s b erast m eð G o lfstra u m n u m að strö n d u m E v r ó p u o g te k u r þ a ð um e ð a innan v ið 1 ár. G le rá la r o g á la se ið i g a n g a i fe rsk v a tn að su m arlagi. A il í up p eld i n efnist gu lá il. H an n lifir í ám o g v ö tn u m sem á la se ið in ná að g a n g a í. A liin n er h itak æ r, k jö rh iti til v a x ta r er 2 2 -2 3 ° C (S a d le r 19 7 9 ). Þ e g a r hann h efú r n áð um 3 5 -10 0 sm (0 ,1 - 2 ,0 k g ) te k u r hann að g a n g a í Þ an g h a fið til h y g n in g a r . H an n n efnist þ á bjartáll. N o rsk a r ran n só kn ír hafa sýnt að bjartállinn g e n g u r m est ti! s jáv a r s íð su m a rs o g á haustin (H a rald sta d ofl. 19 8 5 , B e r g e r s e n o g K iem e n tsen 198 8). Á ll h efu r lítið v e r ið ra n n sa k a ð u r hérlen dis. Á r ið 19 7 8 tó k M a ría n n a A le x a n d e rsd ó ttir ( 1 9 7 8 ) sam an upplýsingar m a. um á lave iðar. N o k k r a r tilrau n ir h afa verið g e r ð a r m eð g le rá la v e ið a r a f sta rfsm ö n n u m V e ið im á la sto fn u n a r o g fleiri aðilum (S íg u r ð u r M á r E in a rsso n 19 8 4 ). Þ á h a fa v e r ið g e rð a r ath u gan ir á te g u n d a rg re in in g u ís len sk ra ála (A v is e ofl. 19 9 0 , W illia m s ofl. 198 4). Á árunum 199 1 til 1993 v o rn g e rð a r n o k k ra r rannsóknir á ál o g álaveiðum í Skaftárhreppi (Jón G . Schram 19 9 3 , M a g n ú s Jóh an n sson 19 9 3). Verkefni þ essu v a r æ tla ð a ð sk ý ra h v o rt g ru n d v ö llu r sé fy rir v e ið u m , vinnslu o g sölu á ál á S u ð u rla n d i. G e r ð a r v o ru ve ið ííiira u n ir, tilraun avin n sla (h e itre y k in g ) o g g e rð v e rð - o g m a rk a ð sa th u g u n innanlands. í tilra u n av eið u m v a r lö g ð á h ersla á tilra u n a v e ið a r á b jartál. E in n ig v a r la g t m at á þ a ð h versu m ik ið m æ tti v e ið a á rle g a a f ál á svæ ð in u . V e r k e fn ið v a r sa m vin n u v erk e fn i V eið im á la sto fn u n a r, á ta k sv e rk e fh is i a tv in n u m álu m á S e lfo ss i, b æ n d a í S to k k se y ra rh re p p i o g H a fn ar-Þ ríh yrn in gs h/f. 3. Almennt um álaveiðar. AIl er v íð a v e id d u r til m anneidis. I E v r ó p u eru D an ir, S v ía r, P ó lv e r ja r , Þ jó ð v e r ja r , N - íra r o g íta lir a ð a lv e ið iþ jó ð irn a r. Á r le g v e ið i í E v r ó p u er a .m .k . um 15 bús. to n n o g neysSa er um 2 2 þús. to n n á ári (D e e ie r 1984, Usui 19 7 4 ). Áilinn er mikiö veiddur í g ild ixir o g k istu r, en ein n ig á línu. A ll h eíu r lítið verið n ýttur á íslan di. E itth v a ð mun hann þó h afa verið veiddur ti! m atar o g roðið n o ta ð i skóþvengi. Litlar uppiýsingar liggja fyrir u m h v e r veiðigetan e r hér á iandi, en í N o re g i eru tö iu r um 3 -1 0 k g veiði a f b jartái á h e k ta ra (K riste n se n 198 0 ). A árun um 196 0 tii 19 6 4 v a r v e itt tö íu v ert m agn a f ál til ú tfíu tn in gs. Jón L o ftsso n o g S am b an d Is le n sk ra S a m v in n u fé la g a sá um sö lu n a o g seldu lifandi o g rey k tan ál til H o llan d s. V e itt v a r m eð á lag iid ru m v íð s v e g a r á landinu, e in ku m í S k a fta fe ilssý s lu m o g á M y ru m í Borgarfirði. S u m arið 19 6 1 veiddust 15 tonn á öllu iandinu, ári síðar v e id d u st 1 7 ton n . V e ið i m in n k að i o g áríð 1963 v a rð aílin n 13 to n n o g 196 4 v a r afli iítiil (M a ría n n a A le x a n d e rs d ó ttir 19 7 8 ). A fti í Skaftárh rep p i v a r 3 ,5 tonn árið 1 9 6 1 , ári síöar 4 ,1 to n n o g 1,8 to n n árið 19 6 3 , (Jón G u n n ar S ch ra m 19 9 3 ) Á iiin n fó r smækkandi o g aflinn minnkaði, líklega v e g n a o f mikiíiar veiði á gu lá l. Á síðari árum h afa á la v e ið a r frem u r lítið v e r ið stun daðar. O ft er auðveldast a ó veiða b jartái i g ild ru r eð a kistur á leið tii sjávar. V ið b ja rtá la v e ið a r eru v e ið itæ k i sett í e ð a v ið útfa ll vatn a. B ja rtá li, sem taiinn er betri m a tllsk u r, er stæ rri o g íe ita ri en guláll o g h en tar v e i til reykingar. S líkar veiðar g e ta g e tið mikla veiði á stuttum tím a o g frá Noregi eru dæ m i um þ rig g ja ton n a v e ið i á einni n óttu (Kristensen 1980). Þ á er mikíivægur k o s íu r v ið bjartálaveiðar að þ æ r æ ttu ekkí að ganga nærri álastofhi viðkomandi v a tn s þ a r sem þ æ r b y g g ja á v e ið i fullvaxinna ála. Állinn er ekk i taiin m yn d a sta ð b u n d n a sto fn a en h in sveg a r er v e ið iþ o i á h eild arstofn í e v ró p s k a álsin s, m eð tillíti til n ý lið u n ar, ek k i þ e k k t. 4, Staðhættir og raimsóknaraðferðir. T ilra u n a v e ið a r fó m fram í Á sg a u tss ta ð a v a tn i o g K a k k a rv a tn i í iandi B ra u ta rtu n g u í S to k k se y ra rh re p p i. B ja r tá la v e ið a r v o r a kan n aðar í S k e r lló ð i en þar er sa m eig in leg t afrennsii n o k k u rra v a tn a í S to k k se y ra rh re p p i íii s jávar (m ynd 1). A s g a u ts s ta ð a v a tn er um 15 ha. a ð stæ rð o g v íð a s t um 2 m djúpt. K a k k a rv a ín er u m 10 ha o g v íð a st 1-2 m að dýpt. V ö tn in eru b æ ði m eð g ró in n leðju b otn . B a k k a r eru g ró n ir o g g r ý ít ir að hluta, e in ku m í K a k k a rv a tn i. í vö tn u n u m eru a u k áis staðb un dn ir o g s jó g e n g n ir u rrið a - o g b le ik ju sto fn a r. V ö tn in h a fa v e r ið n ytjuð íli á la- o g s ilu n g sv e ið a á u n d a n fö rn u m árum . F rá árinu 19 8 4 hefúr áll v e r ið veiddur á hverju ári. Árleg veiði 19 8 4 til 1990 v a r um 50 til 100 k g í 6 - 8 g ild ru r, a ð ja fn a ð i um 70 k g á ári. V e ið i árann a 19 9 1 v a r 100 til 190 k g í 10 til 20 gildrur, að jafnaðí um 150 k g á ári. Þ efta gerir að jafnaöi um 6 k g á ha. á 0,5 km f--------------- 1 M yn d i . Y fir litsm y n d y lir v ö ln in þar sem tiira u n a rve iö a r íö ru fram . ári. E k k i v e ró u r séð að v e ið i hafí fa rið m innkandi. S tæ rð álan n a h efur v e r iö b iö n d u ð o g e k k i m erk ja n ie g u r m un ur miiii ára (H ö rð u r J ó elsso n rnunnl. uppl). Veitt v a r í a gn la u sa r á la g ild ru r m eð i8 mm m ö sk v a í le ið a ra o g sm æ rri í p o k a , um 40 sm í þvermái. Giidrurnar voru settar út 25. o g 26. jú ií o g teknar u p p í byrjun 2. tii 8. n ó ve m b er. I Kakkarvatni voai a ð jafn aði 9 gildrur. E in v a r í innrás 6 í miðvatni o g 2 í útrás. í A sg a u ts s ta ð a v a tn i v o m 10 tii 13 g ild m r. E in v a r í ú trás o g 7 til 10 í m iðvatn i. G ild ra rn a r í vö tn u n u m v o ru m eð tv eim u r p o k u m o g le ið a ra á m ílli. í S k e rfló ð i v a r ein slík g ild ra fram a n a f tim abilínu o g ön n ur m eð tv e im u r v æ n g ju m m eð g ild r u p o k a í m illi. Sú g iid ra n áði m illi b a k k a í straum vatni o g v a r æ tla ð a ð v e ið a bjartál á leið tii sjavar. Fyrsta á g ú st v a r sett m un stærri o g öflugri gildra um Im í þvermál. G ild ra n n a v a r v ít ja ð re g lu le g a , o fta st n ieð u m v ik u m illibili o g afli talinn o g v e g in n úr h verri g ild ru . H lu tsýn i v o m síðan tekin til e in sta k iin gsm æ lin g a á len gd , þ y n g d o g til a ld u rsgrein in g ar. F yrir a id u rsg rein in g u v o m k varn ir látnar lig g ja í 9 6 % a lk ó h ó ii y fir nott. A id u rsg re in in g á ál er erfið þ v í álar eiga tii að m vn d a íleiri en einn árh rin g a ári (D e e le r 1 9 8 1) . V ið k ö n n u n á útbreíðslu áis á Suðurlandi (Árnes- Rangávaila- o g V e s tu r s k a fta fe lIs s ý s lu ) v a r stu ðst v ið lan d ak ort L a n d m æ iin g a íslan ds (m æ lik v a rð i 1:100000 o g 1:50 0 0 0 ) o g sk rá O rk u sto fn u n a r um v ö tn stæ rrí en Í0 h a (H á k o n Aðalsteinsson ofl. 198 9). S tæ rð vatnanna var fen gin í skránni, en Ieiðrétt e f v ita ð var a ð vatnið hafi minnkað t. d. v e g n a framræslu. Taiað v a r v ið b æ n d u r í n ágrenn i v a ín a n n a o g þ e ir sp u rðir h v o rt b e ir v issu til þ e ss að áll væ ri í v ið k o m a n d i va tn i. E in n ig v a r s tu ð st v ið tiltæ k a r r itað a r h eim ild ir (sbr. M a g n ú s Jóh an n sson 19 9 3 ) o g ó b irt g ö g n V e ið ím á la sto fn u n a r. U tb re ið slan v a r e in g ö n g u ath u g u ð í v ö tn u m , en læ k ju m o g ám sleppt. A fla úr g ild ru m v a r h aid ið íifan di í þar til g e rð u m g e y m slu k a ssa . H lu ti álan n a v a r tek in n þ a ð a n til tiiraun avinn siu . G e r ð v a r tilraun m eð h e itrey k in g u . K jö tv in n s ia H a fn ar-Þ ríh y rn in g s sá um tilraun avinn sluna. H e itre y k tu r áll v a r sm a k k a ð u r a f matreiðsiumeisíumm kunnugum ál. Einnig v o n i fleiri fen g n ir til að sm a k k a o g g e fa álit sitt á afurðinni. Spurt v a r um eftirfarandi þætti; b ra g ð útlit, áferð, mýkt, salt. Þá var spurt um ííklegar markaðshorfur. A u k þ e ss v a r g e rð lausleg m a rk a ð s- o g v e rð k ö n n u n innanlands. 6 5. Niðursíöður. 5. I Tilraimaveióar. 5. i. 1 Afli í tilraunaveiðuni H eild araíli í tilrau n aveiðu n u rn v a rð 392 álar o g 103 kg. í Ásgauísstadavatni v e id d u st 12 7 álar (37,1 k g ) í 9 71 g iid ru n æ tu r (ta fla 1). M egin h lu ti þeirra v a r g u iá ll (9 5 % ). E in u n g is 6 b jartálar (3 ,5 k g ) v e id d u st, flestir í síðarih luta águst. E inn þ eirra v a r 1 ,5 k g o g v a r þ a ð stæ rsti állin sem ve id d ist. A fli í g iid ru n ó tt v a r að m eðaita ii 0 ,13 álar o g 0 ,0 4 k g . M e ð a lþ u n g i alira álanna v a r 290 g. í m iðvatn in u v a r aflinn 100 áiar ( 2 7 ,7 k g ) o g í ú tfailin u 2 7 álar (9 ,4 k g ). A íli í g ild ru n ó tt v a r að ja fn a ð i m eiri í m iðvatn i en í ú tfa liin u e ð a 0 ,15 álar o g 0 ,13 í ú tfa liin u . / íiarn ir í ú tfa liin u v o ru hins v e g a r h eld u r þ y n g ri e ð a að ja fn a ð i 348 g o g 2 7 7 g í m iðvatn in u . A íli í Asgautsstaðavatni v a r 2 ,5 k g á ha. Þ a r a f v a r 0,23 k g bjasrtáll. B esti ve ið itím in n í Asgautsstaðavatni v a r í fyrrihluti á g ú st o g v a r veiði lítil eftir ágústiok (m yn d 2). í Kakkarvatni veíddust 22 3 á iar (48,4 k g ) í 8 18 gíidrunætur. Meginhluti þ e irra (9 4 % ) v o ru grein d ir sem gu lá lar. Þ rettán v o ru b jartálar (6 ,4 k g ). F le stir (5 ) b jaríá larm a k o m u i' útrásin n i síða st í sep íem b er, Afli í g iíd ru n ótt var að jafnaói 0 ,2 7 álar o g 0,0 6 kg. Meðaiþungí allra ála v a r 2 1 7 g. I miðvatninu v a r aflinn 186 áiar (2 7 ,7 k g ) o g í útfallinu 30 álar (9 ,4 k g ). Afli í giidrunótt v a r að ja fn a ð i m eiri í miðvatni en í útfaliinu eð a 0 ,282 álar o g 0 ,2 1 1 í ú tfa liin u . AÍamir í útfailinu v o n i hins vegar heldur þyngri eð a að jafnaði 3 1 5 g o g 201 g í miðvatninu. Aflí Kakkarvatns v a r 4,8 k g á ha þar a f v o ru 0 ,64 k g b jartáli. * A fren n sli a f sam tals 58 ha. T a tla 1. A íli í tilra u n av eið u m í á la g ild ru r í v ö tn u m í S to k k e y ra rh re p p i su m aríð 19 9 5. V a tn S tæ rð F jö id i H eild araíli A fli á g ild ru n ó tt A fli á ha. h a g ild ru n . F jö ld i K g F jöldi K g M e ð a lþ . k g 1 2 7 3 7 ,1 0 ,13 0 ,0 4 290 2 ,5 223 48 ,4 0 ,2 7 0,06 2 1 7 4 ,8 42 1 7 ,5 0 ,3 1 0 ,13 4 1 8 0,3 Á s g a u ts ta ð a v . 15 9 7 1 K a k k a rv a tn 10 8 18 S k e rfló ð 5 8 * 136 S am tals 19 2 5 39 2 103 0,20 0,05 263 ö. o 0,4 0,2 0 r n 1 n | s 1 P I 1 I i !! i ! ti ti íi ií n Jút. Aí’ús! Septembcr Ok íóbe 0 , 0 TA <3 1 - I - 4. „„ i ’V í iA t x . a i v c i í i i A <1•>_' , "T r l 0 , 2 r \ V n i i f fl l á A o ú c t OVjJL'wJ tlk/Vi e3i\Ci i iuOo .. 1,5 (1 n i i 1 1 1 I 0.5 1 i 0 nt . 3 fl i A o/ict bcptcniDcr Mynd 2. A flí i tilra u n a v eið u m á ál i v ö tn u m v ið Stokkseyri 19 9 5. Veióín í vötnunum v a r n æ r e in g ö n g u g u lá ll en í ú trás í Skerflóði, b jaríá ll. Á m ynd er afii settur v ið vitjunardag en er i raun afli á timabílinu frá síðustu viljun aó vitjunardegi. V tá k n a r v itju n a rd a g án aíla. U r k o in a ii! n i L o f t h i t i °C M y n d 3. L o fth iti (só la rh rin g sm eð a lta l, ° C ) o g só la rh rín g sú rk o m a (m m ) á E y ra rb a k k a á ieg u fím a gildran na. 8 := Cs»' 2 u, 10 8 - 6 4 2 0 - C~C CN O'J CC Skerflóö Lengd mm □ Guláll HBiartáll M yn d 4, L e n g d a rd re ifin g á ál ú r tilraanaveiðum í vö tn u m v ið S ío k k s e y r i árið 1995. I innrennsli v a r ein giiclra frá 2 5 . jú lí til i I. ágú st. A ílin n v a rð 7 álar ( 1 ,7 kg) á 16 g ild ru n ó ttu m e ð a aó jafnaði 0 ,4 4 álar á gildrunótt. Meöalþunginn v a r 243 g, Afiinn í K a k k a rv a tn i v a r m jö g d re ífð u r y fir ve ið itím ab ilið (m ynd 2). I Skerf/óói v a r sé r s ía k le g a reynt að afla bjartáSa á leíð til sjávar. Þar er afrennsli um 58 ha v a tn a sv æ ð is . S a m ta ls v e id d u st 42 álar ( 1 7 ,5 k g ) í 136 g ild ru n æ tu r. Þ e tfa vo ru n æ r a llt bjarkí/ar. A ð m e ð a lta li ve id d u st 0 ,3 1 áll o g 0 ,13 k g a g ild ru n ó tt. M e ð a lþ u n g i áianna v a r 4 1 7 g. V e ið ín v a r m jö g Íítíi í ágú st o g fyrri h luta sep tem b er. N æ r alíur bjartáilinn (83 % a f fjö íd a ) k o m í g ild ru rn ar í síðari hluta sep tem b er o g fyrstu v ik u í O 4 OO CN c~: < N í N r o 10 8 2 6 £T 4 Skerílód f c □ G u lá ll t á l l n Þyngd g M vnd 5. Þyngdardreifing á ál úr tilraunaveiðum í vö tn u m v ið Stokkseyri árið 1995, október (mynd 2), Athyglisvert er að á þeim tím a v a r ú rk o m u sa m t, sem olíi aukn u vatnsrennsli o g lo fth iti læ k k a ð i (m yn d 3). Afli bjartála 1 Skerflóði varð um 17 k g , e ð a 0,3 k g á ha., en a ð v ið b æ ttu m bjaitálaafla í Ásgautsstaðavatni o g Kakkarvaíni va rð bjartáiaafiinn sam tais 2 7 k g , e ó a um 0,5 k g á ha. A th u g a ð v a r h v e rsu stórt h lu ífa ll a f álnum v a r y fir 150 g , sem er áætluð lá g m a rk sstæ rð til sölu. I v ö tn u n u m voru 68 % álar yfir 150 g sem gerir 2,3 k g a f nýtanlegum ál á hektara. I Skerflóði v o r u 9 6 % nýtanleg, en þar v a r aðeins einn bjartáll un dir 150 g. A f heildarafla v a r h lu tfa llið 73 % sem ge rir 75 k g eð a 1,3 k g a f n ýtan legu m ál á h ektara. 1 0 Lengd mm M yn d 6. S am b an d iengdar o g þyngdar hjá gulál o g bjartál í vötnum vió S to k k s e y r i árið 19 9 5. 5 . 1 . 2 Vinna viö veiðar. V itjun gild ran n a í vö tn u n u m tv e im u r (g u lá la v e ið a r) tó k um 2 tím a i senn en þeirra v a r vítja 9 sinnum á tím abílinu . Samtals tók vitjun því 18 klst. fyrir einn m ann. Akstur va r lítilí þar sern vö tn in eru í innan við km íja r læ g ð írá bæ . Vitjun á bjartálagildru tók um I klst. í senn, sam tals 9 k lst. A k s tu r va r sam íais u m 60 km . V in n a v ið a ð korn a ál á markað v a r áæ tíu ð 6 kist. S a m ta ls v o ru vinnustundimar þ v í 33 o g afíinn þ v í 2,3 k g á h verja vinnustund. Afrakstur í vötnunum v a r 3 ,2 k g a f nýtanlegum á! á vinnustund við v e ið a r o g 1,9 k g í b jartáfag íld ru í S ke rfló ð i. 5. 1. 3 Lengd og þyngd. L en g d a r- o g þ y n g d a rd re ifin g áianna (ú rtak úr afla) k em u r fram á m vn d u m 4 o g 5, skipt eftir veiðistöðum o g g e rð (bjartáll, gu láll). Minnstu áiarnír í úrtakinu v o ru 36 sm (6 2 g ) o g þ e ir stæ rstu 74 sm (73 0 g ) en flestir vo ru 45 tii 55 sm (1 5 0 -2 5 0 g). 300 400 500 600 Lengd m tn 700 800 900 0,110 ■ 0.100 - 0,090 3 0.080 - .3 0,070 - 0,060 - 0,050 - 0,040 - 3f B ja r tá ll 500 700 900 Lengd m m M yn d 7. S am b a n d h lu tfa lls le g s h o ld a stu ð u ls o g len gd ar hjá gu la l o g bjartál. G u lála r v o ru a ð ja fh a ð i m inni en bjartálarnir. M e ð a ls tæ rð g u lá ia v a r 4 9 sm o g 2 1 2 g , en b jaríá la 5 7 ,3 o g 3 7 1 g. M in n sti b jartállinn v a r 40 sm 121 g en atlir a ð rir v o ru y fir 50 sm o g 240 g. A m ynd 6 k em u r fram sam band ien gd a r o g þ yn gd a r. N o k k u r m un ur ko m fram m illi g u lá la o g b jartála. B ja rtá la r eru þ yn gri en g u lá la r a f sö m u lengd. H lu tfa llslegu r h o ld a stu ð u ll (þ a r sem leiðrétt er fyrir len gd ) er ein n ig hæ rri h já b ja ríá l en gu lál sem g e fu r til kyn n a að b ja ríá lar séu þyn gri en gu lá ia r a f sö m u Sengd (m yn d 7). 5. 1 . 4 Aldur, vöxtur og k>7i. A íd u rsgrein d ir v o ru 52 áiar, 24 b jartálar o g 28 gu lá lar. A ld u r álan n a v a r frá 5 ára til 15 ára. A ld u r b ja ríá lan n a v a r að ja fn a ð i hæ rri en g u lá la (ta fla 2). Y n g s tu g u lá la m ir vo ru 5 ára en eístu 13 ára. H in s v e g a r v o ru y n g stu b jartálarn ir 6 ára o g þ e ir elstu 15 ára (m ynd 8). T a fla 2. M e ð a la ld u r a ld u rsgrein d ra g u l- o g bjartála. B jartáll M e ð a la ld u r (ár) 10,2 S ta ð a lffá v . 2,1 F jö ld i 24 G u láll M e ð a la ld u r (ár) 8,6 S ta ð a lfrá v . 1 0 , 1 F jö ld i 28 V ö x tu r álanna, sem m e ð a lle n g d ir eftir aldri (m yn d 9 o g ta fla 3 ), v irð ist n o k k u ð ja fn fram að 11 ára aldri (60 til 70 sm ). B ja rtá la r eru að ö llu jö fn u stæ rri en g u lá la r a f sam a aldri o g hafa þ a r a f le iðan d i v a x ið hraðar. M e ð a lá rs v ö x tu r til 10 ára a ld u rs er 5 ,7 sm hjá gu lál en 6 ,1 sm hjá bjartái. K yn v a r a th u g a ð hjá 34 á lum , 2 6 b jartálum o g 8 gu lá lu m . B ja rtá la rn ir v o ru 41 til 73 sm o g gu lá larn ir frá 52 til 66 sm . A llir áíarnir, u ían einn, v o ru h iy g n u r. M innsti bjartállinn (41 sm ) v a r h æ n gu r (6 ára). M ln n sta b jartálah ryg n an v a r 50 sm (9 ára). 1 4 800 7 0 0 - 6 0 0 - 1 500 - 1 4 0 0 - -J 300 2 0 0 - 1 0 0 0 3 5 7 9 11 13 15 17 A ld u r ár M y n d 9. M e ð a lle n g d g u lá la o g b jartála eftir aldri. 5. 2 Ifíhreiösta áls í vöimim á Suðurlandi. Sam k væ m t v ið íö lu m v ið s ta ð k u n n u g a o g öðrum h eim ildum er ál að tin na í 31 stö ðu vatn i o g tjörn u m (stæ rri en 10 ha) á Suðuriandi. Flest þessara va tn a eru i lágsveitum o g n álæ g t sjó. 011 n em a tv ö e m í innan v ið 50 m. h æ ð y iir sjávarm áli. Það sem ein ken n ir g e r ð þ e irra ö ð r u frem u r er h versu sm á o g g m n n þ au eru (ta íla 4). E ins o g á ðu r er g e t ið er h ér ek k i u m tæ m an di ú tb re ið slu k ö n n u n að ræ ð a þar sem ek k i eru tekin m eð ár, læ k ir o g smærri vö tn . G e r a m á ráð íy rir að hann sé v íð a að finna s' ým sum ám o g ek k i síst sk u rð u m o g iæ k ju m í lágsveitu m . Vitað er að ál er að fínna í Ölfusi, eínkum Ölfusforum, í Ö lfu sá , Flvítá o g í B rú a rá allí að Spóastöðum. H in s vegar eru ek k i spurnir a f ál ofar í Brúará eð a í Apavatni þ a r sem þó æ ttu að v e ra g ó ð sk ily rð i fyrir hann (grun nt vatn ). Þ á m á n efh a að ek k i e m spurnir a f því að áls hafí o r ð ið va rt á v a tn a s v æ ð i Þ jó rsá r o fa n v ið U rrið a fo ss . F ram k o m í sam tölum v ið m enn, sem o g í r itu ð u m heim ildum , að a llm ö rg v ö tn hafi v e r ið ræ st fram , þau m innkað o g sum eru h o rfin v e g n a fram ræ slu. : o o a ° □ ar~, L-i ■ O O . . . Qa o Bjarfái í □ G uláli T a fla 4. S k rá y fir v ö tn á S u ð u rla n d i stæ rri en 10 ha. þar sem ál er að finna. S tæ rð va tn an n a er m iðu ð v ið va tn ask á r O rk u sto fn u n a r (H a k o n A ð a is te in sso n 19 8 9 ). Meðal- H æ ð yfir H rep p u r H e iti v a tn s S tæ rð , ha dýpi m sjó m. S tö ð u v ö tn : Ö lfu sh rep p u r H líð a rv a tn 330 2,9 1 G a u lv erjab æ ja rh r, K le p p sv a tn 1 3 <2 5 G a u lv erjab æ ja rh r. B æ ja rv a tn 15 <2 10 G au iv/ S to k k s e y ra r h r H ó iav atn 22 <2 5 S to k k se y ra rh r. S k ip a v a tn 24 <2 5 S to k k se y ra rh r. T ra ó a rh o ítsv a tn 33 < 2 4 S to k k sey ra rh r. V a tn v e sta n T rh v. 12 <2 5 S to k k se v ra rh r. V a tn n o rð v . T ó fta v . 10 <2 5 S to k k sey ra rh r. T ó fta v a tn 11 <2 5 S to k k se y ra rh r. L a n g a d æ l 10 <(9 5 S to k k se y ra rh r. K a k k a iæ a tn 10 5 S to k k se y ra rh r. Á s g a u ts s ta ð a v a tn 15 <2 5 S to k k se y ra rh r. S e lv a tn 11 <0 ■j S to k k s e w a rh r . H a flið a k o tsv a tn 11 <2 9 H ra u n g erðish r. L a u g a rd æ la v a tn 40 <2 22 G rím sn esh r. H e stv a tn 680 2 3 ,7 50 Á lfta v a tn G rím sn eslir . 250 ? 15 V illin g a h o itsh r. K rá k u v a tn 10 <2 5 V illin g ah oltsh r. V illin g a h o ltsv a tn 71 <c'2. 15 Á sa h rep p u r F ra k k a v a tn 74 <2 10 Á sa h rep p u r F írú tsva tn 238 <2 10 V -L a n d e y ja h r. S k ú m s sta ð a v a tn 222 <2 10 V -L a n d e y ja h r. K u g g a v a tn 10 <2 10 R angárv'allahr. L a m b h a g a v a tn 1 1 <2 1 5 M ýrdalshr. O d d n ý ja rtjö rn 31 <2 90 S kaftárh r. M jó á s v a tn 40 <2 15 Skaftárhr. V ík u r f ló ð 14 <2 1 5 Skaftárhr, F ítja r fló ð 50 <2 15 Skaftárhr. S te in sm ý ra rfló ð 10 <2 15 Skaftárhr. S y stra v a tn 24 <2 121 Sjávar/óf!; V -E yjafja liah r. H o lts ó s 780 <2 0 M ýrdalsh r. D y rh ó la ó s 370 <2 0 1 6 Reykþyngd A 500 -1............. :........... ; : ..................... ................... 4 50 j 400 -j 350 | 300 2 50 ; 200 -j 150 -j 1 0 0 j 50 j 0 100 200 300 400 500 600 700 Ferskþyngd g Hlutfall af ferskþyngd 74 .0 : 72 .0 J 70 .0 ■; 68.0 j 66.0 ; 6 4 .0 j 6 2.0 j 6 0.0 4 0 M ynd 10. A . F y lg n i þ u n g a hjá fersk u m ál o g ál eftir verk u n . B. F ylg n i h lu tfa ils le g s þ u n g a hjá ál e ftir ve rk u n o g ferskþ u n ga. 5. 3 7 /7rciunav innsla. Aöferóir. A llin n v a r tek in n inn lifandi til vin nslu d a ga n a 18. á g ú s í o g 2 5 . sep tem b er. Fyrir verkun v a r áilinn drepinn i sa ltpæ kli o g síðan slæ gð u r. Því næst var hann skolaðu r í renn andi va tn i o g slím húð strokin af. Þ á v a r hann settu r a ftu r í p æ kil, hengdur upp o g slím h ú ð stro k in af ö ð ru sinni, A ð þ v í iokn u v a r állinn h e itre y k tu r i o p<0.05 100 200 300 400 500 600 700 Ferskþyngd g reykofni. Athugað v a r hvernig h ver ein staku r áll léttist við verkun. S e x tá n álar a f m ism unan di stæ rð u m voru einstaklingsvegnir fyrir o g eftír ve rk u n . Rýrmm við verkitn. Þ u n gi eftir leg u í sa ltpæ kii va r að m e ð a lla li 9 5 ,6 % , a f u p p h a íle g u m þunga, 4 ,4 % rymnun, o g eftir slæ gin gu o g heitreykingu 6 8 ,7 %, sem gerir 3 1,3 % rýn iu n . G ó ð sa m svö ru n v a r á milli upphaflegs þ u n g a o g þ u n g a úr ve rk u n (m ynd 10 A ). M ik ill b re ytile ik i v a r á því hve álarnir iétíu st m ik ið í v e rk u n , en þun gi eftir v e rk u n v a r alit í fá 63 % til 74 % a f u p p h a fíegu m þun ga. R ýrnun virtíst fara eftir stæ rð þ ví sk ýr munur k o m fram í hlutfallsiegri rýrnun eftir stæ ró (rnynd 10 B ) . Á la r u n air 400 g v o ru flestir undir 70 % a f u p p h a fle g u m þ u n g a eftir ve rk u n o g þeir sem v o ru y fir 400 g v o ru flestir y fir 70 % a f u p p h a fle g u m þ u n ga. S tæ rstu r hluti þ e ssa á la v o ru b jartáiar. 5. 4 Markaösaihugim. Markaður. Innflutningur: In n flu tn in gu r á ál er rnjög lítill eð a aðein s um 10 0 -20 0 k g . á árinu 19 9 4 (sam kvæ m t in n flu tn in gssk ýrsiu m H a g sto fu ísian d s). Innanlandsframleiðsla: V e r k u n á ál innaniands er iítii í d a g en m ikill áhugi er iyxir að auka fram ieiðsiu n a t.d . hjá a ð ilu m í H afn arfirði. Efiirspurn: E ftirsp u rn e ft ir ál virðist ek k i vera mikil. Þ ó er Ijóst að á h u gi er á vörunni o g hafa m a rg ir sm a k k a ð hana, þá eín kum eriendis. E kk i er ó lík le g t a ð e f áli væ ri veiddur o g v e rk a ð u r hér heima þá væ ru m ö g u ie ik a r á að byggja upp markað fyrir hann innanlands o g h u g sa n le g a til ú tflu ín in gs. Gceði afurðanna. T ii þess að k an n a gæ ð i afurðan n a úr íilrau n avin n siu n n i v a r efn t tii sm ökku n ar í e ld h ú si B æ n d a sa m ta k a n n a 13. o k tó b e r 19 9 5 . F en g n ir v o ru n o k k rir starfsm enn sam ta k a n n a o g ein n ig n o kk rir m a tre ið slu m eista ra r til a ð sm a k k a á a íúrðun um . S p u rt v a r um eftirfarandi þæ tti; b ra g ð , útlit, á fe rð , m ý k t, sa lt o g líklegar m arkað sh orfu r. N iðurstöður eru sem hér segir: 1. B ra g ð : F iestu m fann st afurðin bragðast m jö g v e l eri þ ó farm st nokkrum hún v e r a í d a u fara lagi. 1 8 2. U tiit 3. Á fe rð 4. M ý k t 5. Sait F iestu m fan n st útiitið g o tí, n o kk ru m þ o k k a ie g t . A fe r ð þ ó íti g ó ð . Flestum fann st m ýktin g ó ð , nokkrum fann st hún “óstöðug”. M æ tti v e ra saltari, sum um fannst afurðin h æ fíie g a sö ltu ð . 6. L ík le g a r m a rk a ð sh o rfu r : F iestir tö ld u að a fu rðin h ljóti að se lja st ve l sem m atur fyrir sæ lk era o g þ ó ein ku m í v e itin g a - húsum . Markaðsverð. S a m k v æ m t k ö n n u n sem ge rð va r í veitingahúsum á Reykjavíkursvæðinu þá er in n k au p sverð á re y k tu m ál um kr. 1 .50 0 ,- pr. kg. Framleiðslukostnaður. Miðað við tíu ton n a v e ið i á ári o g 7 0 % nýtingu verður fram leið slu k o stn a ð u r pr. kg. a fu rð (v e rð ífá vin nsíu) um kr. 1 .2 0 0 .- pr. k g . Nidurstödur h agk vœmnismats. N iðu rstöðu r eru þ v í þ æ r a ð , m ið a ð v ið tíu to n n a v e ið i á ári e ð a m eira, þá. g e tu r vin nsia á ál verið h a g k v æ m . Á þ a ð skal þ ó bent að ek k í er h efð íy rir neysiu á ái á ísiandi þanníg að m a rk a ð sh o rfu r eru ó þ e k k ta r . 6 . Umræða. ó. 1 Veiðar. Aili í tiirau n aveiðu m v a r 0 ,20 áiar, 0,05 k g á g ild ru n ó tt o g 1,8 k g á ha. V e ið i á flatareiningu v a r b e st í Kakkarvatni, 4,8 k g . A fli sem k g á gildrunótt v a r m estu r í bjartáiagildruna í S k e rfló ð i, 0 ,13 k g . í tilrau n aveiðu m í S k a ftá rh re p p i árið 19 9 1 v a r m eðalveiði m jö g m isrnunandi eftir vö tn u m eð a frá 0 ,1 4 til 0 ,6 7 á lar e ö a 0 ,0 9 til 0 ,1 5 k g á giidrunótt (Jón G . S ch ra m 19 9 3 , M a g n ú s Jóhann sson 19 9 3). Þ e tta er hins v e g a r mun m inna en ve id d ist í F iíja r fló ð i í L an d b roti árið 19 6 2 , en þá v e id d u st a ð m eð a lia li 3,4 álar á g ild ru n ó tt. V e ið in v a r m est í ágú st eð a um 7,0 á la r á g ild ru n ó tt (Jón G , Schram 199 3), E k k i er ijóst hver skýringin er á minni v e ið i nú en áðu r, en samkvæmt erlendum ath u g u n u m h efu r g le rá la g e n g d til E v ró p u m inn kað hin síðari ár (H a g strö m o g W ic k s tr ö m , 1990). 1 9 M inna ve id d ist a f b jartál en v æ n ía m átti, e ð a 2 7 k g sern g e rir urn 0 ,5 k g a fra k stu r á ha, Lítið er h æ gt að fu llyrð a um h v o rt slíks m egi v æ n ta á rle g a e ð a b ja rtá la g e n g d se b reytileg á m illi ár. I ánni Im sa í N o r e g i, þar sem fy lg s t h efu r v e rið m eð b jartálagö n gu m í á raraðir, h efu r b ja rtá la g e n g d v e rið að m eð a lta li 2 ,2 7 k g á ha, en þ ek kt er að tö lu v e rð u r b re ytiie ik i g e tu r v e rið í m agn í b jartála frá ári tíl árs ( V c lle s ta c l o g Jon sson 198 8, P ig g in s 19 8 5). í N o r e g i eru tö lu r um fra m le ið síu b ja ilá la ailt frá 0,2 k g til 10 k g á ha. Þ a ð er þ e k k í a ð b ja rtá la ge n g d er háð ým su m u m h v erfisþ á tíu m s.s. hitastigi o g ú rko m u o g áil á þ að til að fresta ú tg ö n g u sinni milíi ára séu a ð stæ ð u r ó h a gstæ ð ar (V o lle s ta d ofl. 199 4). Bjartállinn v a r a ð a lle g a á íeið ú t síðari hluta sep tem b er o g fy rstu v ik u í o k tó b e r . Á ð u r hefur ekki ve rið fy lg s t m eð b ja rtá la g ö n g u m hérlen dis, en þ etta sam ræm ist. v e l erlen dum n iðurstöðum . I Im sa ánni í N o r e g i v o ru b jartáiar m est á ferð in n i í se p ie m b e r o g ok tó b er (Vollestad ofl. 19 8 6 ) en í N o r ð u r-N o r e g i v o ru a ð a lg ö n g u rn a r í á g ú st o g septem ber (B e rg e se n o g K le m e n tse n 198 8). D a g le n g d , vatn sh iti o g va tn sren n sli ásam t tu n gistöðu era þæ ttir sem ta ld ir eru hafa mest áhrií' á h v en æ r b jarfállin n er á ferð til sjávar (D e e ie r 198 4). Minnkandi daglengd, lækkandi hitastig að haustinu o g aukið rennsli v irð a st ráðandi þ æ ttir í h v e n æ r ársins bjartállinn fe r til hafs. í Im sa vo ru aðalgön gu rn ar þ e g a r vatn sh itin n v a r 9 til 12 ° C en g ö n g u r v irtu st s tö ð v a s t v ið hita undir 4 °C (V a lle s ta d ofl. 19 8 6 , V a lle s t a d ofl. 199 4). 6. 2 Stœrð, akhir og vöxtiir. Flestir ve id dir áiar v o ru 45 til 55 sm (15 0 -2 5 0 g). G u lá la r v o r u að ja fn a ð i rninni en bjartálarnír. M e ð a ls tæ rð g u lá la v a r 2 1 2 g o g b ja ríá la 3 7 1 g , M irm sti b jartállínn v a r 40 sm 121 g, sem v a r h æ n gu r, en allir aðrir v o ru h rygn u r y fir 50 sm o g 240 g . S íæ rð o g kynjahlutfall gu lá la er s sam ræ m i v ið þ a ð sem þ e k k t er erlen d is (V o ile s ta d o g Jon sson 1986, M o ria try 1989, V o IIe sta d 199 2). í vö tn u n u m v o ru 68 % á la y fir 15 0 g sem áætlaö er að sé m innsta n ý ta n le g a stæ rð , o g í b jartáiagild ru í S k e rfló ð i 9 6 % , en þ a r va r aðeins einn bjartáll u n dir 150 g. A f heiidarafla v a r 73 % a f n ýtan le gri stæ rð . I athugun sem gerð v a r fjóru m v ö tn u m í S ka ftá rh re p p i árið 19 9 1 v a r h lu tfa ll n ý ta n le g s áls y fir 80 % í ölium vötnunum. Þ ar v a r állinn einnig stærri en i þessari kön n un eð a að meðaltali frá 300 til 9 5 0 g , m isiuunandi eftir v ö tn u m (Jón G . S ch ra m 19 9 3, M a g n ú s Jóhannsson 1993). A ldur álanna v a r frem u r hár, Meðalaldur bjartála va r 10 ,2 ár o g gulála 8,6 ár. V ö x tu r var því h æ gu r e ð a 5 ,7 sm á ári h já gu lá l o g 6 ,1 sm hjá b jartál. Astæðan fyrir því að 2 0 bjartálar v írð a st h afa v a x ið b e fu r en gulálar er trúlega sú að stæ rstu álarnir i hverjum árgangí (h ra ð v ö x n u stu ) v e rð a iy r r b jartálar en jafnaaldrar þ eirra (V e lie s ta d o g Jon sson ! 986). V ö x tu r g u lá la v a r h eld u r m eiri en í F itjarfló ð i í L a n d b ro ti (5 ,1 sin) en á þ e k k u r o g fék k st í S te in sm ý ra ríló ð i (6 ,1 sm ) (M a g n ú s Jóhann sson 19 9 3 ). A lg e n g u r á rsv ö x tu r í n orskum vö tn u m er 5 til 7 sm á ári (V o lle s ta d 198 6) sv o ísien sk i áilin v irð ist hafa álíka v a xta rh ra ð a o g sá n orsk i. 6. 3 Veiðimöguleikar á Suóurlandi. Til að kanna h vert væ ri v e ið a n le g t m agn a f ái á S u ðu rlan d i v o ru g e rð a r 3 m ism unan di áætianir (ta fla 5). Á æ tiu n 1 g e r ir ráð fyrir 1 k g a fla á h e k ta ra o g áæ tlun 2 g e rir ráð fyrir 5 kg/ha o g áæ tlun 3 , 10 k g a fla á ha. Þ essi afli er á æ tla ð u r ú r v ö tn u m m eð innan við 2 m m eð a ld vp i. í v ö tn u m m eð 2 -5 m rn eð ald ýp t er fra m ie ið sla á æ tlu ð heim in gi minni. F ram ieiðsia v a tn a m e ð y íir 5 m m eð a id ýp i er áæ tlu ð 1/5 a f fram leið siu v a tn a grynnri en 2 m. A æ tla ð a r a fla tö lu r í v ö tn u m eru sa m k v æ m t þ e ssu m fo rsen d u m ailt frá Tafla 5. Á æ tlu n u m þ a ð m a gn sem unnt er að v e ið a á rleg a a f ál í v ö tn u m á S u ðu rian d i. S k ip t e ftir hreppum . S já frekari sk ý rin g a r í texta . Fíreppur S tæ rð ha A fli k g á ári A æ tlu n 1 A æ tlu n 2 Á æ tlu n 3 Stöðuvötn: Ö l& sh rep p u r 330 165 825 1650 Gaulv/ S to k k se y ra riir 50 50 250 500 Stokkseyrarhr. 14 7 147 73 5 1470 H raungerðishr. 40 163 200 400 Grim sneshr. 680 266 680 1360 V iilingaholtshr. 81 81 405 8 10 Á sahreppur 3 1 2 3 1 2 1560 3 12 0 V -L andeyjahr. 2 3 2 2 3 2 1 16 0 23 20 R angán'ailah r. 11 1 I 55 110 M ýrdalshr. 31 31 155 3 10 Skaftárhr. 15 4 15 4 770 1540 Sam tais 2068 1 6 1 2 6 7 9 5 13590 Áællun 1 . gerir ráö fyrir 1 kg afla á ha. í vötnum meö meðaldýpi innan viö 2 m dýpi. áætlun 2 gerir ráð fyrír 5 kg/ha og áætlun 3, 10 kg afla á ha. sjá frckar í íexía. 2 1 1,6 til 13 ,6 íonn. H é r eru h á lfsö lí sjávarlón ekkt tekin m eð vegna óvissu urn það hversu m ikið þau kun n i að g e fa a f sér. Út frá ve ið itilra u n u m í þessari kön n u n ,veið ireyn siu í v ö tn u m v ið Stokkseyri, í S ka ftá rh rep p i (Magnús Jóhannsson 199 3) o g erlen du m u p p lý s in g u m um afra k stu r vatn a (T e sc h 19 7 7 , D eeSer 198 4, K ristensen 198 0 , V s l le s t a d o g Jon sson 198 8 ), ásam t tö lu m um afla í þ essu tilraun averkefni m á æ tla a ð á æ tlu n 2 sé lík leg u st, en þar er g e rt ráð íýrir 6,8 ton n a afla í vötnum . Til v ið b ó ta r k æ m i fram leið sla á ál úr ám o g læ kju m o g h álfsö ltu in sjávarlónum . Þ á er o g ó k a n n a ð u r sá m ö g u le ík i að v e ið a ál í sjó , t.d. í sk erja g arð in u m miili Þ jórsár o g Ö lfu sá r , eri þ a ð er ve l þ e k k t erien dis að hluii á la elst u p p í sö ltu m sjó (Vollestad 198 6). Þ e tta hefur ekkert verið kannað hérlendis. Þar sem ákveðin ó vissa er í áæ tlunum sem þ e ssu m m á æ tla að raun hæ ft sé að ársaíli a f ál á S u ð u rla n d i geti verið 5 til 10 tonn. M ö g u le ik a r tii v e ið a eru d re ifð ir o g v íð a st h v ar er v e ið a n le g t m agn tiltöluiega lítið á hverjum stað. M e stu möguleikar v irð a st í iágsveitum R an gárvallasýslu , F ló a , Ö lfu s i o g S kaftárh rep p i. H vort g n m d v ö liu r sé fy r ir v e ið i b æ n d a b y g g is t að m iklu leyti á a ð stæ ð u m h já hverjum bónda. L jó st v irð ist a ð ek k i er um m iklar te k ju r að ræ ð a fyrir h vern o g einn landeiganda. S am h lið a g u lá la v e ið i æ tti að reyn a fre k a b ja rtá la ve ið a r þ ví tilk o stn a ð u r v ið þæ r ve ið a r ætti í flestu tilfe llu m a ð v e ra rninni en v ið g u lá la v e ið a r. S am k v æ m t niðurstöðum bjartáiaveiðanna er septembermánuður lík leg a stu r tíi að g e fa m esta veiði. ó. 4 Verkun og markadur. Þyngd álanna eftir v e rk u n o g reykingu v a r að meðaltali 6 2 ,4 % og 68,8 % a f upphaflegum þ u n g a i tv e im u r verku n artilrau n u m . M ik ill b re y lile ik i v a r í h v e álarnir léttust í verkun en þ u n gi e ft ir v e rk u n v a r allt frá 63 % til 74 % a f u p p h a fle g u m þun ga. Rýrnun virtist fara e ftir s íæ rð , þ. e. sm æ rri állinn rýrnaði m eira en sá stæ rri. Sam kvæ m t u p p lýsin gu m frá U su i ( 1 9 7 4 ) er áll eftír ve rk u n í h e itre y k in g u 60 % a f upprunalegri þyn gd . S k ý r in g in á þ essu m m un gæ ti leg ið í m ism unan di stæ rð á ls o g ekki er ó lík le g t að ó lík a r a ð fe rð ir v ið söltun o g h eitreyk in g u va ld i m isrnunandi þyngdaríapi. Lausleg athugun á m a rk að i sýn di að m a rk að u r er iítill fyrir ál inn anlands o g fram b o ð viróist einnig lítið. A k v e ð n ir v e itin g a sta ð ir n álæ gt v e ið isv æ ð u m , sem te n g d ir eru ferðaþjónustu, gæ tu sk a p a ð sér á k v e ð n a serstö ð u m eð því að hafa ál á b o ð stó ln u m . A thyglisvert er að áh u gi er fy rir vö ru n n i o g m arg ir v irð a st hafa sm a k k a ð ál, einkum erlendis. Því er ek k i ó lík le g t að e f áll væ ri veiddur o g verkaður hér h eím a væru möguleikar á að b y g g ja u p p markað. Eins er lík leg t að einhver markaður sé fyrir ferskan ál en a u k þ e ss g æ ti ú tílu tn in g u r k o m ið tii grein a sem þ ó er ó k a n n að . Fram kom í sa m íö lu m v ið v e itin g a m e n n að stö ð u g t fram b o ð skipti m iklu máii. N ið u rstö ð u r h a g k v æ m n ism a ts b en d a til þ e ss að m eð tíu to n n a v e ið i á ári e ð a m eira, geti vin nsla á ál v e r ið h a g k v æ m . A æ tiu n um v e ið a n leg t m a gn á Su ðu rlan d r g e rir ráð fyrir að v e ið a n le g t m a gn sé u m 5 til 10 tonn á ári. Þ v í v irð ist Ijóst að h æ p ið sé að b yg gja vin nslu e in g ö n g u á su n n len sku m ál. H ér h efu r e in g ö n g u v e r ið ræ tt um ál til n eyslu , en á laeldi, sem stu n d að er v íð a erlen dis b yg gist e in v ö rð u n g u á að v e id d u r er áll til á fram eld is (U su i 19 7 4 ). Y m is t er n o ta ð u r gleráll e ð a g u lá ll sem e k k i er kom in n í m arkað sstæ rð . Þ an n ig er sá m ö g u ie ik i íýrir hendi að sm ár áll sem tæ st í v e ið u m til m anneldls geti n ýst til á ia e ld is hériendis. G ru n d vö llu r slík s e ld is h é rlen d is er hins v e g a r ókann aður. 7. Þakkarorð Framleiðnísjóöur Landbúnaðarins o g Atvinnuþróunarsjóður S e lfo s s veittu fjárhagsstuðning til verkefnisins. H ö rð u r Jóelsso n , S æ v a r J ó e isso n bændur í B ra u ta rtu n g u í S to k k se y ra r h re p p i v e ittu m a rg v ís leg a a ð s to ð v ið tilra u n aveiða r. S ío k k se y ra rh re p p u r g a f leyfí til tilraunaveiða í landi hreppsins. Matreiðslumenn o g íleiri a ð ila r g e r ð u bragðpróíún. Jón A . Bergsveinsson o g Margrét Ofeigsdóttir aðstoðuðu v ið sý n a ö fíu n o g úrvinnslu gagn a. G u ð n i G u ó b e r g ss o n o g Jón A . B e rg sv e in ss o n lásu handrit. Ö llu m þ e ssu m aðiium eru fæ rð a r b estu þ ek kir. 8 . Hetmiídir. A vise, 3. C., N e lso n , W .S . , A r n o ld , J., K o e h n , R .K ., Williams, G .C . o g Thorsteinsson, V . 1990 . T h e e v a lu tio n a ry g e n e íic sía tu s o f the Ieelan d ic eels. Evohdion. 4 4 (5): 1254-1262. B ergersen, R . o g K lem e n tse n , A . 198 8. F re sh w a ter eel Anguilla anguilia (L ) from N o rth Norway w ith emphasis on o c c u rre n ce , fo o d , a g e and downstream m igration. Nordic Journal o f Freshwaíer Research. 64: 5 4-66 . D eeler, C .L , 19 8 1. O n íh e a g e and g r o w th o f cu ltu red ee ls , Anguilla anguilia (L in n eus, 175 8 ). Aquacniíure, 26 (1-2 ): 13-22. D eeler, C .L . 1984. S y n o p sis o f b io lo g ic a l data on the e e l , , Anguil/a anguilla (L in n eus, 175 8 ). FAO Fisheries Synposis No. 80, Revision L 73 . b ls G uerault, D ., Y . D e sa u n a y o g R . L eco m te-F in ig er . 199 4. B io m e try and o to iith o m e try oíÁnguilla anguilla (L .) g la ss eels: tovvards a m odei fo r sea so n a l v a r ia tio n 9 KÍFÁC'/JCES Fei Working Croup, Oviecio, Spain 199 4. H agström , O , o g W ic k strö m , H . 1990. Im m igration o f Y o u n g E e ls to th e S k a g e rr a k - K a tte g a t A r e a 1900 to 1989. Ini. Revue ges. Hydrohiol. 7 0 7 -7 1 6 . H ákon A ð a lste in sso n , S ig u rjó n R ist, S tefán H erm an n sson o g S v a n u r P álsso n . 1989, S tö ð u v ö tn á Islandi. S k rá um v ö tn stæ rri en 0,1 km2. O rku sto frm n , Vatnsorkudeild, OS-89004/VOD-02: 48 bls. H araldstad, 0 . , V o lle s ta d , L , A . o g Jon sson , B . 198 5. D e sc e n t o fE u r o p e a n s ilve r eels, Anguilla anguilla L., in a N o rw e g ia n vvatercourse. ./. Fish. fíiol. 26: 3 7 - 4 1. Jón G unnar Schram . 199 3. Alamnmóbúr 1991. A tvin n u m á la n efh d S k a ftá rh re p p s , F Su K irkju b æ jark lau stri: 56 bis. K ristensen, B , 1980. Alefiske Iferskvann. Landbruksforlaget Oslo. 36 bls. M agn ús Jóhannsson. 1993, Fiskræktar- og fiskekJismöguieikar í Skafiárhreppi. A ívin n u m álan em d S ka ftá rh re p p s, V e ið im á la sto fn u n S u ð u rla n d sd e ild , F iskeld isbraut F S u K irkju b æ jark lau stri: 39 bis. Maríanna Alexandersdóttir. 19 7 8 . All á Islandi. Erindi flutt í útvarpi 16, m aí 19 78 . V eiðim álastofn u n : 9. bls. M oriarty, C . 1989. T h e silver eel c a íc h on th e lo w e r river S h an n on , Ireland. Furopean Iniand Fisheríes Ádvisory Commissíon Working Parfy on Fei, Porio, 29 May- 3. june, 1989: 14 bls. Piggins, D.J. 198 5. The silver eel runs of th e Burrishole river system : 1959-84. N um bers, w e ig h ts , íiming and sex ratios. ítuernaííonai coimcii fo r íhe Exploration o f íhe Sea, Anadromous-Catadromous Fish Commiítee C.M. I985/M:5, Copenhagen, Sadler, K . 1979. E ffe c í o f temperature on the grovvth and survival o f th e European eel, Anguiila anguilla L . J.Fish fíioi. i 5, 4 9 9 -5 0 7. Sígurður M. Einarsson. 1984. Áll, nytsemi hans og ræktun. Frcyr 53: 9 38 -9 4 0 . Tesch, F. W . 19 7 7 . The Eel. Hiology and Management o f A/igttiílid Fels. C h ap m an and H all, L on d on : 4 3 4 bls. Usui, A. 1974, Eel culture. Fishing N e w s Books Limited, Farnham, Surrey: 1 1 8 bls 2 4 V ^ llestad , L . A . 198 6. L iv sh isto rie n til eu ro p eisk ál. Fau/ia, 29: 1 1 7 - 1 2 5 . V o lle sta d , L. A . 199 2. Geographic variation in a g e and length ai rn eía m o rp h o sís o f m aturin g E u ro p ea n eel: environm enta! e ífe c ts and p h e n o ty p ic plasticity. Journal o f Animal Ecofogy, 6 1: 4 1-4 8 . V o liesta d , L .A . o g Jon sson , B . 198 6. L ife - h isto ry ch a ra cte ris tic s o f th e E u ro p e a n eel (A n g u illa an g u illa ) in th e ím sa R iv e r, N o rw a y . Transadions o f American FisheriesSociety, 1 1 5 : 8 6 4 -8 7 1 . V allestad , L. A , o g B . Jon sso n , 1988. A 13 -y e a r stu d y o f th e p o p u la tio n d yn a m ics and g r o w th o f th e European eel Anguilla anguílla in a Norwegian river: E v id e n c e o f d en sity-d ep en d en t m o rta lity , and d ev e lo p m e n t o f a m o d el fo r p re d ic tin g yield . Jouni. o f Anim. Ecol., 57: bls. 9 8 3 -9 9 7 . V o llesta d , L . A ., Jon sso n , B . , H v id ste n , N . A . o g N æ sje , T . F. 199 4. E xp erim e n tal test o f en viro n m en tal fa c to rs influentin g the sea w a rd m ig ra lio n o f E u ro p ea n silver eels. Journal o f Fish Biology 45: 6 41 -6 5 1 . Vollestad, L .A ., Jon sson , B . , H v id síe n , N .A ., N æ sje , T .F ., H a rald sta d , 0 o g R u u d - ITansen, J. 198 6, E n viro n m en taí F a cto rs R e g u la tin g th e S e a w a r d M ig ra tio n o f E u ro p ea n S ilv e r E e !s (Anguilla anguilla). Can. ,/. Fish. Aquaí. Sci. 43: 190 9- 19 16 . Williams, G . C . , R. K . K o e h n , o g V , Thorsteinsson. 1984. Ic e la n d ic eels: Evidence o f a sin gle sp ec ie s oíAnguiIIa in N o rth A tla n tic . Copeia 1984: 2 2 1 -2 2 3 . Environ Biol Fish (2008) 83:309-325 DOI 10.1007/s 10641-008-9341 -y Inshore migration and otolith microstructure/microchemistry of anguillid glass eels recruited to Iceland Mari Kuroki • Momoko Kawai • Bjarni Jónsson • Jun Aoyama • Michael J. Miller • David L. G. Noakes • Katsumi Tsukamoto Received: 13 June 2007 / Accepted: 25 October 2007/Published online: 6 March 2008 í© Springer Science + Business Media B.V. 2008 Abstract The timing o f catches o f anguillid glass eels and their otolith microstructure and microchem- istry were studied in southwest Iceland, where the European eel, A nguilla anguilla and American eel, A. rostrata have been thought to live sympatrically, to leam about their early life history and the possible mechanism o f the separation between these two species ranges. Catches at the site studied suggest that glass eels may have started upstream migration as the river temperature warmed in late June and early M. Kuroki (z+i) • M. Kawai • J. Aoyama • M. J. Miller • K. Tsukamoto Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan e-mail: mari@ori.u-tokyo.ac.jp B. Jónsson Institute of Freshwater Fisheries, Northem Division, 550, Saudárkrókur, Iceland P , L . G . N o a k es Department of Zoology and Axelrod Institute of Ichthyology, University of Guelph, Guelph, ON NIG 2WI, Canada Present address: D. L. G. Noakes Department of Fisheries and Wildlife, Oregon Hatchery Research Center, Oregon State, University, Corvallis, OR 97331-3803, USA July. The glass eels were mitochondrially identified into two species, A. anguilla and A. rostrata , although the latter were likely hybrids between the two species based on a different study. Otolith analyses showed no sharp increases in otolith increment width or sharp decrease o f otolith Sr:Ca ratio in either species, which are the characteristic changes corresponding to the onset o f metamorphosis in many anguillid species including A. rostrata collected in North America and A. anguilla in Europe. The mean age at recmitment determined for the glass eels in Iceland were similar between the two species (336.6±41.7 and 319.3± 36.0 days for A. anguilla and A. rostrata, respective- ly), as were their total lengths (range 58.0-78.5 mm and 58.5-73.0 mm). In addition, mean age at metamoi"phosis (278.0±36.8 and 254.0±47.7 days) and total age (372.3±50.8 and 352.9±42.6 days) were also simílar between the two species. However, these ages o f A. rostrata in Iceland were older than those in North America, and those o f A. anguilla collected in Iceland were roughly intermediate between the rest o f Europe and North Africa. These fmdings support the hypothesis that the timing o f metamoiphosis is a key factor for determining the place o f recmitment o f glass eels and maintaining the geographic separation between the two species. Keywords Freshwater eel • Recmitment • Metamorphosis • Otolith microstmcture • Otolith microchemistry- Iceland '£) Springer mailto:mari@ori.u-tokyo.ac.jp 310 Environ Biol Fish (2008) 83:309-325 Introduction In the Atlantic Ocean there are two species o f freshwater eels, the European eel, A nguilla anguilla, and the American eel, A. rostrata. They have separate freshwater habitats, along the west coast o f the Eurasian continent for the former and the east coast o f the North Am erican continent for the latter (Schmidt 1909; Boétius 1985). Both species have been thought to occur in Iceland, which is the only area o f sympatry (Boétius 1980; Williams et al. 1984; Avise et al. 1990). Iceland is the westem limit o f the geographic distribution o f A. anguilla , and the eastem limit for A. rostrata. Recently it has been suggested that there is a possibility o f hybridization between these two species (Avise et al. 1990; Avise 2003; Albert et al. 2006). Iceland is located close to the arctic region in the North Atlantic Ocean, between 63°N and 67°N (Fig. 1), and is separated from Greenland to the west by Davis Strait and northern Europe to the east by the Norwegian Sea and Denmark Strait. There is a large amount o f geothenual activity on the island because it is a relatively recently fonned landmass along the northem end o f the mid-Atlantic ridge where new ocean floor is being created by tectonic activity. Mean sea surface temperatures at Reykjavík along southwest Iceland can vary from about I-2°C in January and Febmary to 11 °C in July and August (Hanna et al. 2006), which is 28°W 24°W 20°W 16°W 12°W site where glass eels were collected and the general pattems of ocean currents near Iceland, which was adapted from Hanna et al. (2006) considerably colder than in most other parts o f the ranges where these two species recmit. Sea surface temperatures rnay be slightly warmer further offshore o f Iceland in winter (Hanna et al. 2006), but the water temperature in coastal areas and freshwater are thought to be critical factors determining the upstream migra- tion o f glass eels or elvers in temperate anguillid species (Linton et al. 2007). Both A. anguilla and A. rostrata spawn in an overlapping area o f the Sargasso Sea (Schmidt 1922; Schoth and Tesch 1982; M cCleave and Kleckner 1987), but it is not well understood how these two species maintain their specific ranges that are sepa- rated by the Atlantic Ocean. Schmidt (1925) sug- gested that their separate ranges were the consequence o f differences in the larval durations and growth rates o f the two species. However, Boétius and Harding (1985) suggested that there was no clear difference in growth rates during the leptocephalus stage o f both species after a reexamination o f the specimens collected by Schmidt (1925). Recent otolith studies supported Schmidt’s hypothesis, by showing that A. anguilla started metamorphosing about 50-150 days later than A. rostrata (Wang and Tzeng 2000; Arai et al. 2000). Other differences between the two species are evident in the sizes that their leptocephali can reach before metamorphosis and in the sizes o f their glass eels at recmitment. Data on the maximum total length o f leptocephali o f the two species indicates that there have been no A. rostrata leptocephali collected larger than 70 mm (Boétius and Harding 1985; Kleckner and McCleave 1985), but that A. anguilla leptocephali can reach sizes up to 85 mm, with peak abundances at about 70-75 mm (Tesch 1980; Boétius and Harding 1985; Bast and Strehlow 1990). Similarly the glass eels o f the two species have different size ranges. The length o f A. rostrata glass eels may range from less than 50 mm in the southem part o f their range to up to 65 mm in the north (Haro and Krueger 1988; Wang and Tzeng 2000; Sullivan et al. 2006). Glass eels o f A. anguilla range from about 55-80 mm, with some seasonal variation in length (Boétius and Boétius 1989; Desaunay and Guerault 1997; Wang and Tzeng 2000). Based on these observations o f their larval sizes and ages, the difference in duration o f the period o f passive transport by currents during the leptocephalus stage could be an important mechanism for the separation o f the ranges o f the two species. If this is ö Springer Environ Biol Fish (2008) 83:309-325 311 the case, both eel species migrating from the Sargasso Sea to lceland using the same current systems should have the same timing o f metamorphosis and similar ages at recruitment. Furthermore, the ages o f Icelan- dic A. rostrata should be older than those o f the population in North America, while those o f Icelandic A. anguilla should be similar or a little younger than those o f the main population in Europe due to the distance from the Sargasso Sea. However, there has been no information on the age o f glass eels that recruited to Iceland. In the present study, we report the timing o f the catches o f anguillid glass eels at the River Vogslækur in Iceland in relation to water temperature and their pigmentation stages, and focus on analyses o f their otolith microstructure and microchemistry to deter- mine their early life history characteristics. We also compare the results obtained for the two species in Iceland with previous information from the main populations o f each species in Europe and North America, to evaluate i f the ages o f Icelandic glass eels differ from those in the main part o f their ranges. Our objective was to understand the possible mechanisms that maintain the separation between the two Atlantic species ranges by examining the glass eels that recruit to Iceland and to provide some insight on the evolutionary process o f speciation o f A, anguilla and A. rostrata. Materials and methods Glass eels were collected in 1 to 3 h sampling periods during nighttime at the base o f a small waterfall (1.5 m high, 5 m wide) near the mouth o f the River Vogslækur in southwest Iceland (Fig. I) on 28 June 1999, and during 2-5 sampling days at each quarter o f the moon from 7 May to 31 July 2000. The sampling in 1999 was carried out with a 50 cm wide scoop net, and a 20 cm diameter dip net that was used to actively catch swimming glass eels at high tide. The same scoop nets and dip nets were used in 2000, plus an electric shocker was used at low tide. Water temperature was measured with a temperature record- er (MDS-T, Alec Electronics Co., Ltd.) at 20 min intervals from 11 May to 29 July 2000. Glass eels were initially placed in 70% ethanol immediately after sampling, and then later preserved in 96% ethanol. All glass eels were measured to the nearest millimeter in total length (TL), and the pigmentatíon stages were classified based on the stages defined by Bertin (1956). Because the glass eels were measured after preservation, the TL data are slight underestimates due the effect o f shrinkage during preservation. The total number o f vertebrae (TV) o f 20 glass eels collected on 27 June 2000 was counted using radio- graphs (soft-X, Softex C o„ Ltd.). From the collected glass eel samples, 100 glass eels (A. anguilla, « = 94; A. rostrata, n = 6) were examined in 1999, and 231 were examined in 2000 (A. anguilla, «=217; A. rostrata, «= 14) (Table 1). Genetic identi- íication o f these glass eels was cam ed out in the laboratory by comparing their mitochondrial D N A 16S ribosome R N A (mtDNA 16S rRNA) sequences with those o f morphologically well-identified adults. Total genomic D N A was extracted according to a standard protocol (Aoyama et al. 1999). A portion o f the m tDNA 16S rRNA gene (about 500 base pairs) Table 1 Number of glass eels collected at Vogslækur in Iceland in 1999 and 2 0 0 0 , and the nuniber of glass eels examined in the analyses of otolith mícro- stmcture and microchemis- try (number in parentheses) Sampling date Collection Otolith analyses A. unguilla A. rostrata Total A. anguilla A. rostrata Total 28 June 1999 94 6 100 1 0 (1) 3 (2) 13 (3) 7 May 2000 2 0 2 2 (0) 0 (0) 2 (0 ) 5 May 2000 2 0 2 2 (0) 0 (0) 2 (0 ) 9 May 2000 2 0 2 2 (0 ) 0 (0 ) 2 (0 ) 18 May 2000 26 4 30 4(1) 4(2) 8 (3) 25 May 2000 39 3 42 6 (2 ) 3 (3) 9(5) 27 June 2000 18 2 20 5(5) 2 (2 ) 7(7) 30 May 2000 96 4 100 10 (1 ) 3 (1) 13 (2) 9 July 2000 32 1 33 8 (0 ) 0 (0 ) 8 (0) Total 311 20 331 49 (10) 15 (10) 64 (20) 'ZA Springer 312 Environ Biol Fish (2008) 83:309-325 was amplifíed by polymerase chain reaction (PCR) using 2 oligonucleotide primers, L2510 and H3058. Amplification parameters were 30 cycles o f denatur- ation at 94°C for 30 s, annealing at 58°C for 30 s and extension at 72°C for 60 s. Although we tentatively regarded the specimens examined in this study as A. anguilla or A. rostrata based on their rntDNA gene sequences, the existence o f natural hybrids has been reported in lceland recently by Albert et al. (2006). That study found that only A. anguilla and hybrids o f the two species appeared to be present in Iceland, which as discussed later, also may have been the case in the present study. A total o f 49 A. anguilla and 15 A. rostrata were analyzed for their otolith microstmcmre (Table 1). Sagittal otoliths were extracted from each individual and embedded in epoxy resin (Epofix, Strues) and mounted on glass slides. These samples were then ground to expose the core and polished with 6 and 1 pm diamond paste on a polishing wheel. Subse- quently, they were etched with 0.05 M HCl and vacuum coated with Pt-Pd in an ion-sputter for observation with a scanning electron microscope (SEM, Hitachi S-4500). SEM photographs were taken o f the whole otolith using a magnification o f 130x or 150x and the otolith microstmcmre was photogi'aphed at l,500x magnification. These photographs were then used for counting growth increments along the longest axis o f the otolith. The width o f every 10 successive increments (average incremental width) was measured. Four otolith age parameters were used in the smdy: total age (At), age at recruitment (Ar), age at metamorphosis (Am), and hatching date (HD). A t was defined as the total number o f increments outside the hatch check (0 days) to the edge o f the otolith. Ar was defined as the number o f increments from the hatch check to the freshwater rnark, which was the first heavy check formed near the otolith edge that is thought to indicate when glass eels reach Iower salinities in the estuary (Kawakami et al. 1999). Various studies have found that there is daily increment fonnation in both the early leptocephalus and inshore glass eel or elver stages (i.e. Tsukamoto 1989; Umezawa and Tsukamoto 1991; Martin 1995; Shinoda et al. 2004), so as discussed later in more detail, increment formation was assumed to be daily until at least the freshwater mark. Am was the number o f increments from the hatch check to the onset o f metamorphosis. Otolith characteristics were used to estimate the timing o f metamorphosis, because vari- ous studies on Anguilla and Conger larvae have indicated that during metamorphosis from the lepto- cephalus to the glass eel stage, there is a rapid increase in increment widths and a rapid drop in Sr: Ca ratios (Otake et al. 1994, 1997; Tzeng and Tsai 1994; Cheng and Tzeng 1996; Arai et al. 1997, 2000; Correia et al. 2003, 2004; Wang and Tzeng 2000; Mami et al. 2001; Kuroki et al. 2005). HD was the possible hatching date o f each individual that was back-calculated using the At and the sampling date. To help locate the timing o f metamorphosis in the otolith microstructure, 10 otoliths o f each o f two species were examined using life-history transects o f Sr and Ca concentrations along a line down on the longest axis frorn the otolith core to the edge using wave-length dispersive X-ray electron microprobe (JXA-8900R, JEOL). Strontianite (SrTi03) and Cal- cite (C aC 0 3) were used as standards. The accelerating voltage and beam current were 15 k V and 12 nA, respectively. The electron beam was focused on a point o f 1 um diameter, with measurements at 1 pm interval (each counting time was 4 s). Two dimen- sional X-ray intensity maps o f Sr were made o f the otoliths o f five specimens o f both species. The beant current was 50 nA, counting time was 0.4 s, pixel size was 4 x 4 pm, and the electron beam was focused on a point o f 1 pm. Statistical differences between the two species and 2 years in TL, At, An Am, and HD were analyzed using the M ann-W hitney’s U test. Pigmentation stages o f glass eels between the 2 years and two species were examined by analysis o f variance (ANOVA). Statis- tical significance was accepted at F’<0.05. Results Recmitinent o f glass eels to freshwater habitat A total o f 1,253 glass eels were collected in 1999 (n= 100) and 2000 («= 1,153) at Vogslækur in Iceland. In 1999, all glass eels examined were caught on one date (28 June). In 2000, the glass eels were sampled during about 3 months from M ay to July (Fig. 2). The first catch o f glass eels occurred on 7 M ay («=2), and the second and third catches were on 5 June («=2) and 9 June («=2). These first small catches were made using the dip net. Other glass eels were caught by the £) Springer Environ Biol Fish (2008) 83:309-325 313 *oo> o<D iíi £ o 1Qo_ 0_Q E3 z 3 Scoop net □ 1999 (n= 100) ■ 2000 (n= 952) , 1 b Electric shocker ■ 2000 (n= 195) i . C Dip net „ „ ..I.............M......................... ‘ May June July 20 ^ <D 15-1 CÐ c —< O • o • o • o • Fig. 2 The number of anguillid glass eels collected using a a 50 cm wide scoop net, b an electronic shocker and c a 20 cm diameter dip net at Vogslækur in Iceland on 28 June 1999, and from 7 May to 31 July 2000. Changes in water temperature at the Vogslækur site in 2000 (open circles) where glass eels were collected is aiso shown in the boítom panel CDJO E =3 A. anguilla □ 1999 (n = 94) ■ 2000 (n = 217) A. rostrata □ 1999 (n = 6) ■ 2000 (n= 14) 6 - 2 - 0 - ni i i i i i r ■ I I J i i" r ”i r r 54 56 58 60 62 64 66 68 70 72 74 76 78 80 Total length (mm) Fig. 3 Total length (TL) of glass eels of Anguúla anguilla (top) and A. rostrata (bottom) collected at Vogslækur in Iceland in 1999 and 2000 scoop net or with the electric shocker from 17 June to 9 July (n= 1 ,M 7), when water temperatures ranged from 11.5 to 16.2°C (Fig. 2 ). The largest catches occurred on 30 June and 1 July 2000 on the day o f new moon when water temperatures were 14.8 and 15.6°C. 66% o f the total for 2000 (n= 759) were caught during these 2 days, suggesting that there was a simultaneous movement o f glass eels into the area below the waterfall, possibly corresponding to a lunar cycle. Morphology The mean TL ± SD o f A. anguilla (n= 311) examined in 1999 and 2000 were 67.9±3.9 mm (range 58.0- 78.5 mm, «=94) and 68.5±3.1 mm (67.5-77.0 rnm, n=217), respectively, and those o f A. rostratci (n= 20), 66.0±4.4 (58.5-73.0 mm, n = 6) and 67.5±3.1 mm (63.0-72.0 mm, «=14), respectively. There was no significant difference in TL between the 2 years or between the two species (p> 0.05). The minimum sizes o f both species were about the same (58 mm), but the maximum sizes o f A. anguilla (78 mm) and A. rostrata (73 mm) differed slightly (Fig. 3). The pigmentation stages o f glass eels ranged from the V IAJ to V IB stage in A. anguilla and from the V Ia iíí to V IB stage in A. rostrata (Table 2 ) . M ost o f the A. anguilla (98%, n = 305) and A. rostrata (95%, «= 19) had a well developed pigmentation and were classifíed at the latter two stages o f V IA|V or V IB. There was no signifícant difference in pigmentation stages between years for both species and between two species. The T V counts o f A. anguilla glass eels ranged from 110 to 118 (n=18), while the T V o f A. rostrata were 109 and 110 (n=2), showing over- lapping ranges (Fig. 4 ) . Table 2 Pigmentation stage (sample sizes of specimens examined (n) and total length (TL) of glass eels coilected at Vogslækur in Iceland 1999 and 2000 Pigmentation stage A. anguilia A. rostruta n TL (mm) n TL (mm) VIai 1 70.5 0 - v iaii 3 59.5-71.5 0 - VIAII, 2 67.5-72.0 1 69.5 VIAlv 192 58.0-78.5 13 58.5-73.0 VIB 113 60.5-75.0 6 65.7-72.0 Total 311 58.0-78.5 20 58.5-73.0 *£) Springer 3 1 4 Environ Biol Fish (2008) 83:309-325 Total number of vertebrae Total number of vertebrae and myomeres Fig. 4 Total number of vertebrae a counted using radiographs of glass eeis of Anguilla anguilla and A. rostrata collected at Vogslækur in Iceland on 27 June 2000, and b the total number of vertebrae (black circles/solid lines) and myomeres in leptocephali (open circles/dashed lines) of A. angui/la and A. rostrata frorn multipie locations in North America and Europe, and the North Atlantic, respectively (adapted from Boetius and Harding 1985) A. anguilla A. rostrata Fig. 5 Scanning electron microscope photographs of the otolith microstmcture of glass eels of Anguil/a anguilla (left panels) and A. rostrata (right panels) collected at Vogslækur in Iceland. 1 hatch check, 2 first feeding check, 3 íreshwater mark ö Springer Otolith microstructure All otoliths of both species analyzed had a core near the center of the sagittal plane, which was deeply etched, and a hatch check with a mean diameter of about 9.85±2.07 p.m for A. anguilla and 9.36± 1.85 ptm for A. rostrata (Fig. 5). The number of specimens with a freshwater mark was all 10 speci- mens (100%) in 1999 and 33 of 39 specimens (85%) examined in 2000 for A. anguilla, while for A. 2 1 .5 1 0 .5 0 _ 2 E § 1-5 3 ® o c (c 0 .5 o o 0 2 1.5 1 0 .5 0 0 5 0 100 1 50 2 0 0 2 5 0 Age (days) Fig. 6 Profiles of otolith increment widths along a transect from the hatch check (0 days) to the otolith edge of a Anguilla anguilla and b A. rostrata glass eels collected at Vogslækur in Iceland in 1999 and 2000, and c other species from previous studies (Arai et al. 1997, 1999, 2000, 200J). Each data point represents a 10 increment average c A. anguíila - a - A. rostrata A. japonica - ♦ - A. b ico lo r pacifica - s - A. australis Environ Biol Fish (2008) 83:309-325 315 Fig. 7 X-ray intensity maps of strontium contents in the ► otoliths of Anguilla anguilla (left panels A-E , total length of glass eels were 70.2, 67.6, 69.7, 64.1, 68.3 mm: these specimens are identical to the five specimens in the left panels A-E ofFig. 8a, respectively) andX. rostrata (right panels F-J, 65.0. 65.0, 72.0, 70.2, 65.7 mm: these specimens are identical to the five specimens in the left panels A-E of Fig. 8b, respectively). The scale bars are 100 um, and the Sr concentration scale varies from 0 .2 % (blue) to 1 .2 % (red) rostrata , all three specimens (100%) and 10 o f 12 specimens (83%) in 1999 and 2000 respectively, had the mark. There were some specimens with one to six light checks between first feeding check and fresh- water mark. A. a n g u illa showed a small peak in otolith increment width (mean±SD 0.74±0.15 p.m, range 0.43—1.00 |um) at 20-70 days afler hatching (Fig. 6), and A. rostrata had a peak (0.78±0.14 p.m, 0.59- 1.07 pm) at 20-60 days. Outside this small peak, the increment width was alrnost constant to the edge o f the otolith for most specimens o f both A. anguiUa (range 0.27-0.93 pm) and A. ro s tra ta (0 .2 7- 0.72 pm). We detected no shaip increase in otolith increment widths or rapid growth zone that was a characteristic incremental change corresponding to the onset o f metamorphosis as has been reported in many anguillid species including A. anguilla collected in Europe and A. ro s tra ta in North Am erica (Lecomte-Finiger 1992; Arai et al. 1997, 1999, 2000, 2001; Wang and Tzeng 2000; Marui et al. 2001) (Fig. 6). Otolith microchemistry and timing o f metamorphosis The Sr concentration X-ray intensity maps o f the otoliths o f both A. anguilla and A. rostrata showed a variety o f pattems o f fluctuations (Fig. 7). The central regions o f both species had relatively low values, followed by altemating bands o f high (red and yellow) and low (green and blue) Sr concentrations. The outermost region o f all the otoliths o f both species had blue regions, suggesting exposure to freshwater or brackish salinity levels. There was no consistent pattem o f banding o f the high Sr regions within the otoliths o f either o f the two species. This type o f variation in Sr also could be seen in the Sr:Ca ratio pattems along the life-history transects from the core to edge o f the otolitbs. The line transects o f the individuals in the left columns o f Fig. 8a,b correspond to the same individuals in the Sr concentration X-ray intensity maps in Fig. 7 for both A. anguilla and A. rostrata, respectively, and gener- ±3 Springer 316 Environ Biol Fish (2008) 83:309-325 Fig. 8 a Plots of otolith increment widths averaged for every ► ten increments (bold lines') and Sr:Ca ratios measured at 1 |im intervals (narrow Hnes) in Anguilla anguilla glass eels collected at Vogslækur in lceland in 1999 and 2000. Each arrow shows the estimated point of the sharpest drop of SnCa ratios suggesting the start of metamorphosis. The five specimens /1- E in the left panels correspond to the specimens A-E in the left panels of Fig. 7, respectively, b Plots of otolith increment widths averaged for every ten increments (bold lines) and Sr:Ca ratios measured at 1 pm intervals (narrow lines) in Anguiila rostrata glass eels collected at Vogslækur in lceland in 1999 and 2000. Each arrow shows the estimated point of the sharpest drop of Sr:Ca ratios suggesting the start of metamorphosis. The fíve specimens A-E in the left panels correspond to the specimens F-J in the right panels of Fig. 7, respectively ally similar fluctuations were observed in both methods o f analysis. The values of Sr:Ca ratios around the otolith core were 9.57-14.44 for A. anguilla (Fig. 8a) and 8.23-19.06 for A. rostrata (Fig. 8b). Sr:Ca ratios in most specimens increased from the center of the otolith, often showing a peak in the central region before decreasing until the edge of the otoliths. Most specimens showed a slightly larger drop in Sr:Ca values with no further major increases, or a slight increase in increment widths, the timing of which corresponded in some specimens. These two types of changes were used to estimate the possible timing of metamorphosis or the age at metamorphosis (Table 3). Based on these two types o f changes in Sr:Ca ratios and increment widths, Am was estimated to be about 220-340 days after hatching (mean±SD 287.0± 36.8 days) forÆ angiúlla and 160-330 days (254.0± 47.7 days) for A. rostrata. There was no signifícant difference in Am between the two species. However, it was difficult in some specimens to defíne the exact timing of metamorphosis because distinguishing a last drop in Sr:Ca ratio was unclear when there was no clear correspondence to increase in incremental width. Age at recruitment, total age, and hatching date The mean /fr±SD, based on the position of the freshwater mark, of A. anguilla was 332.5±53.0 days (range 260-416 days, n=10) in 1999, and 337.5± 38.5 days (262-411 days, «=33) in 2000, and for A. rostrata it was 335.7± 10.7 days (344—365 days, «=3) in 1999, and 308.4±33.7 days (248-359 days, «=10) in 2000 (Fig. 9). There was no significant difference in Ar between the two species in each year and between the 2 years. B 30 3 20 2 10 0 0 20 2 - 10 1 0 0 20 2 10 1 0 0 20 2) 10 1 0 0 20 2 10 1 0 0 H /S , 30 20 10 0 20 10 0 20 10 0 20 10 0 0 100 200 300 400 0 100 200 300 400 Age (days) |-20 10 0 'Ö Springer Sr:Ca x 1000 S r:C ax1000 Table 3 Mean age at metamorphosis (Tm), age at recruitment (Ar), total age (A,) and estimated hatching dates (HD) of glass eels of Anguilla anguiUa and A. rostrata recruited to various locations Speeies Sampling location Sampling date n Am (days) n A, (days) n A, (days) HD References A. anguilla Vogslækur, Iceland 28 June 1999 7 May- 8 July 2000 10 278.0±36.8 43 336.3 ±41.7 49 372,3±50.8 April-September This study Oued Sebou, Morocco December-January 1989 76 178,0 76 2 1 1 .0 76 216.0 Lecomte-Finiger (1992) Cape Finisterre, Spaina November 1987 13 186.0 13 191.0 Leeomte-Finiger (1992) Loire, France January-April 1989 128 185.0 128 245.0 128 245.0 Lecomte-Finiger (1992) Vilaine, France November-December 1989 January-May 1990 90 180.0 90 237.0 90 242.0 Lecomte-Finiger (1992) Severn, UK December-Januaiy 1988 30 196.0 30 272.0 30 276.0 Lecomte-Finiger (1992) Ijmuiden. The Nctherlands March, May 1990 30 176.0 30 245.0 30 250.0 Lecomte-Finiger (1992) Viskan River, Sweden 13 April 1995 24 346.8±36.6 24 444.6±39.1 November-July Wang and Tzeng (2000) Sevem River, UK 1 April 1995 11 318.5±27.2 11 420.0±38.3 (peaking in Wang and Tzeng (2000) Vilaine River, France 5 April 1995 13 350.9±37.6 13 455.4±43.9 January) Wang atid Tzeng (2000) Minho Rio, Portugal September 1995 8 397.1 ±27.0 8 467.7±26.7 Wang and Tzeng (2000) Minho River, Portugal 15 May 1996 23 198.0±27.4 23 249.0±22.6 August-October Arai et al. (2000) A. rostrata Vogslækur, Iceland 28 June 1999 7 May-8 July 2000 10 254.0±47.7 13 319.3±36.0 15 352.9±42.6 May-August Tliis study Haiti 17 December 1995 25 209.3 ±20.2 25 241.6 ± 18.5 March-October Wang and Tzeng (2000) Florida, USA 28 February 1995 22 Januaiy 1997 4 214.0± 14.4 4 247.8± 16.2 (peaking in August) Wang and Tzeng (2000) North C-arolina, USA 22 March 1995 2 1 188.8±29.1 2 1 220.4±33.2 Wang and Tzeng (2000) Annaquatucket River, 14 April 1995 26 189.5 ± 19.6 26 251.8 ± 16.6 Wang and Tzeng (2000) Rhode Island, USA Musquash River, New 28 April 1995 17 192.7 ±20.3 17 272.3 ± 15.7 Wang and Tzeng (2000) Brunswick, Canada East River, Nova Scotia, 29 May 1995 32 211,4±20.8 32 283.5 ± 18.2 Wang and Tzeng (2000) Canada Maine, USA 20 April 1997 15 156.0± 18.9 15 206.0±22.3 August-October Arai et al. (2000) Pivers Island, North December-April 1985-1994 77 167.2±16.9 Powles and Warlen (2002) Carolina, USA Black Creek, Noith 2-23 February 1994 25 175.4± 12.6 Powles and Warlen (2002) Carolina, USA Little Egg Inlet, New Februaty-March 1994 22 2 0 1 .2 ± 16.1 Powles and Warlen (2002) Jersey, USA Lepreau, New 6 June 1994 43 209.3± 18.1 Powles and Warlen (2002) Brunswick, USA ■§ aOnly leptocephali (stage IV) were collected from this localion Environ Biol Fish (2008) 83:309-325 317 318 Environ Bioi Fish (2008) 83:309-325 Fig. 9 Age at recruitment (Ar) (left p anels) and total age (/!,) (right pcm els) of glass eels o fA n g n illa anguilla (top) and A. ros- trata (hottom ) collected at Vogslækur in Iceland in 1999 and 2000 inferred from their otolith microstructure 16- 1 2 - A. anguilla □ 1999 (n= 10) ■ 2000 (n = 33) A. rostrata □ 1999 (n = 3) ■ 2 0 0 0 (n= 1 0 ) 0 200 300 400 Ar (days) A. anguilla □ 1999 (n= 10) ■ 2000 (n = 39) A. rostrata □ 1999 (n = 3) ■ 2000 ( n = 12) 200 300 400 (days) 500 The mean /it±SD of A. anguilla was 372.0± 53.6 days (range 300-455 days, n=10) in 1999, and was 372.3±50.8 days (278-463 days, n=39) in 2000, while that of A. rostrata was 387.0±19.5 days (368- 407 days, n - 3) in 1999, and 344.4±43.0 days (258- 407 days, «=12) in 2000 (Fig. 9). There was no significant difference in A t between the two species within each year and between tlie 2 years. The back-calculated HD for A. anguilla collected in 1999 ranged from 1 April to 3 September 1998, and those for specimens collected in 2000, from 2 April to 2 September 1999 (Fig. 10). HD tor A. rostrata collected in 1999 ranged from 19 May to 9 June 1998, and those in 2000, from 6 May to 26 August 1999. There was no significant difference in back-calculated HD between the two species in each year and between the 2 years. Discussion Identification problems We identifíed the glass eels in Iceland based on their rntDNA gene sequences in this study and they corresponded to either A. anguilla or A. rostrata. Recently though, Albert et al. (2006) reported the possible presence of eels in Iceland that were pure A. anguilla, and sorne that were natural anguillid eel hybrids. However, they found no pure A. rostrata among the specimens that were collected in Iceland and evaluated using amplifíed fragment length poly- morphism (AFLP) analysis. They detected 88.4% 2 0 - 15- _Q A. anguilla □ 1998(n=10) ■ 1999 (n = 39) A. rostrata □ 1998 (n = 3) ■ 1999(n= 12) J F M A M J J A | S O | N D HD Fig. 10 Estimated hatching dates (H D ) of glass eels of A ngu illa anguilla (top) and A. rostra ta (h o tto m ) collected at Vogslækur in Iceland inferred from the total age (A,) estimated using their otolith microstracture. The hatching dates in the calendar months of 1998 and 1999 are shown for glass eeis collected 1999 and 2000, respectively Æ) Springer Environ Biol Fish (2008) 83:309-325 319 pure A. anguilla glass eels and 11.6% hybrids of A. anguilla and A. rostrata at the Vogslækur site in Iceland during 2000-2003 where we also sampled glass eels in 1999 and 2000. In the present study, based on the mtDNA identification of Icelandic eels, we estimated that the glass eels that were collected consisted o f about 94% A. anguilla and 6% A. rostrata. However, the AFLP analyses suggest that the mtDNA sequences of the A. rostrata identified in the present smdy might be actually those of hybrids of a matemal A. rostrata and a patemal A. anguilla, since no pure A. rostrata were found by Albert et al. (2006) at this locality or elsewhere in Iceland. If based on their findings at the Vogslækur site, it is also possible that about 6% of the A. anguilla glass eels that we examined in the study could be matemal A. anguilla hybrids. These considerations might be partly supported by the distribution of number of TV for the two species (Fig. 4), which included sorne intennediate TV values of possible hybrids, although the number of specimens examined was small. The ranges of total number of vertebrae of the two species appear mostly to be separated at 111 vertebrae, with A. rostrata being as low as 101 and A. anguilla as high as 120 (Boetius and Harding 1985). Therefore, the majority of the glass eels examined in the present study (range 109-118) and in previous research in Iceland (108-118, Avise et al. 1990) were within the range of TV of A. anguilla , with only a few having numbers of vertebrae in the upper range o f A. rostrata (Fig. 4). However, for convenience in the present study, we discuss the life history characteristics of the lcelandic eels using the species names “rt. anguilla" and "A. rostrata” as they were identified by mtDNA. Timing of capture of glass eels The first capture of substantial numbers of glass eels in mid-June and even larger catches in late June and early July when the water temperature in the sampling area had warmed up to about 12-16°C supports the findings of a laboratory study on glass eels from this site that showed water temperature was an important factor controlling the activity and upstream migration in these two species in Iceland (Linton et al. 2007). The laboratory study found that swimming activity in- creased markedly at 12°C and that climbing behavior was first seen at 14°C. Low Sr:Ca ratio at the peripheral part of their otoliths suggesting freshwater exposure time, and the advanced pigmentation stages of most glass eels, suggests that these glass eels had been waiting somewhere near the sampling site or mouth of the river in a fresh or brackish water environment until water temperatures became warmer. Most of the glass eels examined were at the latter two pigmentation stages, supporting the hypothesis that there were very few recently arrived glass eels at this site, compared to their continental species ranges where the earlier stages have been observed (Haro and Krueger 1988; Boetius and Boetius 1989). Jessop (2003) found that A. rostrata elvers began actively swimming upstream when temperatures reached 10— 12°C in the northem region of Nova Scotia, and upstream migration began when temperatures reached 10°C further to the south in Rhode Island (Haro and Kxueger 1988). Very low catches of A. anguilla elvers and juveniles also occur below water temperatures of 10-11°C (White and Knights 1997). The apparent correspondence of the biggest catch during the new moon suggest that in addition to increasing water temperature, the lunar cycle or tidal factors may have also triggered an increase in the upstream migratory behavior of the glass eels at this site. Implications of otolith microstructure and microchemistry Both A. anguilla and A. rostrata that recruited to Iceland showed a unique pattem of increment widths without any clear rapid growth zone where the widths increased during metamorphosis from a leptocephalus to a glass eel. This is a remarkable contrast with all other anguillid glass eels that have been examined (Fig. 6), including tropical eels such as A. celebesen- sis, A. b icolor bicolor, A. b icolor pacifica , and A. m arm orata (Arai et al. 2001; Mami et al. 2001; Kuroki et al. 2005), as well as the temperate eels A. anguilla, A. rostrata, A. ja p o n ica , A. australis and A. d ie jfenbach ii (Lecomte-Finiger 1992; Cheng and Tzeng 1996; Arai et al. 1997, 1999, 2000; Wang and Tzeng 2000; Mami et al. 2001). The rapid growth zone is considered to be an indication o f an ontogenetic change in otolith growth associated with the physiological changes that occur during metamor- phosis, and the lack of this zone in Icelandic glass eels suggests that they experienced extraordinaiy environmental conditions compared to other anguillid species. £) Springer 320 Environ Biol Fish (2008) 83:309-325 The raost probable factor to prevent the formation o f a rapid growth zone in Icelandic eels would be the low water temperature near Iceland where they likely metamorphose. Water temperature is well known to influcnce otolith growth in físhes (Campana and Neilson 1985; Umezawa and Tsukamoto 1991), and it has been reported that leptocephali probably metamorphose to glass eels relatively near their freshwater habitats (Kleckner and McCleave 1985; Tsukamoto 1990; Tsukamoto and Umezawa 1994). ln glass eels that recruit to Iceland, it is possible that the process o f metamorphosis is greatly prolonged at lower temperatures, and since the late stage leptoce- phali and glass eels likely experienced long periods of lower temperature compared to other species, this may have affected their otolith deposition pattems. Although the coastal waters around Iceland are influenced by wann water from the Gulf Stream (Schmitz and McCartney 1993), the water tempera- ture decreases as it moves northward, and the sea surface temperature just to the south of Iceland in May has been observed to be 7-8°C (Krauss 1995), or 1-5°C just to the north o f Iceland in Febmary and March (Swift and Aagaard 1981). Water temperatures along the southwest coast o f Iceland and the offshore areas nearby, appear to rarely get above 11-13°C in July and August when temperatures are highest (Hanna et al. 2006). These temperatures are as much 10-15°C lower than those in the coastal waters o f the main habitats of these two species in Europe and North America. Therefore, it is probable that the individuals recmiting to Iceland metamorphosed under unusually low temperature conditions that may have caused substantial physiological stress, or a slowing of the metamorphic process that could have caused the lack of the fonnation of a rapid growth zone in their otoliths. Unlike the unique pattems of increment widths in Icelandic eels, the change in Sr:Ca ratios showed pattems in the line transects in both species (Fig. 8a,b) that were roughly similar to those observed in the other anguillid eels. The decrease in Sr:Ca ratios at the likely time of metamorphosis suggested that the onset o f metamorphosis was not accompanied by a rapid increase in otolith increment width like that observed in other anguillid glass eels. The Sr concentration X-ray intensity maps of the otoliths reflected the pattems in the line transects and showed variability that could be related to the differences in water temperature experienced by the leptocephali (Fig. 7), if Sr incorporation into the otoliths of these glass eels is rnainly affected by temperature as it appears to be in some species (Campana 1999). Based on studies of yellow and silver eels that have moved between fieshwater and saltwater envi- ronnrents (e.g. Tsukamoto et al. 1998; Tsukamoto and Arai 2001), the blue in the outer parts of the otoliths of all the X-ray intensity maps and the presence of a freshwater check in most of the specimens examined here, suggested that the glass eels in the present study had arrived at the rnouth of the River Vogslækur considerably earlier than their time of capture. Yellow eels that shift habitats appear to show freshwater residency in Sr concentration X-ray intensity maps with a consistent blue color (Tsukamoto and Arai 2001), so the glass eels examined here appear to show evidence of freshwater or brackish water exposure. The freshwater check has been reported as a mark that indicated the timing o f entry of glass eels into freshwater or estuarine habitat (Kawakami et al. 1999), although it has not been well validated yet. Most of the Icelandic eels (80-100%) had a freshwa- ter mark at the peripheral part of the otolith. Other temperate eels such as the Japanese eel (100%, Kawakami et al. 1999) and the two New Zealand eels (100%, Mami et al. 2001) were also found to typically have a freshwater nrark. This rnark was also observed in some specimens of tropical eels (7-100%, Mami et al. 2001; 28%, Kuroki et al. 2005), but in much lower percentages. Differences in the percent- age of glass eels with a freshwater mark between the two species in Iceland and other tropical anguillid eels suggests that the stress of check formation might not be always caused by a salinity change, but also may be related to other factors such as a lower temperature at the estuary. Estimated hatching date The present study shows that the two species recmiting to Iceland had back-calculated HD during almost the same seasons in spring and summer (A. anguilla: April to September, A. rostrata: May to August). Collection data in the Sargasso Sea has shown that small leptocephali (<10 mm) o f A. anguilla were present from March to July, while those o f A. rostrata from February to April (Boetius and Harding 1985; McCleave and Kleckner 1987; '£) Springer Environ Biol Fish (2008) 83:309-325 321 Kleckner and McCleave 1988). The range of the approximate spawning seasons estimated by these two methods match fairly well for A. anguilla, but the spawning season o f A. rostrata estimated from collection data in the Sargasso Sea is considerably earlier than the back-calculated HD from the otolith data of the glass eels mitochonrially identified as A. rostrata. However, if the A. rostrata identified in this study were hybrids as discussed above, it is possible that their spawning season would be more similar to A. anguilla. It is also possible that the slight mismatch with the estimated spawning season of A. anguilla in the Sargasso Sea could be due in part to limited or biased seasonal and spatial coverage of sampling suiweys for leptocephali in the spawning area, or that only eel laiwae bom during the later part of the spawning season (April to September) could recmit successfully to Iceland. However, in the case of Atlantic glass eels that are likely more adapted to low temperature than most anguillid eels, there is the possibility that there may be a period of time after metamorphosis when the otolith increments are difficult to distinguish or when there is no deposition of discemable daily rings and instead, heavy checks are formed. This might explain some of the partial mismatches between the estimated back-calculated HD in previous otolith studies and the peak spawning season based on larval sampling that has been discussed by McCleave et al. (1998). Cieri and McCleave (2000) proposed that there may be no otolith deposition during metamorphosis in the At- lantic eels, but no heavy check was observed near the otolith increments corresponding to metamorphosis in the Icelandic glass eels examined here. In addition, recent studies on other elopomorph fishes have shown that otolith daily deposition continues through meta- morphosis in leptocephali held in the laboratory as they transformed into the glass eel or juvenile stage (Chen and Tzeng 2006; Powles et al. 2006). This suggests that if there is a possible period of lack of otolith deposition in the otoliths of some Atlantic glass eels, it is probably not during metamorphosis, but is more likely when the glass eels have reached their recmitment areas and stay on the bottom without feeding or actively migrating inshore. It is possible that the freshwater mark shows this time when recruited glass eels stop swimming and wait in the substrate for the appropriate cues for upstream migration into ffeshwater. However, in the glass eels examined in the present study, this possible period o f donnancy appears to have been short, because their estimated HD are close to the known spawning period o f A. anguilla in the Sargasso Sea. Because daily increment formation also has been observed in both the early leptocephalus and inshore glass eel or elver stages (i.e. Tsukamoto 1989; Umezawa and Tsukamoto 1991; Martin 1995; Shinoda et al. 2004), and generally occurs in fishes, it appears that regardless of the inconsistent HD based on At in some Atlantic glass eel otolith studies, the estimates o f Ar based on the freshwater mark in anguillid glass eels may be a reasonable measure of the durations of their migrations. Age at recruitment Using the Ar data in the present study, the exact duration of larval migration from the spawning area to the recruitment area including the oceanic glass eel stage after metamorphosis, could be estimated, since no heavy checks from the hatch check to freshwater mark were observed. However, the At estimates include the freshwater mark, some other heavy checks further outside and increments extending to the outer edge of the otolith, which could cause underestima- tions of age. This makes it difficult to accurately compare the duration o f larval migration, because some studies only show At or Ar. The Am in previous studies vary greatly though (Table 3), and these values can be used to estimate the relative difference in approximate durations of larval migrations of glass eels collected at various sites and times of year. The Ar determined for the glass eels from Iceland (Fig. 9) were similar between the two species, as were their TL (Fig. 3). In addition, Am and At were also similar between the two species. However, these characteristics showed differences with those of glass eels from their main populations (Table 3). The mean Ar o f glass eels of A. anguilla collected in Iceland fforn May to July were about 64—125 days older than glass eels at six sites in southem Europe sampled fi'om November to May (Lecomte-Finiger 1992; Arai et al. 2000), but contrarily, the At in Iceland were about 48-95 days younger than those collected fforn four sites from southem to northem Europe in September or April (Wang and Tzeng 2000, Table 3). Age estimates o f A. anguilla based on various techniques including otolith microstructure have •ö Springer 322 Environ Biol Fish (2008) 83:309-325 varied widely (see Lecomte-Finiger 1992; McCleave et al. 1998; Arai et al. 2000; Wang and Tzeng 2000), and especially the A, estimates of A. anguilla glass eels remain controversial. In A. anguilla, difficulty in interpretation of growth increments in the opaque region near the otolith edge with unclear increments and frequent occurrence of checks might cause an inconsistency in counting results. In contrast, the ages of A. rostrata were consistent when compared between the ages of glass eels ffom lceland and their main population in North America, with the mean Ar of the glass eeis of A. rostrata collected in iceland being as rnuch as about 110-152 days older (Arai et al. 2000; Powles and Warlen 2002), and At also being as much about 69—133 days older (Wang and Tzeng 2000) (Table 3). The distance ífom the Sargasso Sea to Iceland is obviously farther than to North America (about 3,000 km ffom Newfoundland or Labrador in Canada to Iceland), which would account for the greater ages of A. rostrata in Iceland, but the distance to Iceland is not so different from the distance to some parts of Europe. The variable results for the A r and At of A. anguilla in different studies might be due in part to the different sampling locations or times of year of each study. The distance from the Sargasso Sea to Iceland is longer than to some parts of Europe, while perhaps shorter and more direct than to other locations in Europe. Various processes may affect the larval growth and transport of the European eel as they cross the Atlantic basin however, since seasonal changes in the lengths of glass eels have been observed as they recruit to southem Europe (Desaunay and Guerault 1997). Seasonal or interannual differences of current speeds or pathways flowing towards Iceland in the North Atlantic Current or towards Europe (Krauss 1995), or differences in larval behavior also may influence the speeds of migration of A. anguilla across the Atlantic Ocean. Separation mechanism Although the estimated period for lai-val migration of about 1 year was much shorter than Schmidt’s estimation for A. anguilla o f 2-3 years, the results obtained here support the hypothesis proposed by Schmidt that the larval duration is a key factor for determining the place of recruitment of glass eels and maintaining the geographic separation between the two species (Schmidt 1922, 1925). Buoyancy would be lost during metamorphosis because of a decrease in the body surface area (fi'om 8.0 cm2 in leptocephali to 2.3 cm2 in glass eels) and water content (from 93% to less than 80%) with a corresponding increase in body density (Tsukamoto and Umezawa 1994). This would induce the detrainment of glass eels frorn a current and may cause the initiation o f active migration toward estuaries. The lack of any glass eels with the body sizes or larval durations similar to A. rostrata in Iceland may suggest that only leptocephali with European eel genes (A. anguilla or hybrids) for timing of metamorphosis can reach Iceland. “Timing of Metamorphosis” or the equivalent “Lai-val duration” of Schmidt is determined by growth rate and the maximum body size of leptocephali (Kuroki et al. 2006), and each species has its own geographic range, so it appears that these parameters relating to the timing of metamorphosis may be geneticaily well defíned. A recent study suggests that different species of anguillid leptocephali may have slightly different growth rates (Kuroki et al. 2006), so if A. rostrata has a faster growth rate as suggested by Wang and Tzeng (2000), their leptocephali would be able to metamorphose into glass eels earlier than A. anguilla, and would detrain from the Gulf Stream to recruit to North America, while the leptocephali of A. anguilla would continue to be transported further by the Gulf Stream and the North Atlantic Drift and eventually reach Europe or North Africa. A. rostrata also appears to have smaller maximum leptocephalus and glass eel sizes than A. anguilla indicating earlier metamoi-phosis at a younger age. Since some of the glass eels of A. rostrata collected in Iceland were larger than the maximum reported leptocephalus size of 70 mm (Boétius and Harding 1985; Kleckner and McCleave 1985) and the size of most o f their glass eels (Haro and Krueger 1988), it appears likely that these glass eels were actually hybrids as suggested by Albert et al. (2006) using AFLP genetic analyses. Although the sample sizes were small, these A. rostrata, or possible hybrids, had intemiediate sizes and ages compared to the two species. In contrast, the size of the A. anguilla glass eels in Iceland and their ages were overlapping with samples from the Euro- pean continent (Boétius and Boétius 1989; Desaunay and Guerault, 1997, Wang and Tzeng 2000). The “Timing of Metamorphosis Hypothesis” can also account for the speciation of the two Atlantic <£) Springer Environ Biol Fish (2008) 83:309-325 323 species. Molecular phylogenetic research has sug- gested that the ancestral species of Atlantic eels moved fforn the Indian Ocean into the North Atlantic Ocean through the ancient Tethys Sea rnore than 30 Ma (Aoyama et al. 2001). A possible scenario for the speciation of the two Atlantic eels would be that the longitudinal range of the habitat of the ancestral Atlantic species would have become wider and wider along the coast of the North Atlantic Ocean, due to continental drift and the sea floor spreading of the Atlantic Ocean (Aoyama et al. 2001). When the ocean expanded further, two distinct groups with different pattems of larval growth and timing of metamorpho- sis may have developed. Then the two groups had gradual shifts of spawning seasons and areas due to the differences in the migration distance of adults that may have also contributed to reproductive isolation fforn each other. Eventually the constraints imposed by the need for two different patterns of tirning of metamorphosis resulted in speciation into two spe- cies. Because of this interesting possible history, the Icelandic eels that appear to include hybrids living sympatrically with A. anguilla on a small landmass isolated from the two main habitats are a good model for studying the separation mechanism of the two Atlantic species. Acknowledgements We are grateful to Elizabeth D. Linton and Gudmundur Ingi Gudbrandsson for valuable help during the course of field work in Iceland. The work was supported by a special grant from the Icelandic Govemment to study recruitment mechanisms of Icelandic glass eels. This study was also partially supported by a Grant-in-aid for Scientific Research (Nos. 10460081, 11691177) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the “Research for the Future” Program grant No. JSPS- RFTF 97L00901 from the Japan Society for the Promotion of Science, by the Research Foundation from Touwa Shouhin Shinkoukai, and by the Eel Research Foundation from Nobori-kai. References Albert V, Jónsson B, Bernatchez L (2006) Natural hybrids in Atlantic eels (A n g u illa a n g u illa , A. ro s tra ta ): evidence for suecessful reproduction and fluctuating abundance in space and tirne. Mol Ecol 15:1903-1916 Aoyama J, Mochioka N, Otake T, Ishikawa S, Kawakami Y, Castle P. Nishida M, Tsukamoto K f 1999) Distribution and dispersal of anguillid leptocephali in the westem Pacific Ocean revealed by molecular analysis. Mar Ecol Prou Ser 188:193-200 Aoyama J, Nishida M, Tsukamoto K. (2001) Molecular phylogeny and evolution of the freshwater eel, genus A nguilla . Moi Phyl Evol 20:450-459 Arai T, Otake T, Tsukamoto K (1997) Drastic changes in otolith microstructure and microchemistry accompanying the onset of metamorphosis in Japanese eel AnguiU a japonica . Mar Ecol Prog Ser 161:17-22 Arai T, Otake T, Jellyman DJ, Tsukamoto K (1999) Differences in the early life history of Australasian shortfmned eel A ngu illa austra lis from Australia and New Zealand. as revealed by otolith microstructure and microchemistry. MarBiol 135:381-389 Arai T. Otake T. Tsukamoto K (2000) Timing of metamorpho- sis and larval segregation of the Atlantic eels A nguilla rostra ta and A. ang iiilla , as revealed by otolith micro- structure and microchemistry.. Mar Biol 137:39—45 Arai T, Limbong D, Otake T. Tsukamoto K (2001) Recruitment mechanisms of tropical eels, A n g u illa spp., and implica- tions for the evolution of oceanic migration in the genus A ngu illa . Mar Ecol Prog Ser 216:253-264 Avise JC (2003) Catadromous eels of the North Atlantic: a review of molecular genetic findings relevant to natural history, population structure, speciation, and phylogeny. In: Aida K_. Tsukamoto K. Yamauchi K (eds) Eel Biology. Springer-Verlag, Tokyo, pp 31-48 Avise JC, Nelson WS, Amold J, Koehn RK (1990) The evolutionary genetic status of Icelandic eels. Evolution 44:1254-1262 Bast HD. Strehlow B (1990) Length composition and abun- dance of eel larvae, A n g u illa angailla (Anguilliformes: Anguillidae), in the Iberian Basin (northeastem Atlantic) during July-September 1984. Helgol Wiss Meeresunters 44:353-361 Bertin L (1956) Eels, a biological study. Cleaver-Hume Press, London, p 192 Boetius J (1980) Atlantic A ng u illa . A presentation of old and new data of total numbers of vertebrae with special reference to occurrence of A ng u illa rostra ta in Europe. Dana 1:93-112 Boetius J (1985) Greenland eels. A n g u illa rostra ta Le Sueur. Dana 4:41^18 Boetius J, Harding EF (1985) A re-examination of Johannes Schmidt’s Atlantie eel investigations. Dana 4:129-162 Boetius I, Boetius J (1989) Ascending elvers, A n g u illa a n g u illa , from five European localities. Analyses of pigmentation stages, condition, chemical composition and energy reserves. Dana 7:1-12 Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanism and applications. Mar Ecol Prog Ser 188:263 Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014-1032 Chen HL, Tzeng WN (2006) Daily growth increment fonnation in otoliths of Pacific tarpon M eg a lo p s ty p r in o id e s during metamorphosis. Mar Ecol Prog Ser 312:255-263 Cheng PW, Tzeng WN (1996) Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel A n g u illa japo n ica . Mar Ecol Prog Ser 131:87-96 Cieri MD, McCleave JD (2000) Discrepancies between otoliths of larvae and juveniles of the American eel: is something -3 Springer 324 Environ Biol Fish (2008) 83:309-325 fishy happening at metamorphosis? J Fish Biol 57:1189- 1198 Correia AT. Antunes C, Isidro EJ, Coimbra J (2003) Changes in otolith microstructure and microchemistiy during larval development of the European conger eel (Conger conger). MarBiol 142:777-789 Correia AT, Able KW, Antunes C, Coimbra J (2004) Early life history of the American conger eel (Conger ocean- icus) as revealed by otolith microstructure and micro- chemistry of metamorphosing leptocephali. Mar Biol 145:477—488 Desaunay Y, Guerault D (1997) Seasonal and long-term changes in biometrics of eel larvae: a possible relationship between recruitment variation and Norlh Atlantic ecosys- tem productivity. J Fish Biol 51:317-339 Hanna E. Jónsson T, Ólafsson J, Valdimarsson H (2006) Icelandic coastal sea surface temperature records con- stmcted: putting the pulse on air-sea-climate interactions in the northem North Atlantic. Part 1: Comparison with HadlSSTl open-ocean surface temperatures and prelimi- nary analysis oflong-tenn pattems and anomalies ofSSTs around Iceland. J Climate 19:5652-5666 Haro AJ, Knreger WH (1988) Pigmentation, size, and migra- tion of elvers (Anguilla rostrata (Lesueur)) in a coastal Rhode Island stream. Can J Zool 66:2528-2533 Jessop BM (2003) Annual variability in the eftects of water temperature, discharge, and tidal stage on migration of American eel elvers from estuary to river. Am Fish Soc Symp 33:3-16 Kawakami Y. Mochioka N, Nakazono A (1999) Immigration pattems of glass-eels Anguilla japonica entering river in northem Kyushu, Japan. Bull Mar Sci 64:315-327 Kleckner RC', McCleave JD (1985) Spatial and temporal distribution of American eel larvae in relation to North Atlantic Ocean cuiTent systems. Dana 4:67-92 Kleckner RC, McCleave JD (1988) The northem limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal ffonts and surface water masses. J Mar Res 46:647-667 Krauss W (1995) Currents and mixing in the Irminger Sea and in the lceland Basin. J Geophys Res 100:10,851-10,871 Kuroki M, Aoyama J, Miller MJ, Arai T, Wouthuyzen S, Minagawa G, Shugeha YH, Tsukamoto K (2005) Corre- spondence between otolith microstructural changes and early life history events in Angitilla marmorata leptoce- phali and glass eels. Coastal Mar Sci 29:154-161 Kuroki M. Aoyama J, Miller MJ, Wouthuyzen S, Arai T, Tsukamoto K (2006) Contrasting pattems of growth and migration of tropical anguillid leptocephali in the westem Pacific and Indonesian Seas. Mar Ecol Prog Ser 309:233- 246 Lecomte-Finiger R (1992) Growth history and age at recruitment of European glass eels (Aneuilla anguilla) as revealed bv otolith microstmcture. Mar Biol 114:205- 210 Linton ED, Jónsson B, Noakes DLG (2007) Effects of water tempcrature on tlie swimming and climbing behaviour of glass eels, Anguilla spp. Env Biol Fish 78:189-192 Martin MH (1995) Validation of daily growth increments in otoliths of Anguilla rostrata (Lesueur) elvers. Can J Zool 73:208-211 Marui M, Arai T, Miller MJ. Jellyman DJ. Tsukamoto K (2001) Comparison of the early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstmcture and microchemistry. Mar Ecol Prog Ser 213:273-284 McCleave JD, Kleckner RC (1987) Distribution of leptocephali of the caladromous Anguilla species in the western Sargasso Sea in relation to water circulation and migration. Bull Mar Sci 41:789-806 McCleave JD, Brickley PJ, O’Brien KM. Kistner-Morris DA, Wong MW, Gallagher M, Watson SM (1998) Do leptoce- phali of the European eel swim to reach continental waters? Status of the question. J Mar Biol Assoc U K 78:285-306 Otake T, Ishii T, Nakahara M. Nakamura R (1994) Drastic changes in otolith strontiumxalcium ratios in leptocephali and glass eels of Japanese eel Anguilla japonica. Mar Ecol Prog Ser 112:189-193 Otake T, Ishii T, Nakahara M, Nakamura R (1997) Changes in otolith strontiumxalcium ralios in metamorphosing Con- ger myriaster leptocephali. Mar Biol 128:565-572 Powles PM, Warlen SM (2002) Recruitment season, size, and age of young American eels (Anguilla rostratá) entering an estuary near Beaufort, North Carolina. Fish Bull 100:299-306 Powles PM, Hare JA, Laban EH, Warlen SM (2006) Does eel metamorphosis cause a breakdown in the tenets of otolith applications? A case study using the speckled worm eel (Myrophis punctatus, Ophichthidae). Can J Fish Aquat Sci 63:1460-1468 Schmidt J (1909) On the distribution of the fresh water eels (Anyuilla) throughout the world 1. Atlantic region. Meddr Kommn Havunders Ser Fisk 3:1-45 Schmidt J (1922) The breeding places of the eel. Phil Trans R Soc Lond 211:179-208 Schmidt J (1925) The breeding places on the eel. Ann Rep Smithsonian Inst 1924:279-316 Schmitz WJ, McCartney MS (1993) On the North Atlantic circulation. Rev Geophys 31:29~49 Schoth M, Tesch FW (1982) Spatial distribution of 0-group eel lai-vae (Anguilla sp.) in the Sargasso Sea. Helgol Wiss Meeresunters 35:309-320 Shinoda A, Tanaka H, Kagawa H, Ohta H, Tsukamoto K (2004) Otolith microstructural analysis of reared larvae of the Japanese eel Anguilla japonica. Fish Sci 70:340- 342 Sullivan MC, Able KW, Hare JA, Walsh HJ (2006) Anguilla rustrata glass eel ingress into two U.S. east coast estuaries: patterns, processes and implications for aduIt abundance. J Fish Biol 69:1081-1101 Swift JH, Aagaard K (1981) Seasonal transitions and water mass formation in the lceland and Greenland seas. Deep Sea Res 28A:1107-1129 Tesch FW (1980) Occurrence of eel Anguilla anguilla larvae west of the European continental shelf, 1971-1977. Environ Biol Fishes 5:185-190 Tsukamoto K (1989) Otolith daily increments in the Japanese eel. Nippon Suisan Gakk 55:789-791 Tsukamoto K (1990) Recruitment mechanism of the eel. Anguilla japonica, to the Japanese coast. J Fish Biol 36:659-671 ð Springer Environ Biol Fish (2008) 83:309-325 325 Tsukamoto K. Arai T (2001) Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Mar Ecol Prog Ser 220:265-276 Tsukamoto K, Umezawa A (1994) Metamorphosis: a key factor of larval migration determining geographic distribution and speciation of eels. Proc Fourth Indo-Pac Fish Conf Bangkok, Thailand, pp 231-248 Tsukamoto K, Nakai 1. Tesch WV (1998) Do all freshwater eels migrate'? Nature 396:635-636 Tzeng WN, Tsai YC (1994) Changes in otolith microchemistry of the Japanese eel, Anguilla japonica, during its migra- tion from the ocean to the rivers of Taiwan. J Fish Biol 45:671-683 Umezawa A, Tsukamoto K (1991) Factors influencing otolith increment fonnation in Japanese eel, Anguilla japomca T and S, elver. J Fish Biol 39:211-223 Wang CH. Tzeng WN (2000) The timing of metamorphosis and growth rates of American and European eel leptocephali: a mechanism of larval segregative migration. Fish Res 46:191-205 White EM. Knights B (1997) Environmental factors affecting migration of the European eel in the Rivers Sevem and Avon, England. J Fish Biol 50:1104-1116 Williams GC, Koehn RK. Thorsteinson V (1984) Icelandic eels: evidence for a single species of Anguilla in the North Atlantic. Copeia 1984:221-223 ö Springer Icelandic eels Bjami Jónsson' & David L. G. Noakes2 'lnstitute o f Freshwater Fisheries at Holar. Holar Hjaltadalur, 551 Saudarkrokur, Iceland 2Department of Zoology, University of Gueiph, Guelph, Ontario, NIG 2WI Canada Introduction The geography and geology of Iceland, among with its extreme northem location, make it among the most unique places Atlantic eels recmit to. Iceland is a small and isolated island in the middle o f the Atlantic Ocean with its climate and oceanic currents strongly influenced by the Gulf Stream. Iceland is the only habitat where European eel (.Anguilla cmguillá) and American eel (.Anguilla rostratá) co-occur (Boetius 1980) and possibly a hybrid between the species (Avise et. al 1990). Due to the isolation and young age o f the isiand the number of species o f various oiganisms is low. Only six species o f freshwater físh are found in Iceland, Atlantic salmon (Saimo salar), arctic charr (Salvelinus alpinus), brown trout (salmo truttá), threespined stickleback (Gasterosteus aculeatus), and the two species o f Atlantic eels. Iceland is on top of the North Atiantic ridge and with its ongoing volcanic activities, is moving to east and west. In the younger areas the bedrock is very permeable to water with the bedrock dissolving relatively easily in the water. Rivers and lakes in this zone are thus mostly spring fed, characterised by stable flow as well as stability in temperature and physical characteristics. This water is also rich in minerals and these systems are generally stable and productive. The second class o f rivers represents direct runoff rivers that are usually much more unstable in flow, temperature and productivity than spring fed systems. Direct runoff rivers vary depending on iocation; in relatively young bedrock formations both drainage pattem and productivity is influenced by the bedrock being easily eroded in water, whereas in older areas the basaltic bedrock is harder and dissolves less in water. Direct runoff rivers in these areas are usually unstable in nature and have relatively low productivity. Direct mnoff rivers that mn through vegetated heathland areas can, however, be more stable and productive. These rivers also typically have numerous lakes and ponds in the tributaries (Amthorsson 1979; Gudjonsson 1990). Finally, there are very unstable and cold glacial rivers, and on the other extreme, rivers and lakes affected by geothermal activities. The diversity of lakes and rivers and habitats for the few species occupying them is profound. The ecological relationships are evident in the variability found among freshwater fishes in Iceland. Various alternative adaptations have emerged and are in the making through dynamic interaction between diverse watersheds and the few species inhabiting them (Skúlason, Snorrason & Jónsson 1999; Jónsson 6 Skúlason 2000). Atlantic eels are most common in Southem and Southwest Iceland and have been thought to be rare in Northwest and Southeast Iceland and absent from Northeast and Eastem Iceland (Saemundsson 1926; Gudbergsson & Antonsson 1996). Eels have been found to occupy diíferent river types, often above waterfalls impassable for other fish, variety of fireshwater lakes and ponds, and brackish lakes and estuaries. Unique habitats for eeis in Iceland include rivers and lakes influenced by geothermal activities, lava substrate and lava caves (Saemundsson 1926; Gudbergsson & Antonsson 1996). The histoiy of human settlement is short in Iceiand, only 1000 years, thus human impact on natural resources has been neglected with only recent traditional fishing for Atlantic eels. Commercial fishing for eels is minimal and absent for glass eels. First verified catch of glass eeis occurred in 1999 (this study), but glass eels had been noticed and few times caught by local people without scientific inspection. Time of recruitment was also only based on speculation (Jónsson Unpublished). Starting in 1999, a study has been ongoing investigating the distribution and ecology of Atlantic eels and the recruitment mechanisms o f glass eels entering Icelandic waters. Methods Glass eel recruitment has been monitored in one location, Vogslaekur, SW Iceland for two years from 7 May to 2 August in 2000 and 20 April to 7 August in the year 2001. Sampling has been carried out on new moon, the first quarter moon, fúll moon and the last quarter moon, and half moon in the estuary area o f the stream. Sampling was carried out with hand held nets for visuai sampling on high tide and scooping nets in 2000, and hand held nets and electrofishing on low tide in 2001. Data on water temperature, ocean temperature and light intensity has been collected throughout the sampling season. Glass eel sampling has been undertaken by the same sampling techniques in a number of other locations in Southem and Westem part o f Iceland during the expected peak of the recruitment season in June and July. For study on distribution and habitat selection, yellow eeis have been collected from locations spread over the Icelandic coast from 1999-2001. Sampling was carried out with funnel traps and electrofíshing. Parallel to the sampling, written and orai references have been gathered about the absence/presence o f eels, especially in geographical areas where few reports have existed on the presence of eels or they have been thought to be absent. Results Glass eel recruitment In the year 2000,2 glass eels were collected on the first sampling date in May, but the catch remained low until middle of June, reached its peak on new moon in the end of June and beginning of July and was over mid Juiy. Largest catch in one day was 534 glass eels on 30 June, and combined in the season in Vogslaekur, 1133. In the spring 2001, sampling was launched on new moon 20* o f April with 10 specimens caught. Glass eels were collected at every sampiing date until mid July, after which only pigmented elvers were observed. Sampling effort was ceased on 7 August. Glass eel recruitment appeared more spread over the season than in the previous year, partly due to improved sampling techniques. The peak season appeared to be from middie o f June through first week of July. The greatest catch was obtained on 28 June, 228 glass eeis, and total o f 1081 glass eels during the season by the river mouth. Glass eels caught on new moon tended to be glossy, with glass eels collected on the next sampling dates being more pigmented. Glass eel catch in other iocations exposed to less effort, ranged from one specimen to 134. In both years 2000 and 2001 the peak recruitment occurred during the season o f 24h daylight. Amongst with moon phase, glass eel recruitment into ffeshwater appeared to be closely related to threshold water temperatures, being most pronounced at the highest water temperatures observed. The connection between glass eel recruitment and their activity level and upstream migration was further verified by lab experiments employing difFerent temperatures (Linton & Jónsson in prep.). During this study (1999-2001), glass eels have been caught in 11 different locations in Iceland. From interviews with local people and written sources, glass eel recruitment is reported ffom the years 1920- 2001 in 14 additional locations spread over the coast o f Iceland except Eastem Iceland (Fig. 1). v rK, “ /5 r AS» í___ 0 'A f ' ’ / — 4 ■50 2 1. Homafjðrdur 14. Álftanes 2. Hali 15. Seljar 3. Eldvatn 16. Vogslaekur 4. Álftaver 17. Laugargerdi 5. Dyrhólaós 18. Stadarsveit 6. Holtsós 19. Saurar 7. Stokkseyri 20. Langavatn 8. Olvusá 21. Bár 9. Vifílsstadalaekur 22. Ogur 10. Ellidaár 23. Stykkishólmur 11. Varmá 14. Eyhildarholtsvatn 12. Borgarlaekur 25. Eyjafjardará 13. Leirulaekur Fig. 1 Reported glass eel sites in Iceland 1920-2001 iight symbols, and successful sampling sites for glass eels in the years 1999-2001 dark symbols. Yellaw eels Ðuring the course o f the study, eels have been caught in a variety of habitats, streams ( 1 0 ), lakes ( 1 0 ) ponds (1), geothermal waters (3), brackish water in lakes and esturarines (1), and in marine habitats (5). Of the 30 collection sites for yellow eels, 12 are located outside the geographical range previously sampled for scientific studies or known to have eels. From current sample collections and review of the literature and iocal references, it is apparent that eels occupy a diversity of habitats in all geographicai areas along the Icelandic coast. This includes areas previously not held to foster eels, such as Eastern Iceland and coastal marine habitats around the island, see Saemundsson 1926; Gudbergsson & Antonsson 1996. Discussion Iceland being on 65 N° near the Arctic Circie makes for a unique setting for glass eel recruitment. The water temperature is usually very low and much lower than usualiy encountered by the two eel species elsewhere. Thus, water temperature appears to be a criticai factor influencing glass eel recruitment to Iceland amongst with moon phase. Recruitment to coastal waters takes place in waves around new moon in Aprii, May, and June/July, while high water temperatures trigger their upstream migration. In a lab experiment the highest activity of glass eels was found to be at 12-17°C while threshold temperature for upstream migration over an artifíciai waterfail was 12-14.5°C (Linton and Jónsson in prep.). Another striking difference between Iceland and other locations glass eels recruit to, is the constant daylight during the peak recruitment, while glass eels most commonly recruit elsewhere during dark nights (Tesch 1977). In a mtDNA study by Momoko Kawai (2001), looking at species composition of glass eels caught in 1999 and 2000, A. anguilla was the more abundant being about 94% both years, with A. rostraia representing 6 % of the catch. No signifícant differences were found in time o f recruitment or size of the two species. The age at recruitment, A. anguilla 365 +/- 44.3 d, and A. rostrata 349+/- 44.3 d, was also found to be the same for the two species (Kawai et. al poster this conference). From the above it can be concluded that the recruitment mechanisms of Atlantic eels to Iceland are in many ways unique for the two species, and that concurrent recruitment and similar recruitment age provide a challenge to traditional ideas about the life histories and possibly, evolution o f the species. In this study we confirm that Atlantic eels are spread over all geographical areas in Iceland, but not mostly confinedto Westem, Southem and South East Iceland (Saemundsson 1926; Gudbergsson & Antonsson 1996). The diversity of habitats utilised by Atlantic eels is also reinstated, including marine waters in Southem, Westem, Northem and Eastem Iceland. In a study by Aoyama et. al (in prep.) on species composition of Icelandic eels, A. anguilla represent 94% and A. rostrata 6% o f eels caught in Westem and Southem Iceland, the same as found for the glass eels. Studies on the species status of Icelandic eels have oniy been based on samples o f yeliow eels from Westem, Southem and South Eastem Iceland (See Boetius 1980, and Avise et. al 1990). These studies have not taken into account different habitats, life stages (glass eels, yellow eels and silver eels) or geographical locations. Widespread study on eels in all life stages ffom the different geographical regions, and information on habitats are needed to unravel the mystery of the ecology and species status of the Icelandic eels, that might be the so much wanted “black box” to the evolution o f the Atlantic eels. References Avise, J. C., Nelson, W. S., Amold, J., Koehn, R. k., Williams, G. C., & Thorsteinsson, V. Evolution 44:1254-1262(1990). Boétius, J. Dana 1, 93-112 (1980). Boétius, J. Dana 4, 129-162 (1985). Gardarsson, A. T J i 9,1-11 (1979, In Icelandic). Gudbergsson, G. & Antonsson, T. Fiskar í ám og vötnum (Landvemd, Reykjavík, 1996, In Icelandic). Gudjónsson S. Vatni oglandi 219-223 (1990, In Icelandic). Kawai, M. The recruitment o f Anguilla rostrata and A. anguilla to lceland (Msc.Thesis Tokyo University, 2001). Jónsson, B. & Skúlason, S. Biol. J. Lin. Soc. 69:55-74 (2000). Saemundsson, B. Fiskarnir (Pisces Islandiae). (Reykjavík, 1926, In Icelandic). Skúlason, S., Snorrason, S. S., & Jónsson, B. 'mEvolution ofBiologicalDiversity (eds. Magurran, A. E., & May, R. M) 70-92 (Oxford University Press, 1999). Tesch, F. W. The eel (Chapman and Hall, London, 1977). Proceedings of the International Symposium ADVANCES IN EEL BIOLOGY Research for the Future Program Japan Society of the Promotion of Science Organizing Committee Katsumi Aida Katsumi Tsukamoto Kohei Yamauchi Yayoi Auditorium The University of Tokyo 28 - 30 September 2001 M o lec u la r E co logy (2006) 15 ,1 9 0 3 -1 9 1 6 doi: 10.1111 / j.l 365-294X.2006.02917.X Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time VICKY A L B E R T /B JA R N I JÓ N SSO N tand LOUIS BERNATCHEZ* *Québec-Océan, Département de Biologie, Université Laval, Québec, Canada GIK 7P4, ilnstitute of Freshioater Fisheries, Northem Division, Sauðárkrókur, Iceland, IS 550 The outcome of natural hybridization is h ighly variable and depends on the nonexclu- sive effects of both pre- and post-mating reproductive barriers. The objective of this study was to address three specific questions regarding the dynamics of hybridization between the American and European eels (Anguilla rostrata and Anguilhi angnilla). U sing 373 AFLP loci, 1127 ee ls were genotyped, representing different life stages from both continents, as w ell as multiple Icelandic locations. We first evaluated the extent of hybridization and tested for the occurrence of hybrids beyond the first generation. Second, w e tested w hether hybrids were random ly distributed across continents and arnong Icelandic sam pling sites. Third, we tested for a difference in the proportion of hybrids between glass eel and yellow eel stages in Iceland. Our results provided evidence for (i) an overall hybrid propor- tion of 15.5% in Iceland, with values ranging from 6.7% to 100% depending on Iife stages and locations; (ii) the existence of hybrids beyond the first generation; (iii) a nonrandom geo- graphic distribution of hybrids in the North Atlantic; and (iv) a higher proportion of first and later generation hybrids in yellow eels compared to glass eels, as w ell as a significant latitudinal gradient in the proportion of hybrids in Icelandic freshwater. We propose that the combined effect of both differential survival of hybrids and variation in hybridization rate through time best explain these patterns. We discuss the possibility that climate change, which is impacting many environmental features in the North Atlantic, may have a determinant effect on the outcome of natural hybridization in Atlantic eels. Keyioords: AFLP, Anguilla, climate changes, fitness, hybrid zone, hybridization Received 5 July 2005; revision received 28 September 2005; accepted 22 fanuary 2006 Abstract Introduction in recent years (Arnold 1992, 1997, 2004; Dowling & Secor 1997; Barton 2001; Mallet 2005). lt is increasingly accepted that aside from the development of stable hybrid zones (Barton & Hewitt 1985), interbreeding between distinct species or populations can result in a variety of evolutionary outcomes, including reinforcement (sensu Dobzhansky 1937), genetic extinction (Rhymer & Simberloff 1996; Huxel 1999), speciation (Templeton 1981), enhanced genetic diversity (Rieseberg et al. 1999), and novel genetic combinations (Anderson & Stebbins 1954; Lewontin & Birch 1966; Arnold 2004; Seehausen 2004). Moreover, the viewpoint that natural hybridization may play a significant role in animal evolution has been revived The resulting outcome of natural hybridization is highly variable and depends on the nonexclusive premating and postmating reproductive barriers (Aldridge 2005). Post- mating isolation has been discussed in the recent debate on hybrids' fitness relative to the parental forms in the wild and the evolutionary potential of natural hybridization (Arnold 1997). Hybrid íitness may vary greatly and is inversely proportional to the strength of the barriers. This variability is explained in part by the heterogeneity in space and time of endogenous as well as exogenous postmating selection pressures (e.g. Grant & Grant 1996), which in tum determine the fate of hybrids relative to the parental forms with which they coexist in a particular environment. Superior hybrid fitness may be due to C o rre sp o n d en c e : V icky A lb e rt, Fax: 418 656-7176; E -m ail: v icky .a lbert@ bio .u lava l.ca © 2006 B lackw ell P u b lish in g L td mailto:vicky.albert@bio.ulaval.ca 1904 V. ALBERT, B. J Ó N S S O N and L. B E R N A T C H E Z heterosis via lreterozygote advantage, silencing of deleterious recessive alleles or epistatic interactions, while reduced hybrid fitness may be caused by the disruption of co-adapted gene complexes. Although heterosis may prevail in tlre first hybrid generation, liybrid fitness may vary between hybrid classes (Arnoid & Hodges 1995) as outbreeding depression accompanied by reduced fitness may occur in subsequent generations (e.g. Edmands 1999; Gharrett et al. 1999). While variation in the relative fitness of hybrids lias been obsert'ed (Arnold & Hodges 1995; Burke & Arnold 2001) and theoretically predicted (Barton 2001), hybrid superiority relative to at least one of tlre parental forms is increasingly being documented (reviewed in Arnold 1997; Arnold et al. 1999). In controlling the number of hybrids produced, premat- ing reproductive barriers may as well play an important role in determining the genotypic composition and fate of a hybrid zone (Aldridge 2005). These barriers may be of different sources such as spatial, seasonal or behavioural isolation. For instance, the level of reproductive isolation might result from spatial and/or temporal overlap during reproduction periods (e.g. Emelianov et al. 2001; Bailey et al. 2004). Environmental factors might as well influence tlie level of hybridization by reducing the relative reproduc- tive success for one gender in one of the parental form (e.g. Williams et al. 2001). Disturbance dynamics which often break down the isolating barriers might as well afíect the level of gene flow in a specific habitat (e.g. Bleeker & Hurka 2001). Being affected by local ecological condi- tions, it is the strength and potentially the interaction of isolating barriers that will determine the extent of hybridiza- tion between two parental forms. It is therefore necessary to consider potential factors related to both pre- and post- mating barriers that will restrict contacts between the two hybridizing species or lineages in order to fully understand the role of natural hybridization in evolution (Bailey et al. 2004). In this study, we document the dynamics of introgressive hybridization between the American and European eels (Anguilla rostrata and Anguilla anguilla). The life cycle of the two species begins in the Sargasso Sea (North Atlantic Ocean, 19.5-30°N, 48-79°W) where the larvae, called leptocephali, appear at the surface. Leptocephali then passively and perhaps actively follow the Gulf Stream and the North Atlantic drift to reach their respective continent: North America for the American eels and Europe for the European eels. This journey is longer for European com- pared to American eels and may last from 7 months to up to 3 years depending on authors (reviewed in Arai et al. 2000). Once larvae have reached a minimal threshold size, they undergo metamorphosis into glass eel (Otake 2003). The glass eel actively swims towards shore and gradually develops pigmentation. This life stage may Iast from 20 days to more than 160 days, depending on water temperature and to a lesser extent on salinity conditions (Briand et al. 2005; Linton et al. in press). Once glass eels have lost their transparency, they are called elvers and later on yellow eels. Yellow eels are able to adapt and exploit almost all aquatic habitats, from coastal environments to headwaters. Feunteun et al. (2003) identified four different movement behaviours of eels during their yellow eel stage: founders, pioneers, lrome-range dwellers and nomads. All those behaviours represent different life strategies towards reaching a minimal threshold size before migrating back to the spawning grounds. After 3 to 20 years spent in their feeding grounds as yellow eels (Aoyama & Miller 2003), at the onset of maturation, they metamorphose into silver eels and begin their migration to the Sargasso Sea, where they reproduce and die. Spawning grounds of both species overlap in space and time (McCleave et al. 1987), thus setting the stage for interbreeding. Although their biological species status is not debated anymore, Atlantic eels differ only slightly in morphology (Avise 2003), vertebrae count being the only quasi-diagnostic phenotypic character (Boetius 1980). In North America and continental Europe, eels rarely present ambiguous vertebrae counts. However, the occurrence of eels with American-like number of vertebrae in northern Europe, and particularly in Iceland has been pointed out previously (Boétius 1980; Williams etal. 1984; Avise et al. 1990). Genetic analyses indicated that these eels were most likely of hybrid ancestry (Avise et al. 1990), although the markers used did not allow clarification of their hybrid status (e.g. first or later generation hybrids). This was due to the nondiagnostic nature of the allozyme loci used (Mdh-2), and the maternal inheritance of mitochondrial DNA (Avise et al. 1990). In a recent study that aimed to clarify the status of ambiguous Icelandic individuals using microsatellite markers, Mank & Avise (2003) concluded that 'available microsatellite data are inadequate to critically test [the] hypothesis... that some Icelandic eels are of hybrid ancestry'. Sample size and geographic coverage of Icelandic locations were also both very limited in previous studies, allowing the nature of the dynamics of hybridization betweeir Atlantic eel species to remain inconclusive. In this study, we revisit this question with the amplified fragment length polymorphism (AFLP) characterization of over 1 10 0 eels representing different life stages from both continents, as well as multiple Icelandic locations. The AFLP technique can relatively easily reveal polymor- phisms at hundreds of loci, and represents a very efficient technique for hybrid identification between closely related species (Congiu et al. 2001; Young et al. 2001; Bensch et al. 2002; Lucchini 2003; Bensch & Akesson 2005). Hybrid individuals were thus identified and classified in order to document the extent of hybridization, and to test for the occurrence of hybrids beyond the first generation. Second, we tested the null hypothesis of no differences in the © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 15 ,1903-1916 N A T U R A L H Y B R I D I Z A T I O N IN A T L A N T I C EELS 1905 proportion of hybrid eels between the glass and yellow eel stages in Iceland. Finally, we documented the distribution of hybrids across both continents and within Iceland in order to test the null hypothesis of the random geographic distribution of hybrids. M aterials and m ethods Samples A total of 1127 eels were analysed. Icelandic samples (n = 748) were collected from 10 sites between 2000 and 2003, covering most of the known geographic distributional range in Iceland (Fig. 1, Table 1). From a previous study, genomic DNA of eels was available for eight sampling locations (m = 379); four from North America, three frorn continental Europe, and one from North Africa (Fig. 1, Table 1; see details in Wirth & Bernatchez 2001, 2003). These were considered baseline populations and used to identify the most informative AFLP loci, which were used for assessing the hybrid status of each individual eel. Fig . 1 G eo g ra p h ic d is tr ib u tio n o f eel s a m p lin g sites in Iceland (top p an e l) , N o r th A m erica a n d E u ro p e (b o tto m pan el). S ta r sy m b o ls re fe r to lo c a tio n s w h e re b o th g la s s e e ls a n d y e llo w e e ls w e re c o lle c te d . lc e la n d ic s a m p le s a re Ö x n a læ k u r (Ö X ); S to k k s e y ri (ST); G ra fa rv o g u r (GR); V ífilss ta d av a tn (VI); Seljar (SE); V o g slæ k u r (VO); B ár (BA); R ey k h ó la r (RE); V a tn sd a lu r (VA); S a u ö á rk ró k u r (SA). N o r th A m erican e e l loca tions: M ed o m a k R iver (ME); B oston IT arbor (BO); W ye R iv er (W Y); S t-Johns R iver (SJ). E u ro p e a n eel loca tions: E lbe R iv e r (EL); G ra n d L ieu L ake (GL); M in h o R iver (M I); M o u lo u y a o u e d (M O). © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 North American and continental European samples consisted of either all glass eels (BO, GL, MI, MO), or all yellow eels (ME, WY, SJ, EL). Yellow eels represent a mixture of different cohorts, and should therefore represent the average genetic composition at a given location over many years. T emporal genetic variation between cohorts has been reported (Dannewitz et al. 2005); however, it is very weak relative to interspecific differences (Wirth & Bematchez 2003), and should therefore be inconsequential in assessing hybrid status. In Iceland, yellow eels were sampled at all 1 0 locations, whereas glass eels of several cohorts were available at four of these sites (ST, VI, SE, VO), which allowed the comparison of hybrid occurrence at two dif- ferent life stages. Life stages, sampling years and sample sizes are detailed in Table 1. AFLP genotyping Fin clip and muscle tissue samples were digested and total genomic DNA extracted and purified using MultiScreen lysate clearing plate and MultiScreen% BAC plate from Montage BAC96 Miniprep Kit (Millipore). The AFLP pro- cedure of Vos et nl. (1995) was íollowed in order to produce a DNA fingerprint for each of five selective primer com- binations (EcoRI-AAC/Msel-CTA; EcoRI-AAC/Msel-CTT; EcoRI-AGG/ Msel-CTT; EcoRI-ACT/MscI-CTC; EcoRI-ACT/ MscI-CTT with the EcoRI primer bearing the fluorescent dye). Each sample and primer combination was electro- phoresed on a Base Station DNA Fragment Analyzer (MJ Research), with an internal lane GeneScan®-500 [ROXJ™ size standard (Applied Biosystems). Tracking and peak identification was completed using c a r t o g r a p h e r DNA Fragment Analysis software (version 1.2.6). DNA finger- prints were smoothed and peaks with intensity over the threshold value were scored. Unambiguous loci were then identified and selected (N = 373) on the basis of reproduci- bility of fragment size (in base pairs), proximity to other loci, and signal intensity. The software a p l p - s u r v version 1.0 (Vekemans 2002) was used to calculate the number and proportion of polymorphic loci, as well as the expected heterozygosity (HE) assuming Hardy-Weinberg equilibrium within each sampling site and grouping (North America, Europe, Iceland). As the occurrence of hybríds may cause deviations from Hardy-Weinberg equilibrium assumption, expected heterozygosity should be interpreted cautiously. Difference in proportion of polymorphic loci between groups was tested by performing a nonparametric a n o v a (Kruskal-Wallis method) in s a s (release 8.02; SAS Institute). Individual hybrid status The power of selected loci to discriminate hybrid status was assessed using the population assignment simulator in a f l p o p (version 1 .1 ; Duchesne & Bernatchez 2002). Based 1906 V. ALBERT, B. J Ó N S S O N and L. B E R N A T C H E Z Table 1 Life stage, sampling year, a n d s am p le s ize (n) fo r each s am p iin g s ite sep a ra te ly . P ro p o rtio n o f p o ly m o rp h ic locí, expected h e te ro z y g o s ity (H E), a n d a b so lu te n u m b e r o f p u re A m erican (A m ), F,, FN, a n d p u re E u ro p ea n (Eu) for th e A m e rican , E u ro p ea n , a n d Ice land ic sam p le s as vvell as fo r e ach s a m p lin g s ite sep a ra te ly . G rep re se n ts g la ss eels a n d Y, y e llo w eels. D ash s ig n s (—) in d ic a te no o b se rv a tio n s in th e status categ o ry . P o p u la tio n ab b re v ia tio n s a re d e fin e d in Fig. 1 legend P o p u la tio n Lífe s tag e Y ear n P o ly m o rp h ic loci (%) h e A m F, Fn Eu A m erican ME Y 99 45 54.7 0.193 43 — 2 - BO G 99 50 52.5 0.193 49 — 1 — WY Y 99 48 52.5 0.192 48 — — — SJ Y 99 50 49.1 0.187 50 — - — T otal 193 60.3 0.192 190 — 3 — E u ro p ean EL Y 99 49 52.8 0.193 — — — 49 GL G 99 49 48.5 0.185 — — — 49 M I G 99 45 54.4 0.189 — — — 45 M O G 99 43 61.7 0,195 — — — 43 T otal 186 61.1 0.191 — — — 186 Ice land ic SA Y 03 6 71.6 0.244 — 6 — — VA Y 00 18 71.6 0.248 — 4 2 12 RE Y 01 13 75.9 0.217 — 6 — 7 BA Y 03 49 71 0.210 — 6 — 43 V O G 00 50 53.6 0.196 — 9 3 38 VO G 01 50 72.7 0.210 — 4 1 45 VO G 02 49 52.3 0.191 — 1 — 48 VO G 03 49 53.1 0.196 — 3 2 44 VO Y 01 36 70 0.212 — 3 0 31 SE G 01 48 71.8 0.211 — 7 2 39 SE Y 01 46 69.4 0,209 — 14 4 28 VI G 01 50 72.1 0.215 — 4 4 42 VI Y 02 45 70.5 0.232 — 5 5 35 GR Y 03 45 71.3 0.222 — 1 2 42 ST G 01 46 68.6 0.207 — 1 2 43 ST G 03 50 53.4 0.188 — — 1 49 ST Y 03 49 69.7 0.213 — 6 2 41 Ö X Y 03 49 72.1 0.213 — 2 2 45 T o tal 748 68.1 0.214 — 82 34 632 on allelic frequencies observed in the North American and European baseline populations, the a f l p o p simulator randomly generated 10 0 0 genotypes of each of the six following categories: pure American, pure European, fírst generation hybrids (Fj), backcrosses (BCt and BC,), and second generation hybrids (F,). Those 6000 simulated individuals were then blindly reassigned to their most probable category. Since the probability of erroneous assign- ment between the BCf, BC2 and F, hybrid categories was relatively high (see Results), we subsequently combined these into a single category of later generation hybrids (FN). Thus, we determined the most likely status of all available samples according to four categories: pure American, pure European, first generation hybrid (F,), and later generation hybrids (FN). We then used a v e r s i o n of the s t r u c t u r e p r o g r a m adapted to d o m i n a n t markers (v'ersion 2.2; D. Falush e t a l ., unpublished) t o e s t i m a t e i n d i v i d u a l ' s admixture propor- tion, in this case the proportion of an individuaTs genome originating from either the American or the European eel gene pool. The Marcov chain Monte Carlo (MCMC) algorithm implemented in the program clusters individuals into the presumed number of populations, minimizing the Hardy-Weinberg and gametic phase disequilibrium within populations, but also accounting for the genotypic ambiguity inherent in dominant markers such as AFLP (in which the presence of a band does not allow to distinguish between heterozygote and homozygote). Both American and European gene pools were assumed to represent two baseline populations (k = 2 ) without considering the prior information on the species of origin. American and European eel samples clustered vrery distinctively into two clusters, except for three American eels (see Results). This confirmed that the assumption of two populations in the admixture model could unambiguously discriminate © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 15 ,1903-1916 N A T U R A L H Y B R I D I Z A T I O N IN A T L A N T I C EELS 1907 both species and allow the identification of individuals with hybrid ancestry. All American, European, and Icelandic samples were then run by s t r u c t u r e , assuming two populations for 50 000 iterations in the burn-in and 50 000 supplementary iterations. Based on the 90% posterior probability interval of the admixture value, individuals were assigned to the four possible genetic status as follows: pure if their probability interval overlapped with 0 (pure American eel) or 1 (pure European eel), first generation hybrid (F;) if their probability interval overlapped with 0.5 but not with either 0 or 1 , and later generation hybrid if it did not overlap with either 0, 0.5 or 1 . This methodology is conservative as it is most likely underestimating the number of later generation hybrids in favour of first generation hybrids and pure American or European eels. Theory predicts that, depending on the pedigree of individuals, some of the later generation hybrids can be characterized by a proportion of both parental gene pools (e.g. American and European eel) which is equal or close to that of a first generation hybrid or pure parental forrn (e.g. Epifanio & Philipp 1997). s t r u c t u r e results were then compared to those obtained using the program n e w h y b r i d s (Anderson & Thompson 2002). Using Bayesian statistics and MCMC, this program computes the posterior probability that each individual belongs to one of the following classes: American, European, F,, BClr BC2, and F2 category. The clustering method of this latter program is based on an inheritance model defined in terms of genotype frequencies and is useful when popu- lations are known to consist of pure and recent hybrids. Assuming Jeffrey's like priors for the mixing proportion and the allelic frequencies, the same data set was run for 50 000 iterations in the burn-in and 50 000 supplementary iterations. Hybrid proportiort vs. life stages and sampling sites We determined whether there was a difference in the pro- portion of hybrids between the glass and yellow eel stages by performing a static cohort analysis on eels from the four Icelandic sites where both glass and yellow eels were sampled (ST, VI, SE, VO). The proportion of first genera- tion hybrids, the proportion of later generation hybrids, and the total proportion of hybrids (combining the first and later generation) were compared between the glass and yellow eel stages (CATMOD procedure in s a s release 8.02; SAS Institute). Assuming a constant rate of hybridization, this cohort analysis is an efficient means to evaluate the relative hybrid fitness, allowing an estimate of the viability of hybrids in natural conditions (Bert & Arnold 1995). However, since we could not assess differential survival during the oceanic stages (larv'al stage prior to freshwater and silver eel stage following yellow eel metamorphosis), our interpretations are based on differential survival in freshwater only. Moreover, there are currently no data available to evaluate the temporal variation in the pro- portion of hybrids reaching Iceland. In order to evaluate this possibility, we compared the proportion of hybrids between different time periods according to the life stages and the year eels were sampled. More specifically, we considered that yeUow eel samples collected in 2000 were the oldest of all samples and all samples were classified into eight different time periods. We thus considered yellow eels collected in 20 0 0 as belonging to the time period 1 , yellow eels collected in 20 01 to the time period 2 , yellow eels coUected in 2002 as eels from the time period 3, and yellow eels collected in 2003 belonging to the time period 4. We considered the glass eel samples collected in 2000 as eels from the time period 5, glass eels collected in 2001 as eels from the time period 6, glass eels collected in 2 0 0 2 as eels from the time period 7, and finally glass eels collected in 2003 as eels from the time period 8 . This allowed us to statistically test for heterogeneity in the occurrence of hybrids (Fv FN, and both categories combined) between the different time periods. We used the chi-squared (y}) permutation method of Roff & Bentzen (1989) avaUable from the executable MONTE in the r e a p program (McElroy ef al. 1992), with 1000 permutations to detennine test significance. Finally, heterogeneity in the geographic distribution of hybrids, both across continents and within Iceland, was first tested using a chi-squared (%2) permutation test on the occurrence of pure, first, and later generation hybrid eels. The association between the proportions of hybrids (F2 and Fn categoríes combined) among Icelandic yellow eels and latitude was assessed by the Pearson correlation using s a s (release 8.02; SAS Institute). The two hybrid categories were pooled in order to reduce sampling bias due to the low occurrence of first or later generation hybrid in several sites after confirming the absence of significant difference in the geographic distribution between Fj and FN hybrids (X2 = 13.77, P = 0.12). The correlation between mean length of eels in each site and latitude was assessed as well (Pearson correlation in s a s ) . Results Individual hybrid status A total of 373 AFLP Ioci were resolved among all continental American and European eel samples, of which 120 had a frequency differential of 0 .1 0 or higher between both species. A relatively high polymorphism was observed, whereby, 60% or more of the AFLP loci were polymorphic, depending on sample locations (Table 1). Namely, a highly significant difference in proportion of polymorphic loci was observed between the three sampling groups (K = 10.14, P = 0.0063), where Icelandic samples were characterized by a higher proportion of polymorphic loci compared © 2006 B lackw ell P u b lish in g L td , M olecular Eœ logy, 15 ,1903-1916 1908 V. ALBERT, B. J Ó N S S O N and L. B E R N A T C H E Z Samples Fig . 2 A d m ix tu r e p r o p o r t io n s o f N o r th A m erican , E u ro p ean , a n d Icelandic sam ples. E ach in d iv id u a l is re p re s e n te d b y a ve rtica l b a r; the p ro p o r tio n o f b lack a n d w h ite in each b a r re p re sen ts th e p ro p o r tio n o f the in d iv id u a l 's g e n o m e fro rn A nguilla rostrata (A m erican) a n d Anguilla anguilla (E u ropean ) ancestry , respec tive ly . T he d o tte d h o rizo n ta l lin e in d ic a tes th e 0.5 a d m ix tu re level. N u ll va lues re fer to a d m ix tu re p ro p o rtio n s sm aller th a n 0.001, w h ile 1 refers to ad m ix tu re va lues la rg e r th a n 0.999. to North American and European samples, as would be expected for admixed vs. pure gene pools. Based on the simulation and reassignment procedures performed with a f l p o p using the six e e l categories (pure American, pure European, Fv F2, BC,, BC2), the assignment success for pure American, pure European, and F, eels was 98.1%, 97.6%, and 83.2% respectively. However, misassign- ments in F„ BC (, and BC2 were relatively high: 29.8%, 12.3%, and 12.6%, respectively. In order to reduce misassign- ment and also increase hybrid sample size for subsequent statistical analyses, F, and backcrosses were pooled into a single later generation hybrid category (FN), which resulted in a misassignment rate of 8.1%, 7.6%, and 16.4% for the BCj, BC„ and F2, respectively, and a misassignment of 8.9% over all status categories. The results of s t r u c t u r e revealed that the geographic distribution of admixture proportion differs substantially among continental American, European, and Iceíandic samples (Figs 2 and 3, and Table 1). Samples from both continents were essentially composed of eels with either a pure American or European eel genome. Most icelandic indivíduals were characterized by a genome of pure European ancestry. However, 15.5% of Icelandic samples were classified as admixed with variable degrees of their genome from American eel ancestry. Hybrid proportion within each yellow eel sample ranged from 6 .6 to 1 0 0 %. No pure American eel was observed among the Icelandic samples. Using this information to assess the genetic status of all individual eels based on the 90% posterior probability interval of the admixture value, the continental European samples consisted of only pure European eels, while the null hypothesis of pure American ancestry was rejected for three North American individuals. These had estimates of 7%, 20%, and 21% of their genorne from European eel ancestry, and were identifíed as later generation hybrids (since their 90% probability interval did not overlap either with 0 or 0.5). In contrast, the null hypothesis of pure European eel ancestry was rejected for 15.5% (n = 116) of all Icelandic samples analysed. A total of 70.7% (n = 82) of putative hybrids in Iceland fell into the first generation E L G L M! M O S A V A R E 8 A V O S E V I G R S T Ö X M E B O W Y SJ Europe lceland North America Fig . 3 Proportions of p u re A n g u ilk rostrata (closed bars), p u re Anguilla anguilla (o p en b a rs ), f irs t g e n e ra tio n (d o tted ) , a n d Ia te r g en era tio n h v b rid s (striped ) w ith in each sam p lin g s iles fo r co n tin en ta l E urope, Ice land , a n d N o rth A m erica . P o p u la tio n ab b re v ia tio n s a re d e fin ed in Fig. 1 legend . category, whereas 29.3% (n = 34) of all hybrids were classified as later generation hybrids, which confirmed the occurrence of hybrids beyond the first generation, and therefore, the viability and capacity of first generation hybrids to reproduce. The individual status categories obtained from the soft- ware s t r u c t u r e were confirmed by the software n e w h y - b r i d s , whereby 95 % of the 1127 assignments were identical. Moreover, the proportion of each status categories detected by s t r u c t u r e and n e w h y b r i d s in each sampling location did not differ significantly and were highly correlated (R2 = 0.979). Given such a high congruence between both methods, we retained and interpreted the detailed results O Í STRUCTURE. Hybrid proportion vs. life stages and sampíing sites The static cohort analysis rejected the null hypothesis of no difference in the proportion of hybrids between glass and © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 N A T U R A L H Y B R Í D I Z A T I O N IN A T L A N T I C EELS 1909 0.20 - - f 0.15 - oQ. o 0.10 CL 0.05 - 0.00 A 0.25 - 0.12 ^ 0.35 - o = 40.09° y 2 - 36.10 O o Xz = 13.35 P< 0.001 0.10 ^ P = 0.061 0,30 - * P< 0.001 * 0.08 - 0.06 ° ♦ 0.25 0.20 ♦ O 0 0.15 ♦ 0.04 ♦ 0.10 * ♦ ♦ 0.02 0.05♦ 0.00 0 . 0 0 - ♦ 1 2 3 4 5 6 7 Time period 2 3 4 5 6 Time períod 1 2 3 4 5 6 7 Time period Fig . 4 R e la tio n sh ip b e tw ee n th e p ro p o r tio n o f F, (A), Fn (B), o r F, a n d FN co m b in ed (C) w ith tim e p e rio d (d e fin ed in M ate ria ls a n d m e th o d s section). C h i-sq u a re ('/}) a n d P v a lu e s a re p re s e n te d . S olid d ia m o n d s re fe r to y e llo w eel sam p le s a n d o p e n d ia m o n d s to th e g la ss eel sam p les . T a b le 2 P ro p o r tio n s o f p u re , first (F,), a n d la te r g e n e ra tio n h y b rid s (FN) in th e g ia ss eei an d y e llo w eel s am p le s co llected in V o g slæ k u r (VO), S to k k sey ri (ST), V íf ilss tad av a tn (VI), a n d Seljar (SE) Site Life s tag e P u re E u ro p ea n S ta tu s c a tego ry F. f n VI G 84.0 8.0 8.0 Y 77.8 11.1 11.1 SE G 81.3 14.6 4.2 Y 60.9 30.4 8.7 v o G 88.4 8.6 3.0 Y 86.1 8.3 5.5 ST G 95.8 1.0 3.1 Y 83.7 12.2 4.1 0.8 0.6 0.4 0.2 0 - 63.5 R 2 = 0.4865 P = 0.025 • ST 64 64.5 65 Latitude 65.5 66 Fig . 5 P e a rso n co rre la tio n (R2) b e tw e e n the p ro p o r tio n o f h y b rid s a n d la titu d e (firs t a n d la te r g e n e ra lio n h y b rid s co m b in ed ) in Ice land ic sam p les . yellow eels in Iceland. In seven out of eight comparisons, higher proportions of hybrids in yellow eel relative to glass eel samples were observed, the exception being the first generatíon hybrids in Vogslækur (VO) (Table 2). The categorical model analysis revealed no significant interaction between sampling site and life stage (P = 0.5461). Thereíore, a main effect model, which did not consider the interaction between sampling sites and life stages, was run. The proportion of hybrids varied significantly among sampling sites (P = 0.0036) and between life stages (P = 0.0155), but sampling site had no significant effect on the difference in the proportion of hybrids observed between glass eels and yellow eels. On the other hand, the proportion of first generation hybrids and the proportion of first and later generation hybrids combined varied significantly betwæen time periods (P< 0 .0 0 1), whíle the variation in the proportion of later generation hybrids was near statistical significance (P = 0.061; Fig. 4). Moreover, a temporal trend was observed whereby the proportion of hybrids reaching ícelandic waters seemed to decrease from 2000 to 2003, based on the analysis of glass eel samples (time period 5-8). The addition of yellow eel samples (time period 1-4) further supported this pattem. A x2 permutation test confírmed the nonrandom distribu- tion of hybrids between Iceland and both continents (x2 = 59.16, P < 0.001). A second analysis based only on Icelandic samples confirmed a highly significant nonrandom geogra- phic distribution (%2 = 75.52, P < 0.001). A significantly positive correlation was observed between the proportion of hybrids and latitude, explaining 48.7% of the variance in hybrid proportion (P = 0.025; Fig. 5). The proportion of explained variance remained high (39%) and near statistical significance (P = 0.073) even when removing the Sauárkrókur sample (n = 6 ) from analysis. The correlation between mean length of eels and latitude explained 2 1 % of the variance and mean length tended to slightly increase with latitude, but was not significant (P = 0.1826). D iscu ssion The objective of this study was to address three specific questions regarding the dynamics of hybridiz,ation between /Atlantic eels. We first evaluated the extent of hybridiza- tion and tested for the occurrence of hybrids beyond the first generation. Second, we tested whether hybrids were randomly distributed across continents and among Icelandic sampling sites. Third, we tested for a difference in the proportion of hybrids between glass eel and yellow eel stages in Iceland. Our results provided evidence for (i) an overall hybrid proportion of 15.5% in Iceland, and the existence of hybrids beyond the first generation; (ii) a nonrandom geographic distribution of hybrids in the North Atiantic; and (iii) a higher proportion of first and later generation hybrids in the yellow eel stage compared © 2006 B lackw ell P u b lish in g L td , Molecular Ecology, 15 ,1903-1916 1910 V. ALBERT, B. J Ó N S S O N and L. B E R N A T C H E Z to the glass eel stage, as well as a significant latitudinal gradient in the proportion of hybrids in lcelandic fresh- water. Below, we discuss the possible causes and conse- quences of these findings. Extent ofhybridization and existence ofhybrids beyond F7 generation Avise et al. (1990) previously confirmed the existence of hybrid eels in lceland. However, Iimited sample sizes pre- cluded these authors from confidently estimating their proportion. Here, with the hundreds of markers and samples, we found that 15.5% of al) Icelandic eels analysed were of hybrid origin. The broad coverage of sampling sites confirmed that hybrids are ubiquitous in Iceland, being present in all locations, representing nearly half of the eels analysed at some sampling sites (1 0 0 % hybrids in the low sample size taken in SA). In contrast, we found no evidence for the occurrence of introgressed eels in Europe. This result was unexpected, given the previous report of a few European eels with intermediate vertebrae counts (Boetius 1980). However, the abnormal vertebrae counts (< 109) were reported quasi-exclusively in northern Europe (Iceland, Denmark and Faroes, except for one report in both France and Spain). Our sampling coverage for the northern part of the species' distributional range in Europe precludes rigorously ruling out the occurrence of intro- gressed eels. On the other hand, our results suggest that a small proportion of American eels may be introgressed. Interestingly, the three eels for which a pure American origin was rejected were from the two northernmost sampling sites. This observation, although preliminary, corrobo- rates previous observations that the probability of finding introgressed Atlantic eels may be higher at northern latitudes. Based on previous studies, it has remained unknown whether hybrids are infertile, and therefore an evolutionary dead end or, in contrast, a possible avenue for maintaining gene flow between American and European eels. This study provides the first evidence for the relatively common occurrence of second or later generation hybrid eels, which represented approximately 30% of all hybrid specimens and approximately 5% of all Icelandic eels analysed. These proportions demonstrate that hybrids between American and European eels are viable, fertile, and can migrate back to the Sargasso Sea for reproducing beyond the first filial generation. In situations of contentious species status, hybrid zones have long been recognized as a means to assess taxonomic status. Here, despite temporal and spatial reproductive sympatry and interbreeding, American and European eels remain reproductively isolated and almost entirely genetically dístinct, therefore fulfilling the críteria of distinct biological species despite the potential for gene flow between them (Coyne & Orr 2004). Since there are no obvious physical barriers during spawning to prevent hybridization between American and European eels, their persistence as distinct species could result from behavioural and/or ecological reproductive isolating barriers (e.g. Young et al. 2001; Taylor 2004), and/or as a result of sufficiently strong natural selection overcoming the homogenizing effects of gene flow (e.g. Schneider et al. 1999). In such a case, ecological speciation processes, rather than strict geo- graphic isolation, could be responsible for maintaining the reproductive isolation between American and European eels. This, however, would not necessarily exclude a possible role for past allopatric separation in the maintenance of their reproductive isolation through endogenous processes, such as the accumulation of genotypic incompatibilities. The nucleotide sequence divergence estimate of 3.7% between the two monophyletic mitochondrial DNA clades that characterize American and European eels (Avise et al. 1986) suggests that they evolved in allopatry, perhaps during hundreds of thousands of generations, before their secondary contact. Indeed, the dual role of both historical contingency and ecological detenninism has been previously reported in other fishes (Bernatchez et al. 1999; Taylor & McPhail 2000; Fraser & Bernatchez 2005). Geographic distribution ofhybrids The second main observation of this study was the con- firmation that both and later generation hybrid eels are found almost exclusively in Iceland. What factors may be responsible for this pattern? It has previously been documented that American and European eel larvae are not segregated during their migration (Kleckner & McCleave 1985 in Wang & Tzeng 2000) and consequently, it seems unlikely that Icelandic Iarvae would have their own migration route. Alternatively, interspecific differences in additive genetic basis for adaptive migratory behaviours and/or larval development could result in intermediate migration in hybrids (Rogers et al. 2002). Under this scenario, it would therefore be more likely that hybrids would end up in Iceland, which position is somewhat intermediate between both continents. The possibility for orientated swimming of the leptocephali larvae appears unlikely given the small size of the larvae, the high current velocity they must cope with, and the large distance to be covered (McCleave et al. 1998). Therefore, processes that could be responsible for the higher occurrence of hybrid eels in Iceland are more likely to be associated with developmental schedule and passive drift (McCleave 1987). Studies of daily growth increments indicated that there is a significant difference in larval duration between American and European eels: 200 and 350 days respectively (Wang & Tzeng 2000). Even if the daily deposition on the leptocephali otolith is still contentious (see Lecomte-Finiger 1994; © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 N A T U R A L H Y B R I D I Z A T I O N IN A T L A N T I C EELS 1911 Cieri & McCleave 2000; Wang & Tzeng 2000), there is no doubt that the larval stage duration is longer for the European relative to the American eel. Given that fish larval development is partially under additive genetic control (Rogers & Bernatchez, in preparation), hybrids could spend intermediate time as a larva and therefore be more likely to successfully colonize freshwater habitats at intermediate locations between continents, such as Iceland. Differential growth rate between American (0.21 mm/day) and European eel larvae (0.15 m m /day) has also been reported (Wang & Tzeng 2000), which could further increase the probability of colonizing freshwater habitats in inter- mediate locations between continents. The premigration metamorphosis of yellow eels is timed at both the develop- mental and behavioural level (Haro 2003), such that eels must reach a minimum threshold size before undertaking their downstream migration (Oliveira 1999). Since minimal threshold size also apparently applies to leptocephali (Otake 2003), and given the interspecific difference in the average size of glass eel (Wang & Tzeng 2000), hybrids with intermediate growtli may also be characterized by an intermediate time spent as larvae. Hybrid proportion in Icelandic samples Two distinct and confounding patterns were observed regarding the proportion and distribution of hybrids in Iceland. First, the proportion of hybrids was significantly higher in yellow eels compared to glass eels. Then, we also observed a variation in hybrid proportion with year of arrival in glass eels. Since yellow eels were collected approximately in the same time period as the glass eels, the higher hybrid proportion in the yellow eels could result from either a higher survival of eels in Icelandic freshwater and/or to a temporal trend in the reduction of hybrids reaching Iceland. Here, we discuss the potential scenarios that could be responsible for the patterns we observed, given the strengths and limitations of our data set. Natural selection may influence the hybrids' relative fitness in terms of differential survival, and as such, modulate the observed proportion of hybrids. Examples where first generation hybrids (F,) showed equal or higher fitness relative to at least one of the parental forms are common in plants (e.g. Burke et al. 1998; Orians et al. 1999; Campbell & Waser 2001; Campbeil 2003; Song et al. 2004; Kirk et al. 2005), and several examples exist in animals as well (e.g. Grant & Grant 1992; Scribner 1993; Emms & Arnold 1997; Hotze ta l. 1999; Parris 2001; Perry et al. 2001; Schweitzer et al. 2002). However, few studies have evalu- ated relative fitness beyond the first hybrid generation. Most studies directly comparing survival of first and later generation hybrids were performed in laboratory or con- trolled conditions (e.g. Moore & Koenig 1986; Saino & Villa 1992; Howard et al. 1993; Wang et al. 1997; Campbell et al. 1998; Vilá & D'Antonio 1998; Fritsche & Kaltz 2000; Good etal. 2000; Hauser et al. 2003; Burgess & Husband 2004; Gilk et al. 2004; Rosenfield et al. 2004; Facon etal. 2005). As a result, the evolutionary processes as well as the potential outcome of hybridization in natural settings remain largely unexplored in animals (Burke & Arnold 2001; but see Grant & Grant 1992; Emms & Arnold 1997; Perry et al. 2001; Schweitzer et al. 2002). Here, assuming that the pro- portion of hybrids arriving in Icelandic waters is relatively constant, the higher frequency of both Fj and later genera- tion hybrids in yellow eels relative to glass eels would indi- cate a higher relative survival of hybrids. In animals, higher hybrid survival has previously been documented for the Darwin's finches Geospiza fortis, Geospiza scandens, and Geospiza fuliginosa. Thus, Grant & Grant (1992) compared the survival of natural first and later generation hybrids to the parental forms and observed a higher sur- vival in both categories. Other examples of natural hybrids with a higher relative fitness also exist (e.g. Moore & Koenig 1986; Saino & Villa 1992; Howard et al. 1993; Bert & Arnold 1995; Good et al. 2000; Rubidge & Taylor 2004). According to environment-dependent hybrid zone models, superior hybrid srrrvival is more likely to be observed in novel habitats or in a novel combination of environmental factors (Howard et al. 1993). For instance, when surveying two ecologically differentiated taxa in sedge (Carex curvula), Choler et al. (2004) found that genotype integrity was maintained in optimal habitats, and that hybrids were favoured in marginal habitats. Genetic introgression was thus considered 'as a potential to widen a species' niche'. The situation may be similar for North Atlantic eels. Iceland, where hybrids are observed, is located at the limit of the northern distribution range of the European eel, and may therefore be considered as representing a marginal habitat relative to the typical environments to which pure European eels are mainly adapted to. As recognized earlier by Grant & Grant (1996): 'the key to understand the spatial patterning of hybridization and the relative fitness of hybrids could lie in the ecology and breeding behaviour.' Here, we discuss hypothetical ecological and/ or behavioural causes that could explain a higher hybrid survival in Iceland. Admittedly, however, the veracity of these hjqiotheses must await further experi- mental investigations. European freshwaters are warmer on average than Icelandic waters and the average length of the growing season is longer in continental Europe (Einarsson 1984). A higher hybrid survival raises the hypo- thesis that hybrid eels with hybrid genotypic combinations could be better adapted (either due to a shift in the mean or an increased variance of a phenotypic trait) than pure European eels to environmental conditions experienced in Iceland, thus increasing survival probability. For instance, American eels face colder winters on average relative to European eels (Seager et al. 2002). American eels are thus © 2006 B lackw ell P u b lish in g L td , Molecular Ecology, 1 5 ,1903-1916 1912 V. ALBERT, B. J Ó N S S O N and L. B E R N A T C H E Z potentially exposed to a larger range of temperatures than European eels, which could perhaps provide physiological advantages to hybrid eels relative to European eels in Iceland. Nonetheless, experiments on temperature physio- logical tolerance and adaptation of Atlantic eels in natural environments are lacking aird difficult to realize. Eels in the laboratory typically stop feeding and gradually reduce their activity to complete torpor when exposed to low temperatures (Nyman 1972; Sadler 1979; Walsh et al. 1983; Linton et al. in press). Moreover, observation varies con- siderably from one laboratory experiment to another. For instance, Nyman (1972) reported that European eels did not feed or search for food when temperatures were lower than 14 °C and the same observation was made in the American eels (Barila & Stauffer 1980). In contrast, other studies mentioned lower feeding temperatures such as 8 °C (Walshef al. 1983) or 10 °C (Bruun 1963 inNyman 1972). Second, a possible role for natural selection in explaining a higher proportion of hybrids in yellow eels relative to glass eels in Icelandic freshwaters was also suggested by a positive relationship between the proportion of hybrids and latitude. This observation raises the hypothesis of differential survival favouring hybrids that may correlate with a thermal latitudinal gradient. Thus, while there are no good records for freshwater temperature per se, it is known that mean water temperature correlates with mean air temperature, and that mean yearly air tempera- ture decreases with latitude in our sampling area, resulting in shorter summers and colder winters at more northern latitudes (Einarsson 1984). Water temperature has a major influence on eels' metabolism (Sadler 1979), oxygen con- sumption, and enzyme activities (Walsh et al. 1983), as well as behaviours such as feeding, aggression, and habitat selectivity (Nyman 1972; Barila & Stauffer 1980). Tlrere- fore, different thermal optima between pure European and hybrid eels could result in differential performance and perhaps survival depending on the thermal regime. Although this possibility cannot be ruled out entirely, it seems less likely that the observed latitudinal gradient in the proportion of hybrids is associated with a variation in the proportion of hybrids arriving in Iceland. First, yellow eel samples were composed of eels from different cohorts, which should buffer the impact of the yearly variation. Second, we found no significant sampling site effect on the size of yellow eels that were collected. Although size only represents an approximation of age, the lack of association between rnean eel size and latitude suggests that difference in age between yellow eels from different locations cannot explain alone the latitudinal pattern we observe. Third, temporal changes in the relative survival of hybrids in the ocean associated with global warming could explain the apparent temporal decrease in the proportion of hybrids arriving in Icelandic waters. For instance, Perry et al. (2005) demonstrated that many exploited and non- exploited fishes from the North Sea, have responded markedly to recent increases in sea temperature, whereby the distribution of 21 out of 36 species surveyed shifted either in mean latitude, depth or both over the last 25 years. In Atlantic eels, the Den Oever glass eel recruitment index declined markedly since the late 1980s, which coincided with consistently positive sea surface temperature anomalies since then (ICES 2001; Knights 2003). Under the hypothesis that the thermal physiological optirna is lower for hybrids relative to pure eel larvae, higher temperature could result in increased relative survival of pure European eels, and in an apparent reduction of the proportion of hybrid eels arriving in Icelandic waters. An additional, nonexclusive cause of the variation in the proportion of hybrids arriving in Iceland could reside in the modification of the oceanic circulation (Knights 2003; Wirth & Bernatchez 2003). Thus, the ongoing warming of the Sargasso Sea/Sub-Tropical Gyre is hypothesized to inhibit sprmg thermocline mixing and nutrient mixing, which would have marked impact on productivity in the spawning area of the Atlantic eels and could reduce the amount of food available for the leptocephali (Bates 2001). Moreover, modifications in oceanic currents could reduce transport rate and hence probably prolong migration of leptocephali, exacerbating impacts of low nutrition and exposing them for a longer period to predation (Knights 2003). Under the hypothesis that hybrids are genetically intermediate between European and American eels, and knowing that European eels are adapted to a longer oceanic migration period relative to American eels (Arai et al. 2000; Wang & Tzeng 2000), it is plausible that ongoing changes in oceanic circulation could result in a lower proportion of hybrids reaching Icelandic waters relative to pure European eels. Besides differential survival between hybrids and pure European eels, both in freshwater and in the ocean, addi- tional factors may explain the higher proportion of hybrids we observed in yellow eel compared to glass eel samples. Spatial variation in hybrid zone dynamics has been reported in several species (e.g. Bleeker & Hurka 2001; Williams et al. 2001; Watano et al. 2004; Aldridge 2005). In the same way, temporal variation in the extent of spatial overlap could also result in variation in the extent of hvbridization. For instance, Watano et al. (2004) found an important role of the size and position of the distribution gap in two Pinus species to explain the differences in level and pattern of introgression in two distinct contact sites. Moreover, Emeiianov et al. (2001) proposed that year-to-year variation in population densities could be an important factor lead- ing to temporal variation in natural hybridization. Clearly, recruitment in American and European eels has declined sharply in recent decades (Castonguay et al. 1994; Dekker 2000; Haro et al. 2000; ICES 2001), possibly by up to 90% in some European rivers (Dekker 2003). We propose that © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 N A T U R A L H Y B R I D I Z A T I O N IN A T L A N T I C EELS 1913 such demographic decline could decrease densities of eels on spawning grounds in the Sargasso Sea. Decreased densities could in turn reduce the area of overlap during spawning and therefore the number of hybrids being produced. The decreasing trend in hybrid proportion tirriv- ing in Icelandic waters from 2000 to 2003 tends to support this hypothesis, although a longer time series will be necessary to verify it. Admittedly, this study does not allow to confidently conclude on the nature of possible causes for the higher proportion of hybrids observed in the yellow eels compared to glass eels in Iceland. However, since pre- and postmating isolating barriers are nonexclusive processes, we propose that the combined effect of both differential survival of hybrids and variation in hybridization rate through time may best explain the patterns we observe. Indeed, climate change is impacting many environmental features and could have a determinant effect on the outcome of natural hybridization in Atlantic eels. Moreover, the complexity of Atlantic eels' life cycle, which comprises several critical stages, may exacerbate the impact of environmental con- ditions on the production and survival of hybrids. Clearly, experimental investigations, as well as additional field data, will be necessary for elucidating the role of both selective and demographic factors influencing the dynamics of natural hybridization in Atlantic eels. Implications for natural hybridization studies The diverse array of outcomes in hybridizing species calls for more studies of introgressive hybridization in natural environments. This study added to the diversity of possible outcomes of hybridization in that hybridization between American and European eels results in a very unique case of hybrid zone, whereby hybrids are located thousands of kilometres away from where interbreeding occurs. To our knowledge, it is the first documentation of such a hybrid zone. Second, this study illustrated that interspecific hybridization is a very dynamic process, whereby the combination of both pre- and postmating mechanisms may result in pronounced spatio-temporal fluctuations in the proportion of hybrids found in nature. It also suggests that post-F ̂hybrids may ha ve higher fitness than parental forms under specific circumstances, and demonstrates that introgressive hybridization is a possible avenue for maintaining gene exchanges between American and European eels. Overall, our results add to the increasing number of studies showing that natural hybridization may play a significant role in adaptation and evolution. A ck now ledgem ents W e a re g ra te fu l to R. S a in t-L au ren t a n d L. P a p illo n fo r la b o ra to ry ass is tan ce , to P. D u c h e sn e a n d D. F a lu sh fo r a n a ly tica l adv ices . W e sin ce re ly th a n k T. W irth fo r p ro v id ín g D N A sam p le s a n d E. E lfa rsd ó ttir, S. In g ó lfsd ó ttir , a n d G . I. G u ö b ra n d sso n fo r a ss is tan ce w ith field w o rk . F inally , w e a ck n o w le d g e su b jec t e d ito r G. W aliis , as w e ll a s M . C as to n g u a y , A . M . G ale a n d th re e a n o n y m o u s referees fo r th e ir h e lp fu l c o m m e n ts o n th e m a n u sc rip t. T h is re sea rch w as su p p o r te d b y a FQ R N T (F onds d e re c h e rch e s u r la n a tu re e t les te c h n o lo g ie s d u Q u é b ec ) p o s tg r a d u a te s c h o la rs h ip s to V .A ., the C an a d ia n R esearch C h a ir in c o n se rv a tio n g en etics o f a q u a tic re s o u rc e s , a n d a g r a n t fro m S c ien ce a n d E n g in e e r in g R e s e a rc h C an a d a (NSERC, D isco v ery g ra n t p ro g ra m ) to L.B. References A ld rid g e G (2005) V aria tio n in freq u e n c y o f h v b r id s a n d sp a tia l s tru c tu re a rn o n g lf>omopsis (P o lem on iaceae ) c o n tac t sites. N ew Phytoloxist, 1 6 7 ,2 7 9 -2 8 8 . A n d e rso n E, S teb b in s G L (1954) H y b r id iz a tío n as a n ev o lu tio n a ry s tim u lu s . Evolution, 8, 378 -3 8 8 . A n d e rs o n EC , T h o m p s o n EA (2002) A m o d e i-b a s e d m e th o d fo r id e n tifv in g sp ec ies h y b r id s u s in g m u ltilo cu s g en etic da ta . Genetics, 160 ,1217-1229. A o y a m a J, M ille r M J (2003) T h e s i lv e r eel. In : Ecl Biology (ed. A id a K KTKY), p p . 107-117. S p rin g er-V e rla g , Tokyo. A ra i T, O tak e T, T su k a m o to K (2000) T im in g o f m e ta m o rp h o s is a n d la rv a l s e g re g a t io n o f th e A tla n tic e e ls A n g u illa rostratn a n d A . angu illa , a s re v e a le d by o to li th m ic ro s tru c tu re a n d m ic ro ch em istry . M arine Biologi/, 1 3 7 ,3 9 -4 5 . A m o ld M L (1992) N a tu ra l h y b rid iza tio n as a n e v o lu tio n a ry process. A nnua l Reviczv o f Ecology and System atics, 2 3 ,237-261 . A rn o ld M L (1997) N atura l H ybrid iza tion and E vo lu tion . O x fo rd U n iv e rs ity P ress, O x fo rd , U K . A rn o ld M L (2004) T ra n s fe r a n d o r ig in o f a d a p ta t io n s th ro u g h n a tu ra l h v b rid iza tio n : w e re A n d e rso n a n d S teb b in s rig h t? Plant Cell, 16, 562 -570 . A rn o ld M L, B u lger M R, B urke JM , H e m p e l A L, W illiam s [H (1999) N a tu ra l h yb rid iza tion : how lo w c a n you g o a n d s tillb e im p o rta n t? Ecoloxi/, 8 0 ,3 7 1 -3 8 1 . A rn o ld M L , H o d g e s SA (1995) A re n a tu r a l h y b r id s fit o r u n f i t re la tiv e to th e ir p a re n ts . Trends in Ecology & Evolution, 1 0 ,6 7 -7 1 . A v ise JC (2003) C a ta d ro m o u s eels o f th e N o rth A tlan tic : a rev iew of m o le c u la r g en e tic f in d in g s re le v a n t to n a tu ra l h is to ry , p o p u - la tio n s t iu c tu re , sp ec ia tio n , a n d p h y lo g e n v . In: Eel Biology (ed. A id a K KTKY), p p . 3 1 -4 8 . S p rin g er-V e rlag , T okyo . A \áse JC, H elfm an GS, S au n d e rs N C, H ales LS (1986) M itochondria l D N A d iffe ren tia tio n in N o r th A tlan tic eels: p o p u la tio n genetic c o n seq u en ces o f a n u n u s u a l life h is to rv p a tte rn . Proceedings of thc National Acadcm y o f Scicnccs, U SA , 83, 4350-4354 . A v ise JC , N e lso n W S, A rn o ld J et al. (1990) T h e ev o lu tio n a ry g en etic s ta tu s o f Ice land ic eels. Evolution, 4 4 ,1 2 54-1262 . Ba i le y R I, T h o m a s C D , B u tlin RK (2 0 0 4 ) P r e m a t in g b a r r ie r s to g e n e e x c h a n g e a n d th e ir im p lic a tio n s fo r th e s t ru c tu re o f a m osaic h v b rid z o n e b e tw ee n Chorthipyus brunncus a n d C. jacobsi (O rth o p te ra : A crid id ae ). Journal o f Evolutionary B/’ofoyy, 1 7 ,1 0 8 - 119. B arila TY, S ta u ffe r JR (1980) T e m p e ra tu re b e h a v io ra l re s p o n se s o f th e A m erican eel, Anguilla rostrata (L esueu r), from M ary lan d . Hydrobiologia, 7 4 ,4 9 -5 1 . B arton N H (2001) T h e ro le o f h y b rid iza tio n in ev o lu tio n . Molecular Ecolog i/, 10 ,5 5 1 -5 6 8 . B arton N H , H e w itt G M (1985) A n a ly sis o f h y b rid z ones . A nuual R cvíctv ofEcology and System atics, 1 6 ,1 1 3 -1 4 8 . © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 1914 V. ALBERT, B. J Ó N S S O N and L. B E R N A T C H E Z B ates N R (2001) In te ra n n u a l v a ria b ility o f ocean ic C 0 2 a n d b ioge- o ch em ica l p ro p e rtíe s in th e w e s te m N o r th A tlan tic su b tro p ic a l g y re . Deep-Sea Resenrch Part Il-Topical S tudies in Oceanography, 48 ,1507-1528 . B en sch S, A k e s s o n M (2005) T e n y e a r s o f A F L P in e co lo g y a n d evo lu tion : w h y so few an im als? Molecular Ecology, 14 ,2899-2914. B ensch S, H e lb ig AJ, S a lo m o n M , S ieb o ld I (2002) A m p lif ied f r a g m e n t l e n g th p o ly m o r p h is m a n a ly s is id e n t i f ie s h y b r id s b e tw e e n tw o su b sp e c ies o f w a rb le rs . M olccular Ecology, 1 1 ,4 7 3 - 481. B ern a tch ez L, C h o u in a rd A , Lu G Q (1999) In teg ra tin g m o lec u la r g en e tics a n d eco logy in s tu d ie s o f a d a p t iv e ra d ia tio n : w h ite fish , Coregonus sp ., as a case s tu d y . Biological Journal o f the Liiineaii Society, 6 8 ,1 7 3 -1 9 4 . Bert TM , A rn o ld W S (1995) A n e m p iric a l te s t of p re d ic tio n s o f tw o c o m p e tin g m o d e ls fo r th e m a in te n a n c e a n d fa te o f h y b rid zones: b o th m o d e ls a re s u p p o r te d in a h a rd -c la m h y b rid zone. Evohition, 4 9 ,2 7 6 -2 8 9 . B leeker W , H u rk a H (2001) In tro g re ss iv e h y b r id iz a tio n in Rorippa (B rassicaceae): g e n e flo w a n d its co n seq u e n ces in n a tu ra l a n d a n th ro p o g e n ic h ab ita ts . Molccular Eco/ogy, 10, 2013-2022 . B oétius [ (1980) A tlan tic Anguilla . A p re sen ta tio n o f o ld a n d n e w d a ta of to ta l n u m b e rs o f v e rte b ra e w ith sp ec ia l re fe ren ce to th e o ccu rre n ce o f A nguilla rostrata in E u ro p e . Dana, 1 ,9 3 -1 1 2 . B riand C, F a tin D, C icco tti E, L am b ert P (2005) A s tag e -s tru c tu red m o d e l to p re d ic t th e effect ot' te m p e ra tu re an d sa lin ity on g lass eel AnguiUa anguilla p ig m e n ta tio n d e v e lo p m en t. Joumal o f Fish Biology, 67 ,9 9 3 -1 0 0 9 . B urgess KS, H u s b a n d BC (2004) M a te m a l a n d p a te m a l co n trib u - tio n s to th e fitn ess o f h y b r id s b e tw e e n re d a n d w h ite m u lb e rry (M orus, M oraceae). Anwrican Joumal o fB o tany, 91 ,1802-1808 . B urke |M , A rn o ld M L (2001) G en etics a n d th e fitn ess o f h y b rid s . A n n u a l Review ofG euetics, 3 5 ,3 1 -5 2 . B u rk e JM , C a r n e y SE, A rn o ld M L (1998) H y b r id f i tn e s s in th e L o u is ia n a irise s : a n a ly s is o f p a re n ta l a n d F , p e rfo rm a n c e . Evolution, 5 2 ,3 7 -4 3 . C am p b e ll DR (2003) N a tu ra l se lec tio n in Ipomopsis h v b rid zones: im p lic a tio n s fo r eco log ical sp ec ia tio n . N etv Phytologist, 161, 8 3 - 90. C am p b e ll DR, W ase r N M (2001) G e n o ty p e -b y -e n v iro n m e n t in te r- ac tio n a n d th e fitn ess o f p la n t h y b r id s in th e w ild . Evolution, 55, 6 6 9 -6 7 6 . C a m p b e ll D R, W a s e r N M , W o lf PG (1998) P o lle n t r a n s fe r by n a tu ra l h y b r id s a n d p a re n ta l spec ies in a n Ipmrtopsis h y b rid zo n e . Evolution, 5 2 ,1 6 02-1611 . C as to n g u a y M , I-Iodson PV, C o u illa rd C M et al. (1994) W hy is re c ru itm e n t o f th e A m e ric an eel, A nguilla rostrata, d ec lin in g in th e St. L a w ren c e R iv e r a n d G ulf? Canadian Journal ofFisheries and A quatic Sciences, 5 1 ,4 7 9 -4 8 8 . C h o le r P , E rsch b am e r B, T rib sch A , G ielly L, T ab e rle t P (2004) G en etic in tro g re ss io n as a p o te n tia l to w id e n a sp ec ies ' n iche: in s ig h ts fro m a lp in e Carex curvula. Proceedings o f thc National Acadcm y o f Sciences, U SA , 101 ,171-176 . C ie ri M D , M cC le a v e ID (2000) D is c re p a n c ie s b e tw e e n o to li th s o f la rv ae a n d ju v en ile s o f th e A m erican eel: is so m e th in g fishy h a p p e n in g a t m e ta m o rp hosis? fournal o f Fish Biology, 57, 1189— 1198. C o n g iu L, D u p a n lo u p I, P a ta rn e llo T et al. (2001) Id en tif ica tio n of interspecific h y b rid s b y am plified fragm en t len g th po lym orph ism : th e case o f s tu rg e o n . M olecular Ecology, 10, 2355-2359. C o y n e JA, O rr H A (2004) Speciation. S in au er A ssociates, S u n d erlan d , M assach u se tts . D a n n ew itz J, M aes G E, Jo h an sso n L ct al. (2005) P a n m ix ia in th e E u ro p ea n eel: a m a tte r o f t im e ... . Proccedings o fth e Royal Society ofLondon. Series B, Biological Sc.ie.nces, 272 ,1129-1137 . D ek k er W (2000) T h e frac ta l g e o m e try o f th e E u ro p e a n eel s tock . ICES lournal o fM arinc Scicncc, 5 7 ,1 0 9 -1 2 1 . D ek k er W (2003) D id lack o f s p a w n e rs c au se th e co llap se o f th e E u ro p ean eel, A nguilla anguilla? Fisheries M anagement and Ecology, 1 0 ,3 6 5 -3 7 6 . D o b zh an sk v T (1937) Genetics and thc O rigin o f Specics. C o lu m b ia U n iv e rs ity P ress, N e w Y ork. D o w lin g TE, Secor C L (1997) T h e ro le o f h y b r id iz a tio n a n d in tro - g re s s io n in th e d iv e rs if ic a t io n o f a n im a ls . A n n u a l R evietv o f Ecology and System atics, 2 8 ,5 9 3 -6 1 9 . D u ch esn e P , B ern a tch ez L (2002) a t l p o p : a c o m p u te r p ro g ra m for s im u la te d a n d real p o p u la tio n a llo ca tio n , b a se d o n A FL P d a ta . M olecuhir Ecotogy Notes, 2 ,3 8 0 -3 8 3 . E d m a n d s S (1999) I le te r o s i s a n d o u tb r e e d in g d e p re s s io n in in te rp o p u la tio n crosses s p a n n in g a w id e ra n g e o f d iv e rg en ce . Evolution, 53 ,1757-1768 . E in a r s s o n M A (1984) C lim a te o f Ic e la n d . In : W orld S u rve y o f Climatology 15: Climates o fth e Oceans (ed. L oon H v), p p . 673 -697 . E lsev ier, A m ste rd am . E m elianov I, D rés M , B altensw eiler W , M allet J (2001) H o st-induced a sso rta tiv e m a tin g in h o s t raees o f th e la rch b u d m o th . Evolution, 55 ,2002-2010 . E m m s SK, A rn o ld M L (1997) T h e effect o f h a b ita t on p a re n ta l a n d h y b rid fitness: tra n s p la n t e x p er im e n ts w ith L o u is ian a irises. Evolution, 51 ,1112 -1119 . E p ifan io JM, P h il ip p D P (1997) S ou rces fo r m isc lass ify in g g enea- log ica l o rig in s in rn ixed h y b r id p o p u la tio n s . Journal o fH eredity, 88, 62 -65 . Facon B, |a rn e P, P o in tie r ]P, D av id P (2005) H y b rid iz a tio n and invasiveness in th e fre sh w ate r snail Melanoides tuherculata: h y b rid v ig o u r is m o re im p o r ta n t th a n in c re a s e in g e n e t ic v a r ia n c e . Journal o f Evolutionan/ Biology, 18, 5 2 4 -5 3 5 . F e u n te u n E , L a ffa i lle P , R o b in e t T et al. (2003) A r e v ie w o f u p s t r e a m m ig r a t io n a n d m o v e m e n ts in in la n d w a te r s b y a n g u illid eels: to w a rd s a g e n era l th eo ry . In: F.el Biology (ed. A id a K KTKY), p p . 191-213 . S p rin g er-V erlag , T okyo. F rase r DJ, B ern a tch ez L (2005) A d a p tiv e m ig ra to ry d iv e rg e n c e am o n g sy m p a tric b ro o k c h a r r p o p u la tio n s . Evolution, 59, 611 - 624. F ritsche F, K altz O (2000) Is th e Prunella (L am iaceae) h v b rid zo n e s tru c tu re d b y a n e n v iro n m e n ta l g ra d ie n t? E v id en c e fro m a rec ip roca l tra n s p la n t ex p erim en t. American Journal o fB otam /, 87, 995-1003. G h a r re t t AJ, S m o k e r W W , R e ise n b ic h le r RR, T a y lo r SG (1999) O u tb re e d in g d e p re s s io n in h y b r id s b e tw e e n o d d - a n d e v e n - b ro o d y e a r p in k salm o n . Aquaculture, 173 ,117-129 . G ilk SE, W an g IA, H o o v e r C L et al. (2004) O u tb re e d in g d e p re ss io n in hy b rid s b e tw een spatially s ep a ra ted p in k salm on, Oncorhynchus gorbuscha, p o p u la tio n s : m a r in e su rv iv a l, h o m in g ab ility , an d v a riab ility in fam ily size. Environm cntal Biology ofFishes, 6 9 ,2 8 7 - 297. G o o d TP, Ellis JC, A n n e tt C A , P ie ro tti R (2000) B o u n d ed h y b rid s u p e r io rity in a n a v ia n h y b r id zo n e: effects o f m a te , d ie t, a n d h a b ita t choice. Evolution, 54 ,1774-1783 . G ra n t PR, G ra n t BR (1992) H y b rid iz a tio n o f b ird species. Sciencc, 2 5 6 ,193 -197 . G ra n t BR, G ra n t PR (1996) H ig h su rv iv a l o f D a rw in 's finch h v b rid s : effects o f b e a k m o rp h o lo g y a n d d ie ts . Ecology, T 7 ,5 0 0 - 509. © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 N A T U R A L H Y B R I D I Z A T I O N IN A T L A N T I C EELS 1915 H a ro A (2003) D o w n stre a m m ig ra tio n o f s ilv e r-p h a se an g u illid eels. In: Eel Biologi/ (ed. A ida K KTKY), p p . 215-222 . S p rin g er- V erlag , Tokyo. H a ro A , R ich k u s W , W h a len K et al. (2000) P o p u la tio n d ec lin e o f th e A m erica n eel: im p lic a tio n s fo r re sea rc h a n d m a n ag em en t. Fisheries, 25, 7 -16. H au se r TP, D am gaard C, lo rgensen RB (2003) F requency -dependen t fitness o f h y b rid s b e tw ee n o ilseed ra p e (Brassica twpus) a nd w e ed y B. rapa (B rassicaceae). Am erican Jomnal o fB o tany, 90, 571-578. H o tz H , S em litsch R D , G u tm a n n E, G u ex G -D , Beerli P (1999) S p o n ta n e o u s h e te ro s is in la rv a l life-h isto ry tra its o f h em ic lo n a l frog h y b rid s . Proceedings o fthe Natim ial Academ y ofScietices, U SA, 96, 2171-2176. H o w a rd D |, W arin g GL, T ib b ets C A , G re g o rv PG (1993) S u rv iv a l o f h y b r id s in a m o sa ic h y b rid zone. Evolution, 47, 789 -8 0 0 . H uxe l GR (1999) R ap id d is p la c e m e n t o f n a tiv e spec ies b v in v asiv e species: effects of hybrid ization . Biological Conservation, 89,143-152. ICES (2001) Report o f the EIFAC/ICES Workitig Group on Eels, St. Andrews, Camdn. ICES C M 2001 / ACFM :03. In te rna tiona l C ouncil fo r E x p lo ra ö o n o f th e Sea, C o p en h a g e n , D e n m ark . K irk H , V rie ling K, K lin k h a m e r PG L (2005) M ate rn a l eft'ects and h e te ro s is in flu en ce th e fitn ess o f p la n t h v b rid s . Nezu Phytologist, 166, 6 8 5 -6 9 4 . K n ig h ts B (2003) A re v ie w o f th e p o ss ib le im p a c ts o f lo n g -te rm oceanic a n d c lim ate ch an g es a n d f ish ing m o rta lity o n rec ru itm en t o f a n g u illid eels o f th e N o rth e rn H e m isp h e re . Science o f the Total Envirom nent, 3 1 0 ,2 3 7 -2 4 4 . L ecom te-F in iger R (1994) T h e ea r ly life o f th e E u ro p ea n eel. Nature, 370 ,424. L e w o n ö n RC, B irch LC (1966) H v b rid iz a tio n a s a so u rce o f vari- a tio n fo r a d ap ta tio n to n e w en v iro n m e n ts . Evolution, 2 0 ,315 -336 . L in to n ED , fo n s so n B, N o a k e s D L ( in p re s s ) E ffects o f w a te r te m p e ra tu re o n th e s w im m in g a n d c lim b in g b e h a v io r o f g la ss eels, A ngu illa s p p . Environm ental Biology o f Fishes, in p ress. L ucch in i V (2003) A FLP: a u sefu l too l fo r b io d iv e rs ity conserv - a tio n a n d m a n ag ero en t. Comptes Rendus Biologies, 326, S43-S48 . M alle t J (2005) H y b r id iz a tio n as a n in v a s io n o f th e g en o m e . Trends in Ecology & Evolution, 20, 22 9 -2 3 7 . M an k [E, A v ise JC (2003) M ic ro sa te llite v a ria tio n a n d d iffe ren tia - tio n in N o r th A tlan tic eels. Journal o flle red ity , 94,3 1 0 -3 1 4 . M cC leav e JD (1987) M ig ra tio n o f Anguiila in th e ocean: s ig n p o sts fo r ad u lts! S ig n p o s ts fo r lep to c ep h a li? . In: Signposts in the Sea. Proceedings o f a M u ltid isc ip lin a ry Worlcshop on M arine A n im a i O rien ta tío n a nd M ig ra tio n (e d s H e r r n k in d W F , T h is tle A B ), p p . 102-117. F lo rid a S ta te U n iv e rs ity , T a llah assee , F lo rida . M cC leave JD , B rickley PJ, O 'B rien KM eta l. (1998) D o lep to c ep h a li o f th e E u ro p e a n ee l sw im to re a ch c o n tin e n ta l w a te rs? S ta tu s o f th e q u estio n . Journal o f the M arine Biological Association o f the U nited K ingdom , 78, 2 8 5 -3 0 6 . M eC Ieave JD, K leck n er RC, C as to n g u a y M (1987) R ep ro d u c tiv e s v m p a try o f A m e rican a n d E u ro p ea n eels a n d im p lica tio n s fo r m ig ra tio n a n d tax o n o m y . American Fisheries Society Sym posium , 1 ,2 8 6 -2 9 7 . M cE lroy D , M o ran P, B e rm in g h am E, K orn fie ld I (1992) r e a p — an in te g ra te d e n v iro n m e n t fo r th e m a n ip u la tio n a n d p h y lo g en e tic a n a ly s is o f re s tric tio n d a ta . Journal ofH eredity , 83 ,157-158 . M o o re W S, K oen ig W D (1986) C o m p a ra tiv e re p ro d u c tiv e success o f ye llow -shafted , red -sh a fted , a n d h y b rid flickers across a h y b rid zo n e . A u k , 1 0 3 ,4 2 -5 1 . N y m a n L (1972) S om e effects o f te m p e ra tu re o n eel (AuguiUa) behavior. Institute of Fresh-Watcr Research (Drottn'mghohn, Szvedcn), 52, 90-102 . O liv e ira K (1999) L ife h is to ry ch arac te ris tic s a n d s tra teg ies o f th e A m erican eel, AnguiUa rostrata. Canadian Journal o f Fisherics and Aquatic Sciences, 56, 795 -802 . O ria n s C M , B olnick DI, R o d te BM , F ritz RS, F loyd T (1999) W ater av a ilab ility a lte rs th e re la tiv e p e rfo rm a n c e o f Salix sericea, Salix eriocephala, a n d th e ir F, h y b rid s . C.anadian fournal o f Botany, 77, 5 1 4 -5 2 2 . O tak e T (2003) M eta m o rp h o sis . In: Eel Biology (ed. A id a K I<TKY), p p . 61-74. S p rin g er-V erlag , T okyo . P a rr is MJ (2001) H ig h la rv a l p e rfo rm an c e o f le o p a rd fro g h y b rid s : Effects o f e m ú ro n m e n t-d e p e n d e n t selec tion . Ecologt/, 82, 3001- 3009. P e rry W L, F e d e r JL, D w y er G , L o d g e D M (2001) F lvb rid zo n e d y n am ics a n d species rep lac em en t b e tw ee n Orconectes c rayfishes in a n o r th e rn W isco n sin lake. Evolution, 55 ,1153-1166 . P e rrv A L, L ow PJ, EIlis JR, R ey n o ld s JD (2005) C lim a te c h an g e a n d d is tr ib u tio n sh ifts in m a r in e fishes. Science, 308,1912-1915 . R h y m er JM , S im berlo ff D (1996) E x tin c tio n b y h y b r id iz a tio n and in tro g re ss io n . A tm u a l Rcvicw o f Ecology and System atics, 27, 8 3 - 109. R ieseberg LH, A rcher M A , W ayne RK (1999) T ransgressive segrega- tio n , a d a p ta tio n a n d sp ec ia tio n . Herediti/, 83, 363 -3 7 2 . R off D A , B en tzen P (1989) T h e s ta tis tic a l a n a ly s is o f m ito c h o n d ria l D N A p o ly m o rp h ism s : y f a n d th e p ro b le m o f sm all sam p les . M olecular Biologi/ and Evolution, 6, 5 3 9 -5 4 5 . R o g ers SM , G a g n o n V, B e rn a tc h e z L (2002) G e n e tic a lly b a se d p h e n o tv p e -e n v iro n m e n t a ss o c ia t io n fo r s w im m in g b e h a v io r in la k e w h ite f is h e c o ty p e s (Corcgonus c lupeafonnis M itch ill). Evolufion, 56 ,2322-2329. R osenfie ld |A , N o la sco S, L in d a u e r S, S a n d o v a l C , K odric -B row n A (2004) T he ro le o f h v b rid v ig o r in th e re p la c e m e n t of Pecos p u p fis h b y its h v b r id s w ith sh ee p s h ea d m in n o w . Conservation Biology, 18 ,1589-1598 . R u b id g e EM , T ay lo r EB (2004) H y b r id z o n e s tru c tu re a n d th e p o te n tia l ro le o f se lec tio n in h y b rid iz in g p o p u la ö o n s o f n a tiv e w e sts lo p e c u tth ro a t t ro u t (O ncorhynchus clarki lezvisi) a n d in tro - duced ra in b o w tro u t (O. mykiss). Molecular Ecology, 13 ,3735-3749 . S ad le r K (1979) Effects o f te m p e ra tu re o n th e g ro w th a n d su rv iv a l o f th e E u ro p e a n eel, AnguiUa anguilla L. lournal ofF ish Biologi/, 15, 499 -507 . S aino N , ViIIa S (1992) P a ir c o m p o sitio n a n d re p ro d u c tiv e success acro ss a h y b rid z o n e o f c a rrio n c ro w s a n d h o o d e d c row s. A uk, 10 9 ,5 4 3 -5 5 5 . S d m e id e r CJ, S m ith TB, L arison B, M oritz C (1999) A te st of a lte rna- ö v e m o d e ls o f d iv e rs ific a tio n in tro p ica l ra in fo res ts : ecological g ra d ie n ts vs. ra in fo rest refugia. Proceedings o fthe National Acadeniy ofSciences, U SA , 96 ,13869-13873 . S ch w eitzer JA, M artin se n G D , W h ith a m TG (2002) C o tto n w o o d h v b rid s g a in fitn ess tra its o f b o th p a re n ts : a m e c h an ism fo r th e ir lo n g -te rm pe rs is ten ce? Am erican Journal o fB o tany, 89 ,9 8 1 -9 9 0 . Scribner KT (1993) ITybrid zone dynam ics a re influenced bv genotype- specific v a ria tio n in life h is to ry tra its: e x p erim e n ta l ev id en ce fro m h y b rid iz in g Gambusia spec ies. Evolution, 47, 632-646. S eager R, B attisti DS, Y in J et at. (2002) Is th e G u lf S trea m resp o n - s ib le fo r E u ro p e 's m ild w in te rs? Q uarteriy Joum al o f the Royal Meleorological Society, 128, 2563-2586. S eeh au sen O (2004) H y b rid iz a tio n a n d a d a p ta tiv e ra d ia tio n . Trends in Ecology & Evolution, 1 9 ,1 9 8 -2 0 7 . S ong Z P , Lu B-R, W an g B, C h en JK (2004) F itness e sö m a tio n th ro u g h p e rfo rm an c e c o m p a ris o n o f F , h v b r id s w ith th e ir p a re n ta l spec ies O ryza rufipogon a n d O. sativa. A nnais o fB otam /, 93 ,3 1 1 -3 1 6 . © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 1916 V. ALBERT, B. J Ó N S S O N and L. B E R N A T C H E Z T a y lo r EB (2004) E v o lu t io n in m i.xed c o m p a n y : e v o lu t io n a r y in fe ren ces fro m s tu d ie s o f n a tu ra l h y b rid iz a tio n in S a lm o n id a e a re v ie w o f h y b r id iz a t io n in s a lm o n id f ish e s . In : E volu tion in Sa lm on ids (e d s H e n d r y A P , S te a rn s S), p p . 2 3 2 -2 6 3 . O x fo rd U n iv e rs ity P ress, O xfo rd . T ay lo r EB, M cP hail JD (2000) H is to rica l c o n tin g en cy a n d ecological d e te rm in is m in te ra c t to p r im e s p ec ia tio n in stick lebacks, Gaster- osteus. Proceedings o fth e Royal Society o f London. Series B.Biological Sciences, 267 ,2375-2384 . T e m p le to n A R (1981) M ech an ism s o f sp ec ia tio n — a p o p u la tio n g en etic ap p ro a ch . A m iu a l Revieio o f Ecology and Systematics, 12, 2 3 -4 8 . V ek em an s X (2002) a f i .p - s u r v , v e r s io n 1.0. D is trib u te d b y th e au th o r. L a b o ra to ire d e G é n é tiq u e e t E co log ie V égéta le , U ni v e rs ité L ib re d e B ruxelles, B elg ium . Vilá M , D 'A n to n io C M (1998) H y b r id v ig o r fo r c lona l g ro w th in Carpobrotus (A izoaceae) in c o asta l C alifo rn ia . Ecological Applica- tions, 8 ,1 1 9 6 -1 2 0 5 . V os P , H o g e rs R, B leeker M et al. (1995) A FLP: a n e w te c h n iq u e fo r D N A f in g e rp r in tin g . N ucleic Acids Research, 23 ,4407-4414 . W alsh PT, F o ste r G D , M o o n T W (1983) T h e effects o f te m p e ra tu re o n m e ta b o lism o f th e A m erican eel A nguilla rostrata (Le Sueur): c o m p e n sa tio n in th e s u m m e r a n d to rp o r in th e w in te r. Pln/sio- logical Zoology, 56, 5 3 2 -5 4 0 . W an g H , M cA rth u r ED, S a n d e rso n SC, G rah am [H, F reem an DC (1997) N a r ro w h v b r id z o n e b e tw e e n tw o s u b s p e c ie s o f b ig s a g e b r u s h (A rte m is ia tr iden ta ta : A s te ra c e a e ) . IV. R ec ip ro ca l t ra n s p la n t ex p er im e n ts . Evolution, 51, 95-102 . W a n g C H , T z e n g W N (2000) T h e t im in g o f m e ta m o rp h o s is a n d g ro w th ra te s o f A m e ric a n a n d E u ro p e a n eel le p to c ep h a li: a m ech an ism o f la rv a l s eg reg a tiv e m ig ra tio n . Fisheries Rcsearch, 4 6 ,1 9 1 -2 0 5 . W atan o Y, K an ai A , T an i N (2004) G en etic s tru c tu re o f h y b rid z o n e s b e tw e e n P inus purnila a n d P. parviflora v a r . Pentaphylla (P in a c e a e ) re v e a le d b y m o le c u la r h y b r id in d e x a n a ly s is . American Journal o fB o tany, 9 1 ,6 5 -7 2 . W ill ia m s JH , B o eck le n W J, H o w a r d D | (2001) R e p r o d u c t iv e p ro c e ss e s in tw o o a k (Q uercus) c o n ta c t z o n e s w ith d if f e r e n t levels o f h v b rid iza tio n . H eredity, 87, 680 -6 9 0 . W illiam s G C , K oehn RK, T h o rs te in s so n V (1984) Ice lan d ic eels: e v id e n ce fo r a s in g le sp ec ies o f A nguilla in th e N o rth A tlan tic . Copeia, 1 ,221 -223 . W irth T, B ern a tch ez L (2001) G en etic ev id en ce a g a in s t p a n m ix ia in th e E u ro p e a n eel. Nature, 409 ,1037-1040 . W irth T, B em atc h ez L (2003) D ecline o f N o r th A tlan tic eels: a fa ta l synergy? Proceedings ofthe Royal Societi/ ofLondon. Scries B, Biotogical Scienccs, 270, 681-688. Y o u n g W P, O s tb e rg C O , K eim P , T h o rg a a rd G H (2001) G enetic ch a rac te riz a tio n o f h y b r id iz a tio n a n d in tro g re ss io n b e tw een a n a d r o m o u s ra in b o w t r o u t (O ncorhynchus m ykis irideus) a n d c o a s ta l c u t th ro a t t r o u t (O . d a rk i clarki). M olecu lar Ecology, 10, 921-930. T his re sea rc h is p a r t o f V icky A lb e rt's M Sc th esis , w h ic h a im ed a t s tu d y in g the d y n a m ic s o f n a tu ra l h y b r id iz a tio n in A tlan tic eels. B jarni Jo n sso n 's in te re s ts a re in th e fie ld o f e v o lu tio n a ry a n d m o lec u la r eco logy , sp ec ia tio n , effects o f c lim atic ch an g e an d life h is to ry a d a p ta tio n . L ouis B ern a tch ez s u p e r \ú se d V icky A lb e rt's M Sc thesis. LB 's in te re s ts re la te to the u n d e rs ta n d in g o f p a tte m s an d p ro c e sse s o f m o le c u la r a n d o rg a n is m a l e v o lu tio n , a n d th e ir re lev a n ce to co n se rv a tio n . © 2006 B lackw ell P u b lish in g L td , M olecular Ecology, 1 5 ,1903-1916 1 1 3 Age at recruitment of Icelandic eels (Ánguilla rostrcUa and A. anguilla) as revealed by otoiith microstructure Momoko K a v v a i\ Bjami JónssonJun Aoyama1, Davíd L. G. Noakes3 & Katsumi Tsukamoto1 u2Department Marine Bíoscience, Ocean Research Institute, The University ofTokyo, 1-15-1 Minamidai, Nakano.Tokyo 164-8639, Japan 2 Insritute of Freshwater Fisheries at Holar, Holar Hjaltadal, IS 551 Saudarkrokyur, Iceiand 3 Department of Zoology, University of Guelph, Guelph, Ontario, NIG 2WI, Canada In the Atlantic Ocean there are tvvo species of freshwater eels, the American eel, Anguilla rostrata, and the European eel, A. anguilla. Both A. rostrata and A. anguilla spawn in an overlapping area of the Sargasso sea (Schmidt, 1922; Scotch and Tesch, 1982; McCIeave et al., 1987), but they have separated freshwater habiíais along the east coast of the North American contínent for the forroer and the west coast of Eurasian continent for the latter (Schraidt, 1909; Boetius, 1985). Both species occur in lceland, the only area of sympatry (Boetíus, 1980; Wiliiams and Koehn, 1984; Avise et a l, 1990). It is not vvell understood how these two species mainíain separate species ranges in their freshwater habitats that are separated bv the Atlantic Ocean. It has been suggested fhat their separate ranges were the consequence of differences in the larval growth rates of the íwo species (Schmidt, 1925; Wang and Tzeng, 2000; Arai et al., 2000), however this hypothesis has not been verified (Boetius and Harding, 1985). In this study, we anaiyzed otolith microstructure of the glass eels of boíh species collected in Iceland to compare theír ages aí recruitment aimed at providing nevv knowledge about the recraitment mechanism of the two Atlantic eel species. We also compare the resulis obtained for the two Icelandic eels with previous knowledge obtained from the main populations of each species in North America and Europe, to test the hypothesis that the ages of Icelandic glass eels differ from those in the rnain part of their ranges. Our objective is to reveal the possibie mechanisms that maintain the separation between the two species ranges and to provide some instght on the evoiutionary' process o f speciation of the two Atlantíc eels. Materials and Meíhods Glass eels of A. rostrala (63-72 mm TL) and A. anguilla (58-78.5 mm TL) were collected by hand net at the mouth of a small river in Vogslækur, in southwest Iceland on 28 June 1999, and during 7 May to 8 July 2000. They were initialiy placed in 70% ethanol immediately after sampling, and then preserved in 96% ethanol. Identífication of species were carried out using moiecular genetic techniques (Aoyama et ai., 2000). Thirteen A. rostrata and 44 A. anguiUa collected in 1999 and 2000 vvere analyzed. Total age and incremental width were analyzed from otoliths. Introduction 2,0 (B ) 1.0 0 0 200 400 200 400 3 4.0 - ~*~A.bicolor pacifica'pacij ’IíS ys ~°~A. austraús ~6r~A. rosrrata A.japonica -°—A.anguílla 200 A g e (days) 400 Fg. 1 P ro llia s o f o to iith inc rem en tal w id th s iro m th e co re to th e edge. (A ) Ice ia n d ic A. anguilla, (B ) Ice land ic A. ro s ira ia , ( Q p rev io u s reports . 1 1 4 Results The average total age at recruitment of A. rostrala was 349 ± 44.3 d, and that of A. anguilla was 365 ± 44.3 d. There was no sigmficam difference in total age between two species (p > 0.05; Mann-Whitnev D'-test). Otolith microstracture differed from that previously reported in anguillíd eels. We detected no sharp increase in otolith increment width, or rapid growth zone that is a characterisíic incremental change corresponding £o the onset of metamorphosis as has been reported from many anguiiiid species (Arai et al., 1997,1999a, 1999b; Wang and Tzeng, 2000) (Fig. 2). Discussion Compared to the age at recraitment of their main population in North America the average total ages of the glass eels of A. rosiraia collected ín Iceland were as much as 100 days older. On the other hand, A. anguilla was 100 days younger than the Europeart popuiation (Wang and Tzeng, 2000) (Fíg. 2). The distance from the Sargasso Sea to Iceland ís obviously farther than to North America (about 3000 km from Newfoundland or Labrador m Canada to Iceland), which would account for íhe greater ages oí A. rostrata ín Iceland. The distance between Iceland and Ireland or England is about 1000 km. Similarlv, IceJandic A. anguilla have been suggested to have a shorter migration time than other European A. anguilla because of the shorter distance than to some parts of Europe. The lack of a drastic increasing otolith incremental zone in ícelandic glass eels suggests that they experienced extraordinary environmental conditions. The most.probable factor to prevent the formation of a rapid growth zone in Icelandic eels wouid be the low vvater temperature in the coastai waters of Iceland. Water temperature is welí known to influence otolith growth in fishes (Campana and Neilson, 1985), .and it has been reported that leptocephali metamorphose to glass eeis in the coastal waters near their freshwater habitals (Kleckner and McCleave, 1985). The sea temperature just to the souíh of Iceland in May has been obsetved to be 1 - 8 °C (Krauss 1995; Swíft and Aagaard, 1981), which is about 10-20°C lower than in the coasíal vvaters of the main habitats of these two species in North America and Europe. Therefore, it is probable that the indivíduals recruiting to-Iceland metamorphosed under unusuaily low temperature conditions that may have caused substantial physiological stress. This stress couid have interfered with the formation of a rapid growth zone in their otoiiths. As a whole, the results suggest that both species may follow the same migration route from the Sargasso Sea to Iceland and that the timing of metamorphosis could be an important factor in dectding the place to which glass eels recruit References Aoyama, J., Watanabe, S., Nishida, M. & Tsukamoío, K. Trans. American Fish. Soc. 129: 873-878 (2000). Arai, T., Otake, T. & Tsukamoto, K. Mar. Ecot. Prog. Ser. 161: 17-22 (1997). Arai, T., Otake,T., Daniei, L., &Tsukamoto, K. Mar. Biol. 135: 381-389 (1999a). Arai, T., Otake, T., Jellyman, D.J., & Tsukamoto, K. 1999b, Mar. Biol. 135: 381-389. Arai, T„ Otake, T. & Tsukamoto, K. 1999b. Mar. Biol. 137: 39-45. Arai T., Daniel J., Otake T„ & Tsukamoto K. 2001. Mar. Ecol. Prog. Ser. 216: 253-264. Avtse, J.C., Nelson W.S., Amold, J„ Kœhn, R.K., Wílíiams, G.C. &Thotsfeinsson, V. Evolution 44 : 1254-1262 (1990). Boetius, J. Dana 1: 93-112 (1980). Boetius, J. Dana 4: 41-48 (1985). Boetius, J. & Harding, E.F. Dana 4: 129-162 (1985). Campana, S.E. & Neílson. J.D. Aquat. Sci. 42: 1014-1032 (1985). Kleckner. R.C. & McCleave, J.D. Dana 4: 67-92 (1985). Krauss, W. J. Geophys. Res. 100: 10851-10871 (1995). McCleave, J.D. & Kleckner. R.C. B uil Mar. Sci. 41: 789-806 (1987). Schmidt, J. Ser. Fisk. 3 (7): 1 -45 (1909). . / Sehmidt, J. Phil. Trans. R. Soc. Lond. 211: 179-208 (1922). Swift, J.H. & Aagaard, K. Deep-Sea Res. 28A: 1107-1129(1981). (A) Icelandic eels ( A. anguilla) (B) Icelandi eets (A. rostrata) (C) European eels (A. angvá.lla) □ (D) American eels (A. rosiraia) 400 500 Fig. 2 Total age of gSass eeis (A. B) this study, (C, D) Wang and Tzeng (2000). Scotch, M. &Tesch, F.W. Helgolander Meeresmtersuchimgen 35: 309-320 (1982). Wang, C. &Tzeng, W.N. Fish. Res. 46: 191-205 (2000). Williams, G.C., Koen, R.K. & Thorstemson, V. Copeia 221-223 (1.984). Proceedings of the Intemational Symposium ADVANCES IN EEL BIOLOGY Research for the Future Program Japan Society of the Promotion of Scienee Organizing Committee Katsumi Aida Katsumi Tsukamoto Kohei Yamauchi Yayoi Auditorium The University of Tokyo 28 - 30 September 2001 M o lec u la r E co logy (2009) 18 ,1678-1691 doi: 10.1111 /j.l365-294X .2009.04142.x Natural selection influences AFLP intraspecific genetic variability and introgression pattems in Atlantic eels P. A. G A G N A IR E /V . ALBERT,t B. JÓ N S SO N t and L. BERNATCH EZt *lnstitut des Sciences de l'Evolution (ISEM UMR 5554 CNRS-UMII), Uníversíté de Montpellier II, CC 065, Place E. Bataillon, 34095 Montpellíer cedex 5, France, ilnstitut de Biologie Intégrative et des Systémes (IBIS), Universíté Laval, Québec, Canada G1V 0A6, %Institute ofFreshivater Fisheries, Northern Division, Saudárkrókur, Iceland, IS 550 Investigating pattem s of genetic variation in hybridizing species provides an opportunity to understand the impact o f natural selection on intraspecific genetic variability and inter- specific gene exchange. The Atlantic eels Anguilla rostrata and A. anguilla each occupy a large heterogeneous habitat upon w hich natural selection could differentially shape genetic variation. They also produce viable hybrids only found in Iceland. However, the possible footprint of natural selection on patterns of genetic variation w ithin species and introgressive hybridization in Icelandic eels has never been assessed. We revisited amplified fragm ent length polym orphism data colleeted previously u sing population genom ics and admixture analyses to test if (i) genetic variation could be influenced by non-neutral m echanism s at both the intra- and interspecific levels, and if (ii) selection could shape the spatio-tem poral distribution of Icelandic hybrids. We first found candidate loci for directional selection w ith in both species. Spatial d istributions of a lle lic frequencies disp layed by som e of these loci were p ossib ly related w ith the geographical patterns of life-history traits in A. rostrata, and could have been shaped by natural selection associated with an environmental gradient along European coasts in A. anguilla. Second, w e identified outlier loci at the interspecific level. Non-neutral introgression was strongly suggested for som e of these loci. We detected a locus at w hich typical A. rostrata allele hardly crossed the species genetic barrier, whereas three other loci showed accelerated pattems of introgression into A. anguilla in Iceland. Moreover, the level of introgression at these three loci increased from the glass eel to the yellow eel stage, supporting the hypothesis that differential survival o f admixed genotypes partly explains the spatio-temporal pattem of hybrid abund- ance previously documented in Iceland. Keywords: AFLP, Anguilla, introgressive hybridization, natural selection, outlier loci, species genetic barrier Received 5 November 2008; revision received 5 January 2009; accepted 22 january 2009 Abstract C o rre sp o n d en c e : L ou is B em atch e z , Fax: 1 418 656 7176; E -m ail: lo u is .b em atch ez@ b io .u lav a l.ca Disceming the relative influence of neutral vs. selective processes acting in natural populations is a fundamental step towards the comprehension of species' evolution. Populations living in heterogeneous habitats are likely to undergo diverse selective constraints that can differentially shape genetic variation among them, occasionally leading to reproductive isolation (Mayr 1947). Direct observation Introduction of the genetic effects of natural selection can be conveniently assessed when adaptive phenotypic traits and genes underlying these adaptations are known. In most nonmodel organisms, a priori knowledge concerning the genes governing adaptive traits is often not available, thus, it becomes necessary to use indirect methods to identify loci potentially under selection. Such 'population genomics' approaches are based on the principle of screening sufficient number of molecular markers randomly distributed across the whole genome in a large number of individuals, to detect loci whose level of differentiation between popula- tions exceeds that expected under neutral expectations. © 2009 B lackw ell P u b lish m g L td mailto:louis.bematchez@bio.ulaval.ca N A T U R A L S E L E C T I O N F O O T P R I N T S IN A T L A N T IC EELS 1679 These 'outlier loci' are assumed to be located in the vicinity of actual genes under selection due to genetic hitchhiking (Beaumont & Nichols 1996; Luikart et al. 2003; Beaumont & Balding 2004; Beaumont 2005; Stinchcombe & Hoekstra 2007; Via & West 2008). Ideally, outlier identification in a genome scan needs to be followed up with approaches such as bacterial artificial chromosome (BAC) library screening to identify functionally important polymorphic sites (e.g. Wilding et al. 2001; Wood et al. 2008). Nevertheless, such an approach provides an efficient means to estimate the proportion of loci involved in adaptive divergence, and compare sets of outlier loci identified in various selective contexts (e.g. Wilding et al. 2001; Campbell & Bernatchez 2004; Rogers & Bematchez 2007). For instance, population genomics allowed specifying the role of environmental factors in shaping the distribution of genetic diversity along environmental gradients (Bonin et al. 2006; Jump et al. 2006). In addition, the analysis of differentiation patterns among the genomes of closely related species suggests that divergent selection usually concems a few loci at which gene flow is dramatically reduced, whereas most of the genome appears permeable to gene exchange (Scotti-Saintagne et al. 2004; Savolainen et al. 2006; Minder & Widmer 2008). Population genomics has also improved our under- standing of the architecture of genetic barriers between hybridizing species. Mosaic genomes reveal delays, or even barriers to introgression at loci undergoing negative selection in hybrids and in the recipient species (Martinsen et al. 2001). Such effects can be due to disruption of epistatic interactions between co-adapted genes by recombination and may be largely responsible for hybrids inferiority (Burke & Amold 2001). Conversely, hybridization may also accelerate the rate of introgression at positively selected loci (Kim & Rieseberg 1999; Martin et al. 2006; Whitney et al. 2006). Therefore, hybridization can have a variety of effects in species evolution, and contrasted footprints are expected to be found at the genome level between neutral, negatively and positively selected genes. A genome-scan approach is appropriate to observe these differential pattems of intro- gression and help to understand the particular architecture of the barrier to gene flow between hybridizing species (Rieseberg et al. 1999; Rogers et al. 2001). The present study aimed at testing the influence of natural selection on genetic variation at various scales in Atlantic eels. The two Atlantic eel species Anguilla rostrata and A. anguilla each occupies a large heterogeneous habitat, corresponding to most of North America and Europe (including Iceland and Northem Africa), respectively. It is widely accepted that each of the two Atlantic eel species has a unique spawning area, both located and overlapping in the Sargasso Sea (Schmidt 1925; McCleave etal. 1987; see Appendix Sl, Supporting Information). This aspect of eel life history led to the prediction that genes should be randomly exchanged within each species, which has been supported by a number of studies (e.g. De Ligny & Pante- louris 1973; Comparini et al. 1977; Avise et al. 1986; Lintas et al. 1998). However, the use of microsatellite markers later revealed weak albeit significant genetic differentiation in the European eel (Wirth & Bematchez 2001; Daemen et al. 2001). Genetic patterns corresponding to isolation by distance (Wirth & Bematchez 2001; Maes & Volckaert 2002) and isolation by time (Dannewitz et al. 2005; Maes etal. 2006; Pujolar et al. 2006) were also documented, therefore contradicting the results of earlier studies. In both species, a latitudinal cline of allozymic variation potentially induced by natural selection was also reported (Williams et al. 1973; Koehn & WiIIiams 1978; Maes & Volckaert 2002). Therefore, the potentially confounding effects of natural selection on species genetic diversity must be investigated in greater detail to understand the nature of population structure in Atlantic eels. Molecular analyses also recently showed that both eel species interbreed to produce viable hybrids that are only encountered in Iceland (Avise et al. 1990; Albert et al. 2006). Albert et al. (2006) further revealed that F, hybrids can successfully migrate back to the Sargasso Sea and reproduce. Passive larval transport through the Gulf Stream combined with heterogeneity of larval duration were proposed to explain why hybrids are geographically limited to Iceland (Albert et al. 2006; Kettle & Haines 2006). Furthermore, a puzzling spatio-temporal pattern emerged from the proportions of hybrids observed in Icelandic rivers. Albert et al. (2006) found higher first- and later-generation hybrid proportions in yellow eels compared to glass eels, and a latitudinal increase towards the north in the proportion of hybrids. However, the possibility of a temporal decrease in hybridization rate hampered tests of the hjqsothesis of differential survival between purebreds and hybrids in Iceland. Also, identification of loci potentially under the effect of selection was out of the scope of Albert et al.'s 2006 study. Therefore, the influence of natural selection on hybrid and pure European eel abundance in Iceland remains untested. Here, our main objective was to use population genomics and admixture statistical methods to revisit the amplified fragment length polymorphism (AFLP) data of Albert et al. (2006), in order to test if (i) intraspecific genetic structure of each species and if (ii) hybrid proportions and genetic composition found in Icelandic rivers were influenced by natural selection. M aterials and m ethods Study species, sampling sites Five developmental stages characterize the complex life cycle of Atlantic eels (Tesch 2003). The oceanic pelagic larvae, which undergo a several month drift through the © 2009 B lackw ell P u b lish in g L td 1 6 8 0 P . A . G A G N A I R E E T A L . Table 1 Sampling location, abbreviation, date and size of each sample. Sampling year and iife stage (G, glass eel; Y, yellow eel) were only provided when all individuals were homogeneous for these characteristics. Number of individuals in each of the six categories defined with NewHybrids was determined and detailed for each sample: Aro (parental A. rostrata), Aan (parental A. anguilla), F, (Aro x Aan), F, (Fi x F,), BCa„ (Aro x F,) and BCAan (Aan x F,) NewHybrids' categories S a m p lin g lo ca tio n S am p le a b b re v ia tio n S am p lin g d a te S a m p lin g size Life s tag e A ro F, F, BCAr0 BCAan A an N o rth A m erica M ed o m a k R iver M E 1999 45 Y 45 — — — — — B oston H a rb o r BO 1999 50 G 50 — — — — — W ye R iver WY 1999 48 Y 48 — - — - — St Jo h n s R iver SJ 1999 50 Y 50 — — — — — Total A m erica A ro 1999 193 193 — — — — — E u ro p e E lbe R iver EL 1999 49 Y — — — — — 49 G ra n d L ieu L ake G L 1999 49 G 49 M in h o R iver M I 1999 45 G — — — — — 45 M o u lo u y a O u e d M O 1999 43 G - — - — - 43 Total E u ro p e A an 1999 186 — — — — — 186 Ice lan d S a u d á rk ró k u r SA 2003 6 Y — 4 — — 2 — V a tn sd a lu r VA 2000 18 Y — 1 2 — 2 13 R ey k h ó la r RE 2001 13 Y - 5 1 — — 7 Bár BA 2003 49 Y — 4 — — 2 43 V og slæ k u r V O 2000 50 G — 8 - — 5 37 2001 50 G — 3 1 — 2 44 2002 49 G — 1 — — — 48 2003 49 G — 3 — — 2 44 2001 36 Y — 2 1 — 3 30 Seljar SE 2001 48 G - 4 2 — 4 38 2001 46 Y — 11 1 — 7 27 V ífilss tad av a tn VI 2001 50 G — 1 2 — 6 41 2002 45 Y — 4 — — 6 35 G ra fa rv o g u r G R 2003 45 Y — 1 — — 2 42 S tokksey ri ST 2001 46 G - — 2 — 1 43 2003 50 G — — — — 1 49 2003 49 Y — 5 1 — 1 42 Ö x n a læ k u r o x 2003 49 Y — 1 — — 4 44 Total Ice land 748 — 58 13 — 50 627 Ice lan d A. anguilla sa m p le IC 2001 57 Y — — — — — 57 Ice lan d F, s am p le (70%) F, 33 — 33 — — — — Ic e lan d F2 s am p le (50%) F2 11 — — 11 — — lc e lan d BCAan sam p le (70%) BCAan 38 - — - — 38 — North Atlantic Ocean, are called leptocephali. Larvae metamorphose into glass eels when they reach the contin- ental shelves, and then temporarily settle in estuaries where they become pigmented. This corresponds to the transient elver stage that precedes the yellow eel phase. After 3- 20 years spent in their growing continental habitat, yellow eels metamorphose into sexually mature silver eels and migrate back to the Sargasso Sea to reproduce. The present study focuses on the glass eel and the yellow eel stages. Table 1 provides information concerning sampling location and date, sample size, life stage and individual hybrid status of the 1127 eels analysed with 373 AFLP loci by AlbertjrfflL_(2006} (see also Appendix S l, for a map showing the geographical distribution of sampling sites). In order to perform pairwise comparisons with Anguilla anguilla samples from the European continent, we built an Icelandic sample by pooling pure European eel individuals from the yellow eel samples of Seljar and Vogslækur, both collected in 2001 (called IC in Table 1 and Appendix Sl). These two samples were chosen because they were tempo- rally close to the European samples collected in 1999 and not geographically distant in Iceland. © 2009 B lackw ell P u b lish in g L td N A T U R A L S E L E C T I O N F O O T P R I N T S IN A T L A N T IC EELS 1681 Hybrid category assignment We used N ew H ybrids software, w hich im plem ents a multilocus allele-frequency model-based method for determining hybrid status (Anderson & Thompson 2002). This method performs individual clustering without any a priori knowledge of parental allele frequencies, and has the advantage of specifically assuming a mixture of parental and various hybrid classes in its probability model. Six categories corresponding to parental (pure American and pure European), Fu F2 and backcrosses (with BCAro individuals generated by crossing events between an Fj and a pure Anguilla rostrata and BCAj„ individuals between an F, a pure A. anguilla) were considered. Individual posterior probabilities to belong to each hybrid category were estimated by Markov chain Monte Carlo method in a Bayesian framework. We initially set a posterior probability threshold of 0.7, above which individuals were assigned. This threshold was subsequently lowered to 0.5 for the F2 category. Calculations were run using Jeffreys- type priors and a burn-in period of 50 000 iterations followed by 50 000 sweeps for sampling from the posterior distribution. Outlier loci detection We used the Dfdist program implementing the hierarchical- Bayesian approach of Beaumont & Balding (2004) to detect outlier loci. Null allele frequencies were first estimated at each locus of the empirical AFLP data set using Zhivotovsky's (1999) Bayesian approach , enabling Fsx values to be estimated for each locus (Weir & Cockerham 1984). A mean 'neutral' FST value supposedly uninfluenced by selected loci was then calculated after removal of 30% of the highest and 30% of the lowest FST values found in the empirical data set (see Bonin et al. 2006; Miller et al. 2007; Nosil et al. 2008). This 'trimmed' Fsx value was used to target the mean Fsx of 50 000 loci generated by coalescent simulation. Therefore, the FST distribution of these simulated loci was expected to be close to that of the neutral empirical data set. The outlier threshold was defined by an envelope delimited by the 0.005 and 0.995 quantiles of simulated Fsx. However, because the power to detect footprints of balancing selection is generally low (Beaumont & Nichols 1996; Beaumont & Balding 2004), only outliers that were candidates for directional selection were considered. We searched for directional selection footprints at the intraspecific levels in North American and European locations, together with Iceland, by comparing all possible pairs of samples in each species. As some trimmed Fsx values were less than 0.005 or even slightly negative, they suggested that neutral FST was close to zero between some eel samples of the same species. Therefore, in order to perform locus simulations with Dfdist, a small positive Fsx of 0.005 was used (Miller et al. 2007). In this way, detection of outlier loci was more conservative. Moreover, pairwise analyses allow the identification of loci that are outliers in multiple pairs of populations. We considered loci that were detected as outliers in more than two pairwise comparisons as the most likely candidates, thus reducing type I error (Nosil et al. 2008). We then conducted an interspecific analysis by pooling pure individuals from the same species into an A. rostrata (Aro) and an A. anguilla (Aan) sample. Individuals from Iceland were not included in this anal- ysis to avoid the influence of putative Iceland-specific selection. Locus-specific introgression level In order to detect the potential effects of natural selection in Icelandic hybrids, we tested departure from theoretical frequencies at each locus in each hybrid category. Because the determination of hybrid status with NewHybrids showed that only pure individuals occurred in continental locations of Europe (A . anguilla) and America (A. rostrata) (Table 1, see also Albert et al. 2006), we used the pooled A. rostrata (Aro) and A. anguilla (Aan) samples to estimate parental allele frequencies. At each locus in each species, we assumed Hardy-Weinberg equilibrium to estimate the frequency of the null allele from the square root of the null homozygote frequency. Using these observed parental frequenties, expected allele frequenties were then calculated for each of the three hybrid categories found in Iceland: F„ F2 and BCAan (see Results). A binomial test was then performed to test for significant deviation between observed and expected frequencies of band presence at each locus in each hybrid category. A Bonferroni correction was applied to avoid false positive detection due to type I errors. Maximum-likelihood estimates ofhybrid indices We also applied a complementary approach based on the estimate of hybrid indices over nondiagnostic loci (Rieseberg et al. 1998, 1999). This allows the detection of candidate loci for which the introgression pattern has possibly been influenced by selection (Rogers et al. 2001). The model assumed two separated parental populations that both contributed to an admixed population. Hybrid indexfor an individual is an estimate of the proportion of its ancestors that belonged to each parental species at the generation before the first interbreeding event in its ancestry. Therefore, the joint estimate of hybrid index over all individuals reflects the relative contribution of each parental source to the admixed population based on individuals. Hybrid indices were estimated from allele frequencies of both parental samples assessed with the square root © 2009 B lackw ell P u b lish in g L td 1682 P. A. G A G N A I R E E T A L . T ab le 2 N u m b e r o f p o ly m o rp h ic loci a n d o u tlie r loci fo u n d in e ach in traspecific p a irw is e c o m p a riso n fo r b o th A tlan tic eel spec ies. F o r e ach s a m p le pa ir, th e m e a n v a lu e a n d th e r a n g e o f o u tlie r FSJ, th e tr im m e d FST v a lu e a n d th e p re s u m e d n e u tra l FsT v a lu e fo u n d w íth m ic ro sa te llite m a rk e rs (W irth & B em atchez_2003) a re p ro v id e d , a lo n g w ith th e la titu d in a l d is ta n c e se p a ra tin g localities. S am p le ab b re v ia tio n s a re as ín d ic a te d in Table 1 N o. o f N o . o f M ea n o u tlie r Fsr L a titu d in a l S am p le p a ir p o ly m o rp h ic loci o u tlie r loci v a iu e (m in Fgj — m ax fgy) X rim m ed Fgj N e u tra l fST d is tan ce (deg ree) Anguilla rostrata M E vs. BO 311 5 0.2089 (0.1646-0.2584) 0.0061 -0 .0005 1.75 M E vs. W Y 304 8 0.1978 (0.0920-0.3068) 0.0018 0.0034 5.20 M E vs. SJ 299 5 0.1504 (0.0812-0.2584) -0 .0004 0.0005 14.18 BO v s. W Y 295 5 0.2777 (0.0678-0.4086) 0.0011 -0 .0008 3.45 BO vs. SJ 304 3 0.2418 (0.1752-0.2888) 0.0067 -0 .0016 12.43 W Y vs. SJ 301 8 0.1627 (0.0679-0.2867) 0.0015 0.0037 8.98 A nguilla anguilla IC vs. EL 291 13 0.3381 (0.1423-0.6496) 0.0102 0.0016 9.70 IC vs. G L 291 9 0.2537 (0.1399-0.4388) 0.0110 -0 .0009 17.48 IC vs. M I 293 12 0.2460 (0.0902-0.4344) 0.0018 -0 .0008 22.70 IC vs. M O 303 7 0.2747 (0.1557-0.5605) 0.0054 0.0011 29.40 EL vs. GL 300 4 0.1767 (0.1355-0.2685) 0.0030 0.0003 7.78 EL vs. M I 305 9 0.2127 (0.0912-0.2773) 0.0032 0.0016 13.00 E L v s .M O 311 7 0.2813 (0.1208-0.4405) 0.0058 0.0017 19.70 G L vs. M I 294 2 0.1863 (0.1658-0.2068) -0 .0012 0.0005 5.22 G L vs. M O 295 4 0.1480 (0.1116-0.1700) -0 .0003 0.0007 11.92 M I vs. M O 300 0 — -0.0041 0.0024 6.70 procedure. Likelihood functions were constructed following the method described in Rogers et al. (2001), and hybrid indices as well as their support (two log-likelihood units) were determined under the likelihood framework using r software ( r Development Core Team 2004). The joint estimate of hybrid index over all Icelandic individuals was therv used to calculate theoretical allele frequencies in the introgressed population of Iceland. For each locus, the deviation of observed frequencies from theoretical expectations was used to detect the possible influence of directional selection. Correlation tests Because the pattem of an AFLP locus consists of binary data, we used binomial logistic regression to test correlations between genotypes and other explanatory factors. We tested for the influence of the categorical factor 'life stage' (glass eel or yellow eel stage) and the continuous factors 'body length' and 'sample latitude' using r ( r Development Core Team 2004). Yellow eel body length was considered as a rough surrogate for individual age. R esults Intraspecific outlíer detection Trimmed FST values were close to zero in each of the six pairwise comparisons performed between Anguilla rostrata samples (Table 2). Outliers were detected in each comparison, and showed pairwise Fsx values ranging from 0.068 to 0.409 whereas neutral loci Fst ranged between -0.038 and 0.211 (Fig. 1). A total of 22 out of 325 polymorphic loci were outliers in at least one comparison, five of them were detected in two pairs of samples and three were involved in more than two pairwise comparisons. Among these, loci L65 and L260 were detected as outliers in all comparisons involving the Wye River and Medomak River samples, respectively, whereas locus L179 was the only outlier to appear in comparisons between pairs that did not involve a sample in common (Fig. 1). Low pairwise trimmed Fsx values calculated between A. anguilla samples revealed very weak neutral differen- tiation throughout the European eel distribution range (Table 2). Outliers were detected in every pairwise com- parison except between Minho River and Moulouya Oued (Fig. 2). Fsx values at outlying loci ranged from 0.090 to 0.650, whereas neutral loci showed Fsx values ranging from -0.038 to 0.277. Nine out of the 334 poly- morphic loci were outliers in one of the 10 pairwise com- parisons performed, whereas seven were detected in two different pairs (Fig. 2). Among the six loci that were associ- ated with a particular sample in more than two comparisons, five were associated with Iceland (L144, L278, L306, L337 and L372) and one with Elbe station (L22). Five other loci involved in more than two comparisons also appeared in independent sample pairs (Lll, L17, L32, L69 and L368) (Fig-2). © 2009 B lackw ell P u b lish in g L td N A T U R A L S E L E C T I O N F O O T P R I N T S IN A T L A N T I C EELS 1683 o CQ 'S l ^ L65 O 6 l l l l Mí i.ií) \\ Y s,i L179 n ML IK! W Y Si 362 L260 i - ■ 1 ■ VII. IK! W V SJ GO rt c c O ' («_ M E BO Heterozygosity W Y Fig . 1 R esu lts o f D fd is t a n a ly se s fo r A nguilla rostrata in trasp ec ific c o m p a riso n s . ^ST vs. h e te ro z y g o s ity p lo t is p ro v id e d fo r e ac h p a irw ise c o m b in a tio n o f sam p les . O p e n c irc les re p re s e n t n e u tra l loci fa llin g b e lo w th e 0.995 q u a n ti le 's b ro a d line , w h e re a s c a n d id a te loci xm der d iv e rg e n t se lec tio n a re re p re s e n te d b y b la c k c ircles a cc o m p a n ie d b y th e lo cu s n u m b er. L ow er a n d m id d le lin e s in each p lo t, respectively , re p re sen t th e 0.005 q u a n tile a n d m e a n Fsl- v a lu e o v e r th e ra n g e o f he te rozygosity . F ram es a t th e u p p e r r ig h t c o n ta in b a rp lo ts s h o w in g d o m in a n t a lle le fre q u en c y in e ac h lo ca lity fo r th e th re e o u tlie r loci d e te c te d in m o re th a n tw o s am p le p a irs . A significant positive correlation was found between latitudinal distance separating European localities and the number of outliers in the corresponding pairwise compar- isons (Spearman's p = 0.57, P = 0.04). This correlation was more obvious when Iceland was excluded (Spearman's p = 0.90, P = 0.01). Moreover, there was a significant positive correlation between trimmed ^st values and the number of outliers found in pairwise comparisons between A. anguilla localities (Spearman's p = 0.72, P = 0.009), which was also more obvious after withdrawing Iceland (Spear- man's rho = 0.93, P = 0.004). No such correlation could be found when applying these tests in A. rostrata. No outlier among the 22 foimd between A. rostrata samples and the 27 between A. anguílla samples was detected as intraspecilic outlier in both species. Interspecific outlier detection The interspecific comparison had a trimmed FST value of 0.0685. A total of 27 out of 321 (8.4%) polymorphic loci were identified as outliers in this analysis (Fig. 3). Three were also identified as A. rostrata intraspecific outliers (L243, L263 and L370) and four as intraspecific outliers in A. anguilla (L6 , L278, L368 and L372). In this last case, Iceland was always involved in the intraspecific comparisons in which these outliers were detected. Locus specific introgression level The determination of individual hybrid status with NewHybrids revealed the occurrence of 33 F„ 8 F2, and 38 © 2009 B lackw ell P u b lish in g L td 1684 P. A. G A G N A I R E E T A L . — tH o Lll ÍC L17 ■ I I I I L69 L22 I ■ L144 I I I I L306 . I I I I K* íil. Ol. \li MC> L32 L278 L337 L368 . I I I I L372 I I I I EL GL Heterozygozity Fig. 2 R esu lts o f D fd is t a n a ly se s fo r A nguilla anguilla in trasp ec ific co m p ariso n s. P lo ts w e re c o n s tru c ted a s in Fig. 1, fo r e v e ry p a irw is e c o m p a riso n in th e E u ro p e a n eel. F ram es a t th e u p p e r r ig h t c o n ta in b a rp lo ts s h o w in g d o m in a n t a lle le freq u e n c y in e a c h lo ca lity fo r th e 11 o u tlie r loci d e te c te d in a t le a s t th re e s a m p le p a irs . BCAan individuals with a posteríor probability greater than 70% (Table 1). At the 50% posterior probability level, 11 individuals were identified as F2 hybrids. No BCAr0 indivídual was found in the samples. Results of binomial tests between allele frequencies estimated in each of the three hybrid categories detected, and the corresponding theoretical frequencies calculated from parental sources, are shown in Fig. 4a for F„ 4b for F2 and 4c for BCAan hybrid categories. Seven loci showed cumulatively a bias towards A. rostrata parental frequencies in at least one hybrid category and an outlying behaviour in the interspecific comparison. Among them, loci L6 , L368 and L372 were also outliers in pure A. anguilla intraspecific comparisons involving Iceland. On the other hand, the interspecific outlier locus L236 showed a strong bias towards A. anguilla parental frequencies in each hybrid category. Maximum-likelihood estimates ofhybrid indices After removal of loci that showed less than 1% frequency difference between A. rostrata and A. anguilla pooled samples, 303 loci out of 373 were retained to estimate hybrid indices. Differences between dominant (presence of AFLP band) allele frequencies of parental samples ranged from 1 to 98%. Based on these loci, the joint maximum-likelihood estimate of hybrid index over all Icelandic individuals was 0.135 (two units of support: 0.129-0.140). This reconfirmed that individual genetic composition most likely originated © 2009 B lackw ell P u b lish in g L td N A T U R A L S E L E C T I O N F O O T P R I N T S IN A T L A N T I C EELS 1685 H e te ro z y g o s i ty Fig . 3 R esu lts o f D fd is t a n a ly s is fo r in te rs p e c if ic c o m p a r is o n , sh o w in g o u tlie r c a n d id a te loci fo r d iv e rg e n t se lec tio n b e tw e e n th e tw o A tlan tic eel spec ies. from A. anguilla, but that Icelandic eels were introgressed by A. rostrata, as reported by Albert et al. (2006). The distribu- tion of locus frequency deviation from theoretical expectations using this 0.135 joint hybrid index is presented in Fig. 5. With the exception of locus L192, all loci that significantly deviated from theoretical frequencies in at least one hybrid category (Fig. 4) showed the same deviation direction with the hybrid index approach (Fig. 5). Setting a 95% threshold to detect loci that departed the most from neutral expectatíons at both extremities of the distribution allowed us to refine the identification of markers potentially under selection. Five loci showed an overrepresentation of European alleles, and among these, three were detected to significantly deviate from theoretical frequencies in at Fig . 4 T h ree -d im en s io n a l p lo ts sh o w in g th e re su lts o f locus d e v ia tio n te s ts in h y b r id c a tego ries . In e ac h p lo t, th e g rey -co lo u red sq u a re d su rface s h o w s th e th e o re tic a l p ro b a b ility o f o b se rv in g th e d o m in a n t m a rk e r a s a fu n c tio n o f b a n d p re sen c e f req u en cy in each p a re n ta l spec ies. F o r e ac h locus, th e d iffe ren ce b e tw e e n o b se rv ed a n d th eo re tic a l f req u en cy o f b a n d p re sen c e w a s re p re s e n te d (on ly if s ign ifican t) b y a v e rtic a l lin e jo in in g th e lo cu s co o rd in a te s to its p ro jec tion o n th e theo re tical su rface. Vertical lines w e re red -co lou red w h e n loca lized a b o v e th e su rface a n d b lu e -co lo u re d w h e n localized u n d e r. Loci w e re re p re s e n te d b y p o in ts w h o s e s ize in d ic a ted if th e y w e re in te r s p e c if ic o u t l ie r s ( la rg e p o in ts a c c o m p a n ie d b y Iocus n u m b e r) o r n o t (sm all p o in ts ). T h e co lo u r o f a p o in t w as y e llo w w h e n b a n d fre q u e n c y w a s b ia se d to w a rd s A nguilla anguilla p a re n ta l f r e q u e n c y a n d g re e n w h e n b ia s e d to w a rd s A . rostrata. Loci w h o s e d e v ia t io n w a s s till s ig n if ic a n t a f te r B o n fe rro n i co rrec tio n h a d a b ro a d e r d e v ia tio n lin e a n d th e ir id e n tify in g n u m b e r w a s la b e lled w ith a l ig h t b ro w n tag . R esu lts a re p ro v id e d in s e p a ra te p lo ts fo r e a c h h y b r id c a te g o ry o b ta in e d w ith N e w H y b rid s : F, (4a), F2 (4b) a n d BCAan (4c). 0.2 BaW'áfteq'ietlcV imríMTninj © 2009 B lackw ell P u b lish in g L td 1686 P. A. G A G N A I R E E T A L . co -2 ö L o ci ordered b y deviation value Fig . 5 D e v ia tio n o f o b se rv e d m a rk e r freq u en c ie s from th eo re tic a l e x p ec ta tio n s g ív e n th e 0.135 e s tim a te d h y b r íd in d ex o v e r a ll in d iv id u a ls , fo r th e w h o le Ic e la n d ic s a m p le u s in g p o ly m o r p h ic loc i. D e v ia t io n v a lu e s a re re p re s e n te d b y b la c k h is to g r a m s o rd e re d f ro m loci ch a rac te riz e d b y a n alle lic c o m p o s itio n o f A nguilla rostrata (n eg a tiv e d ev ia tio n ) to A . anguilla o rig in (p o s itiv e d e v ia tio n ). Loci th a t sh o w ed s ig n ific an t d e v ia tio n a f te r B on fe rro n i co rrec tio n in a t le a s t o n e h y b r id ca teg o ry (Fig. 4) w e re la b e lled w ith th e ir id e n tific a tio n n u m b er. This n u m b e r is fo llo w e d b y a b lack c ircle if th e lo cu s w a s a lso a n in te rsp ec ífic o u tlie r, a n d / o r a n o p e n c irc le if th e lo cu s w a s a lso a n in traspecific o u tlie r in a t le a s t tw o p a írw is e c o m p a ris o n s in v o lv in g Ice land . T h e tw o h o riz o n ta l lines d e lim it loci w h o se a b so lu te d e v ia tio n v a lu e ex ceed ed th e o n e -s id ed 95% c o n fid en c e in te rv a l fo r th e d is tr ib u tio n o f loci d e v ia tio n 's a b so lu te va lue . least one hybrid category. The locus L236, which showed highly reduced introgression pattern in each hybrid category, was in the A. anguilla part of the distribution, but its deviation value did not exceed the 95% threshold. Eleven loci showing allele frequencies biased towards the American eel composition were outside the one-sided 95% confidence interval. Among these, five markers were already detected in deviation tests performed with hybrid categories. Moreover, loci L6 , L368 and L372, which were outliers at the interspecific level, and in pure A anguilla intraspecific comparisons involving Iceland, were all located in this A. rostrata distribution extreme. Correlations between locus band patterns and explanatory factors in Iceland Marker states at loci L6 , L368 and L372 were also associated wíth the life stage categorical factor in Iceland (Table 3). For each of these three loci, the frequency of the A. rostrata allele showed a significant increase from the glass eel to the yellow eel stage. Moreover, a significant positive correlation was detected with the body length of parental Icelandic yellow eels for loci L6 and L368. In addition, dominant allele frequency at locus L278 was significantly correlated with the latitude of Icelandic sampling locations. Because these correlations could be explained either by an increase in a sample's hybrid proportion with latitude or the transition from glass eel to yellow eel stage (Albert et al. 2006), the same tests were also performed after withdrawal of all hybrid categories. Significant relationships were still detected with pure Icelandic A. anguilla only (Table 3). D iscu ssion The present study aimed to document the possible influence of natural selection on patterns of genetic diversity in Atlantic eels. More specifically, we tested if (i) intra and interspecífic genetic variation were influenced by direc- tional selection, and if (ii) interspecific hybrids frequencies could be related to differential survival in Icelandic rivers. We first found candidate loci for directional selection within both species. In Anguilla rostrata, the spatial distri- butions of allelic frequencies displayed by some of these loci were possibly related with the geographical patterns of life-history traits (see below). We also identified a positive correlation between the number of outlier loci and the estimate of neutral differentiation, as well as the latitudinal distance in A. anguilla. Second, we found outlier loci at the interspecific level. Non-neutral introgression was also suggested for some loci. Namely, we detected a locus at © 2009 B lackw ell P u b lish in g L td N A T U R A L S E L E C T I O N F O O T P R I N T S IN A T L A N T I C EELS 1687 T a b le 3 R esu lts of log is tic re g re ss io n s th a t re v e a led s ig n ific a n t re ia tio n sh ip s b e tw e e n alle lic c o m p o s itio n a t a g iv en lo cu s a n d e ith e r catego rica l (life s tag e ) o r c o n tin u o u s v a ria b le s (b o d y le n g th a n d s a m p le ia titu d e ). C o rre la tio n s w ith th e life -stag e fac to r w e re te s te d u s in g d a ta fro m th e fo u r Ice lan d ic lo ca litie s fo r w lú c h g lass e els a n d y e llo w eels w e re b o th availab le . T h ese loca lities w e re V o g slæ k u r (VO), Seljar (SE), V ífilss tad av a tn (VI) a n d S to k k sey ri (ST) (see A p p e n d ix S l) . C o rre la tio n s w ith b o d y le n g th a n d s am p le ía titu d e w e re te s ted o n all Ice lan d ic lo ca litie s . S a m p le s c o n s is te d of a ll th e in d iv id u a ls a v a ila b ie fo r th e lo c a litíe s c o n s id e re d (P u re + h y b r id s ) , o r w e re re s tr ic te d to in d iv id u a ls id e n tif ie d a s p u re A . anguilla (P u re on ly ), o r to p u re E u ro p ea n y e llo w eels (P u re y e llo w on ly ). T h e P -v a lu e is p ro v id e d fo r e ac h te st L ocus id e n tify in g n o . F a c to r te s te d L ocalities a n a ly se d In d iv id u a ls a n a ly se d P v a lu e L6 Life s tag e V O + SE + VI + ST P u re + h y b r id s 1.27 x lO "9 P u re o n ly 4.07 x ÍO '7 B ody le n g th A ll Ice land ic P u re y e llo w o n ly 7.72 x lO -3 L368 Life s tag e V O + SE + V I + ST P u re + h y b r id s 1.23 x lO "7 P u re o n ly 1.59 x K T 3 B ody le n g th AIl Ice land ic P u re y e llo w o n ly 3.27 x 10-5 L372 L ife s tag e V O + SE + V I + ST P u re + h y b r id s 6.60 x 10-9 P u re o n ly 8.56 x 10"8 B ody le n g th A ll Ice land ic P u re y e llo w o n ly 1 .0 8 x 1 0 - ' L278 S am p le la titu d e A ll Ice land ic P u re + h y b r id s 6.20 x ÍCT12 P u re on ly 2.36 x 10“7 which the typical A. rostrata allele hardly crossed the species genetic barrier, whereas three other loci showed accelerated patterns of introgression into A. anguilla in Iceland. Moreover, the level of introgression at these three loci increased from the glass eel to the yellow eel stage. We discuss the evolutionary consequences of hybridization in Atlantic eels in the light of these results. Local differentiation at the species level; evidencefor one generation selection footprint? Regarding the large number of locí studied in a genome scan, one important issue of outlier detection is to deal with type I errors generating false positives. In our case, given the 0.995 threshold used to detect loci under directional selection, we expected 373 * 0.005 or approximately two loci to be detected as outliers only by chance in each comparison. However, the method of Beaumont & Balding (2004) performs a false-positive correction to avoid this issue. Furthermore, our study at the species level involved multiple pairwise comparisons. We could therefore identify outlier loci involved in multiple comparisons, further reducing the likelihood of type I error. We detected in each species outlier loci that were asso- ciated with a particular sample in at least three different pairwise comparisons. Allele frequencies at these markers could have been shaped by locality-specific selective forces. Unfortunately, in the absence of detailed environ- mental data conceming factors that could play a selective role, no correlation could be examíned between outlier locus frequencies and ecological variables. However, geographical patterns in life-history traits can provide a first basis to propose hypothetical explanations for such associations, and set the stage for future research on the role of natural selection in shaping genetic variation observed in eels. Of course, these must be considered as exploratory. For instance, the A. rostrata glass eel phase duration is longer and characterized by a slower growth rate in northern localities than in the south (WangJyTzeng 1998). This latitudinal variation was interpreted as a con- sequence of coastal water temperature that could influence the speed of glass eels' development. If temperature controls such a vital trait, it could also affect glass eels' mortality, hence providing a basis for differential selection. Atlantic Ocean surface temperatures near North America coasts show that the influence of the warm Gulf Stream water masses does not extend to the north of Boston (see Wirth & Bematchez 2003 for a map). This raises the hypothesis that AFLP markers, such as L260 that showed unusually high Fsx values in all three comparisons involving the northern- most Medomak River, could be candidate for selection by temperature in A. rostrata. In A. anguilla, five loei showed unusually high Fsx values in at least three different pairwise comparisons when Iceland was compared with European samples (L144, L278, L306, L337 and L372). Icelandic eels are likely to be charac- terized by some particular traits because they are supposed to have a shorter migration and experience unique ecolo- gical conditions during their continental growth compared to their Europeancongeners (Albertet«I./006). Therefore, it was not surprising to find five Iceland-specific outliers among a total of six locality-specific outliers in the European eel. This result supported that the outlier behaviour of such loci was probably related with the existence of selective factors that exclusively operate in the 'outlying locality'. In both species, some outlier loci were also involved between independent sample pairs, possibly indicating © 2009 B lackw ell P u b lish in g L td 1688 P. A. G A G N A I R E E T A L . that some selective factors could influence genetic variation on broader geographical scales. This was particularly the case in A. anguilla, where a significant positive correlation between latitudinal distance separating European localities and the number of outliers in pairwise comparisons was observed. Due to genetic linkage between genes responsible for local adaptation and some neutral loci, theory also predicts that natural selection could facilitate neutral genetic differentiation via genetic hitchhiking (Charlesworth etal. 1997). This was supported by the positive correlation between trimmed FST values and the number of outliers found in pairwise comparisons between A. anguilla localities. This raised the hypothesis that the weak albeit significant neutral genetic differentiation previously reported in the European eel (Daemen et al. 2001; Wirth & Bematchez 2001, 2003; Maes & Volckaert 2002) could be indirectly induced by natural selection associated with a latitudinal environ- mental gradient along the European coasts. What was previously described as an 'isolation-by-distance' pattern could therefore be interpreted as an 'isolation-by-adaptation' footprint (Nosil etal. 2008). However, both processes are not necessarily exclusive. Clearly, a more thorough test of the hypothesis of isolation-by-adaptation as a single generation process will need a wider sampling coverage, and the use of a meaningful set of ecological variables instead of latitude alone in order to identify causal agents of selection. Genetic architecture ofthe species barrier Natural hybridization between Atlantic eels in Iceland provided an opportunity to study the architecture of puta- tive genetic barriers between A. rostrata and A. anguilla. Depending on the number of genomic regions involved in reproductive isolation, and on their distribution throughout the genome, the permeability of hybrid zones to gene flow can be highly variable (Barton & Hewitt 1985; Kim & Rieseberg 1999; Wu 2001). The AFLP genome-scan approach is a way to concomitantly assess the proportion of loci that flow more or less freely between species and that of 'speciation loci' that hardly cross the species barrier, and are therefore characterized by introgression delays or segregation distortions in hybrids. Most of the following interpretations conceming the different pattems of intro- gression found at interspedfic outlier loci rely on the hypothesis that each species consists of a panmictic or quasi-panmictic pool of individuals. Iceland was also assumed to consist of a mixture of pure European eels and various hybrid crosses, among which F„ F2 and BCAajrl were probabilistically categorized using NewHybrids. Although the panmictic status of each species is still debated, these assumptions seem reasonable considering the very low levels of intras- pecific genetic differentiation evidenced in a previous study (Wirth & Bematchez 2003). The low interspecific trimmed FST value of 0.06 found between pooled continental samples (i.e. without Iceland) was close to the previous neutral differentiation level found with microsatellite markers (0.007-0.040, Wirth & Bematchez 2003), and indicated either a recent co-ancestry, shared ancestral polymorphism, or a significant level of introgression. Overall, individual admixture proportions determined with Structure (Pritchard et al. 2000) in Albert et al. (2006), along with the present NewHybrids results, and the 0.135 overall hybrid index found in Iceland, sup- ported the existence of asymmetrical genetic introgression from A. rostrata towards A. anguilla. Therefore, the European eel's genome seems permeable to the inflow of genes from the American eel. On the other hand, gene flow between species appeared strongly reduced at some AFLP loci after comparison between pooled continental samples. The 8.4% of outlier loci detected between Atlantic eel species was consistently within the 1.5-15.1% range of outliers docu- mented between closely related species in previous studies (Campbell & Bematchez 2004; Scotti-Saintagne et ál. 2004; Savolainen et ál. 2006; Rogers & Bernatchez 2007; Minder & Widmer 2008). Among the 27 interspecific outliers iden- tified, the study of deviation from theoretical frequencies in Icelandic hybrid categories revealed three contrasting locus behaviours. First, in Iceland, five loci showed a strong bias towards parental A. anguilla allelic frequencies. Among these, only locus L236 still significantly deviated from theoretical frequencies after Bonferroni correction. This deviation was observed in each hybrid category, and systematically corresponded to the strongest introgression delay of A. rostrata allele into A. anguilla genome among all markers. Locus L236 is therefore potentially linked with a genomic region undergoing diverging selection between both eel species, or perhaps involved in Dobzhansky- Muller incompatibilities inducing hybrid inferiority (Burke & Amold 2001). Second, nine interspecific outliers were in conformity with expected allele frequencies in each hybrid category, and only showed moderate departures from neutral expectations using the hybrid index approach. Some of these loci could have been identified by type I errors, as they were not located far above the 0.995 quantile in the single interspecific comparison made for outlier detection. Type I error was however, improbable for three other loci showing a clear interspecific outlying behaviour (L78, L263 and L353). Conformity with theoretical expec- tations in hybrid categories and in the whole Icelandic sample rather suggested that allelic combinations at these loci did not have a strong influence on hybrid fitness. The interspecific outlier behaviour of such loci may therefore be best explained by divergent selection between parental species unaffecting hybrid fitness. Third, the 13 remaining loci were all distinguished by allelic frequencies biased towards A. rostrata, exceeding neutral expectations in at least one hybrid category. Among the seven markers that © 2009 B lackw ell P u b lish in g L td N A T U R A L S E L E C T I O N F O O T P R I N T S IN A T L A N T I C EELS 1689 still significantly deviated after Bonferroni correction, loci L6 , L368 and L372 also fell outside the 95% confidence interval defined in the hybrid index approach, suggesting that they were undergoing positive selection in Iceland. Because the overrepresentation of A. rostrata alleles at these loci was also independently observed in hybrids and pure Icelandic A. anguilla, an Iceland-specific selective factor favouring A. rostrata's alleles in Iceland best explains accel- erated introgression at these markers (see below). On the basis of the behaviour of loci studied at different scales, two main mechanisms may be invoked for shaping the pattems of differential introgression at different markers between Atlantíc eel species. Asymmetrical genetic intro- gression from A. rostrata to A. anguilla was already demon- strated (Albert et al. 2006), but here we found some loci with accelerated rates of introgression in Iceland. Hybridization could thus allow genetic segments carrying neutral but also locally favourable genes to cross the genetic barrier between species. In the face of introgression, genetic swamping would tend to homogenize the genetic com- position of the two species, but loci under divergent selection, or potentially involved in endogenous incompatibilities such as L236 could maintain separation of some genomic regions among species. The fact that these regions appeared at low density compared to neutrally flowing loci in this genome scan suggests that the genetic barrier between Atlantic eel species may be very porous (Wu 2001). Adaptive consequences ofhybridization between Atlantic eels The Iceland-limited occurrence of hybrids was proposed to rely on their intermediate larval behavíour and/or development compared to purebreds (discussed in Albert et al. 2006). Because of its geographical localization at mid-distance between North America and Europe and its ecological uniqueness compared to the European core habitat, Iceland can also be considered a marginal habitat of the European eel natural distribution. The restricted distribution of hybrids could indicate that they have higher survival in this habitat compared to purebreds (Albert et al. 2006). Contrasted performance between purebreds and hybrids regarding habitat ecology have been proposed in the alpine sedge Carex curvula, which maintained its gen- otype integrity in optimal habitats but showed high levels of introgression at ecological margins (Choler_efal. 2004). In that study, correlation between pattems of geno- typic distribution and ecological conditions suggested that genetic introgression could be a way to widen this species' niche. In such a case, allospecific genes possibly responsible for local adaptation in marginal habitats should introgress more rapidly than any other allospecific neutral gene via introgressive hybridization. Indeed, differential survival is supposed to favour individuals carrying these introgressed-adapted alleles, but should have a random effect on urdinked neutral genes. Loci L6 , L368 and L372 are good candidates for such adaptive introgression induced by positive selection, because their allelic com- positions were strongly biased towards A. rostrata frequen- cies in Iceland. Moreover, the increase in introgression level observed at these loci during continental growth (i.e. at transition from glass to yellow eel, and during yellow eel growth for L6 and L368) indicated that allelic frequencies changed during the continental phase. The fact that this temporal enrichment in A. rostrata's alleles was not observed at other loci is not compatible with the hypothesis that it reflects a temporal decrease in the introgression rate, because this should also have affected other loci. A segregatíon distortíon induced by co-adapted gene complexes or a spatio-temporal variation in hybrids' proportíon could neither be invoked, because the same significant variations in allelic frequencies were also found with pure Icelandic A. anguilla individuals. Consequently, we propose that our results reflect the existence of ecological factors driving differential survival in Iceland in favour of introgressed individuals at loci L6 , L368 and L372. Moreover, a latitudinal gradient of selection associated with such ecological factors providing an advantage for introgressed individuals at hígh latitudes could also explain the latitudinal increase in the proportion of hybrids towards the North of Iceland (Albert et al. 2006). Although these ecologícal factors still remain to be identified, temperature would be a logical candidate to investigate in future studies. It is notoriously difficult to provide evidence for adaptive introgression in natural surveys, because positively selected alleles are predicted to rapidly fix in the introgressed population (Bartoxy2001). However, the case of Atlantic eels could be particularly useful in this respect, because of the very high levels of neutral gene flow observed at the species scale. The panmixia hypothesis assumes that within each species, alleles are randomly exchanged between individuals at each generation, independent of their continental origin. Therefore, larval pools that recruit at different continental locations should not differ in their allelic composition when starting to disperse from the spawning area. As larval transport by the Gulf Stream is likely to be an additional source of genetic homogenization during dispersal, only oceanic selection could differentially shape genetic variation among pools of recruiting larvae. The eventual footprint of positive selection observed in Iceland could therefore correspond to a single generation process. Conclusions and perspectives for future research This genome scan provided evidence that both intraspecific and interspecific genetic diversity are influenced by natural selection in Atlantic eels. Genetic differentiation pattems © 2009 B lackw ell P u b lish in g L td 1690 P. A. G A G N A I R E E T A L . found at the species scale suggested that differential mortality associated with local conditions where young eel settle could indirectly shape neutral genetic variation via genetic linkage with loci under selection. Hence, the nature of genetic variation in Atlantic eels could be not only spatial or temporal, but also ecological. In order to provide a better understanding of some novel aspects raised in this study, a genome-wide functional single nucleotide poly- morphism (SNP) scan could enable fhe identification of coding genes under potential selection following preliminary efforts to increase SNP discovery (Namroud et al. 2008). Wood et al. (2008) also recently showed that potentially selected regions can fall outside coding sequences, and that BAC library screening was an appropriate way to follow up an AFLP genome scan. Such markers and approaches could be applied towards further investigating the effect of natural selection on changes of allele frequencies at putative 'adaptive genes' throughout the eel's complex life cycle. Namely, the comparison between leptocephali of different ages could help in understanding the impact of selection on genetic variation in the marine environment, whereas the analysis of glass and yellow eels would provide information on selection operating in continental waters, and as such, enable estimation of the nature and relative importance of selection operating either in the marine or continental environments. A cknow ledgem ents W e a c k n o w le d g e s u b je c t e d i to r H . E lle g re n , tw o a n o n y m o u s re fe rees, a s w e ll as P. B erreb i a n d A . W h ite ley fo r th e ir h e lp fu l c o m m e n ts o n th e m a n u s c r ip t . T h is re s e a rc h w a s s u p p o r te d b y a g ra n t fro m Science a n d E n g in ee rin g R esearch C an a d a (NSERC, D isco v e ry g ra n t p ro g ra m ) a s w e ll a s a C a n a d ia n R e sea rch C h a ir to L.B. References A ibert V, Jonsson B, B em atchez L (2006) N a tu ra i h y b rid s in A tlan tic eels (A n xu itla anguilla , A . rostrata): e v id e n ce fo r su cce ss fu l re p ro d u c t io n a n d f lu c tu a t in g a b u n d a n c e in s p a c e a n d tim e . M olecular Ecology, 1 5 ,1903-1916. A n d e rso n EC, T h o m p so n EA (2002) A m o d e l-b a sed m e th o d for id e n t i fv in g s p e c ie s h y b r id s u s in g m u lt i lo c u s g e n e t ic d a ta . Genetics, 1 6 0 ,1217-1229. A v ise fC , H e lfm a n G S, S a u n d e r s N C , H a le s LS (1986) M ito- c h o n d ria l D N A d iffe ren tia tio n in N o rth A tlan tic eels: p o p u la tio n g e n e t ic c o n s e q u e n c e s o f a n u n u s u a l lif e h is to r y p a t t e r n . Proceedings o f tlie National Academ y o f Sciences, U SA , 83, 4 3 5 0 - 4354. A vise JC , N e lso n W S, A m o ld J e ta l. (1990) T h e ev o lu tio n a ry g en etic s ta tu s o f Ice lan d ic eels. Evolution, 44,1254^-1262. B arton N H (2001) T h e ro le o f h y b r id iz a tio n in ev o lu tio n . Molecular Ecology, 10, 551-568 . B arto n N H , H e w itt G M (1985 ) A n a ly sis o f h y b r id zo n es . A n nua l Review o fE co lozy and System atics, 1 6 ,113-148. B ea u m o n t M A (2005) A d a p ta t io n a n d sp ec ia tio n : w h a t c an Fsx tell u s? Trends in Ecology & Evolution, 2 0 ,4 3 5 -4 4 0 . B eau m o n t M A , B ald in g DJ (2004) Id e n tify in g a d a p t iv e genetic d iv e rg en ce a m o n g p o p u la tio n s fro m g e n o m e scans. M olecular Ecology, 13, 9 69 -9 8 0 . B eau m o n t M A , N ich o ls R A (1996) E v a lu a tin g loci fo r u s e in th e g enetic an a ly s is o f p o p u la tio n s tru c tu re . Proceedings o fth e Royal Society B: Biological Sciences, 2 6 3 ,1619-1626. B onin A , T aberle t P , M ia u d C , P o m p a n o n F (2006) E x p lo ra tiv e g e n o m e s c a n to d e te c t c a n d id a te loci fo r a d a p ta t io n a lo n g a g ra d ie n t o f a l t i tu d e in th e c o m m o n fro g (Rana temporaria). M olecular Biology and Evolution, 23, 773-783. B urke JM, A rn o ld M L (2001) G en etics a n d th e fitn ess o f h y b rid s . Anrtual Review ofG enetics, 3 5 ,3 1 -5 2 . C a m p b e ll D , B e rn a tc h e z L (2004) G en eric scan u s in g A FLP m a rk e rs as a m e a n s to a sse ss th e ro le o f d irec tio n a l se lec tio n in th e d iv e rg e n c e o f s y m p a tr ic w h i te f ish e c o ty p e s . M olecular Biology and Evohition, 2 1 ,9 4 5 -9 5 6 . C h a r le sw o rth B, N o rd b o rg M , C h a r le sw o rth D (1997) T h e effects o f lo ca l s e le c tio n , b a la n c e d p o ly m o r p h is m a n d b a c k g r o u n d s e le c tio n o n e q u i l ib r iu m p a t te r n s o f g e n e t ic d iv e r s i ty in su b d iv id e d p o p u la tio n s . Genetical Research, 7 0 ,155 -174 . C h o le r P , E r s c h b a m e r B, T rib sch A , G le lly L, T a b e rle t P (2004) G en etic in tro g re ss io n a s a p o te n tia l to w id e n a sp ec ie s ' n iche: In s ig h ts fro m a lp in e Carex curvula. Proceedings o f the Natioual A cadem y o f Sciences, U SA , 1 0 1 ,171-176. C o m p a r in i A , R iz zo tti M , R o d in o E (1977) G en etic co n tro l a n d v a ria b ility o f p h o s p h o g lu co se iso m e ra se (PGI) in eels fro m th e A tlan tic O cean a n d th e M e d ite r ra n e a n Sea. M arine Biology, 43, 109-116. D aem en E, C ross T, O llev ie r F, V olckaert FAM (2001) A n a ly sis o f th e genetic s tru c tu re o f E u ro p e a n e e l (A nguilla anguitta) u s in g m ic ro sa te llite D N A a n d m tD N A m a rk e rs . M arine Biologxi, 139, 755-764. D a n n ew itz J, M aes G E, Jo h an sso n L et al. (2005) P a n m ix ia in the E u ro p ea n eel: a m a tte r o f t im e . ... Proceedings o fth e Royal Society B: Biological Scicnces, 27 2 ,1129-1137. D e L igny W , P a n te lo u ris EM (1973) O rig in o f th e E u ro p ea n eel. N ature, 246,518-519. ]u m p A S, H u n t JM , M a r tin e z - Iz q ie rd o A M , P e n u e la s J (2006) N a tu ra l se le c tio n a n d c lim a te c h a n g e : te m p e ra tu re - l in k e d s p a tia l a n d te m p o ra l t re n d s in g e n e freq u en cy in Fagus sylvatica. M olecular Ecology, 1 5 ,3469-3480. K e ttle AJ, H a in e s K (2006) H o w d o e s th e E u ro p e a n eel (Anguilla anguilla) re ta in its p o p u la t io n s t ru c tu re d u r in g i ts la rv a l m ig ra tio n across th e N o r th A tlan tic O cean? Canadian Journal o f Fisheries and Aquatic Sciences, 6 3 ,90-106 . K im SC, R ie se b e rg L H (1999) G e n e tic a r c h i te c tu r e o f s p e c ie s d ífferences in a n n u a l su n flo w ers : im p lic a tio n s fo r a d a p t iv e tra it in tro g re ss io n . Genetics, 153 ,9 6 5 -9 7 7 . K o e h n RK, W illiam s G C (1978) G enetic d iffe ren tia tio n w ith o u t iso la tion in A m erican eel, A nguilla rostrata. II. Tem p o ra l s tab ility o f g e o g ra p h ic p a tte m s . Evolution, 32, 62 4 -6 3 7 . L in ta s C , H ira n o J, A rc h e r S (1998) G en etic v a r ia tio n o f th e E u ro p e a n e e l (A nguilla anguilla). M olecular M arine Biology and Biotechnologii, 7 ,2 6 3 -2 6 9 . L uik a rt G , E n g lan d PR, T allm on D , J o rd a n S, T aberle t P (2003) T he p o w e r a n d p ro m ise o f p o p u la tio n g enom ics: from g e n o ty p in g to g e n o m e ty p in g . N ature Reviexvs Genetics, 4 ,981-994 . M aes GE, P u jo lar JM , H e llem an s B, V olckaert FAM (2006) E v idence fo r iso la tio n b y h m e in th e E u ro p e a n eel (A nguilla anguilla L.). M olecular Ecology, 1 5 ,2095-2107. © 2009 B lackw ell P u b lish in g L td N ATU RAL SELECTION FO O TPRINTS IN ATLANTIC EELS 1691 M a e s G E , V o lc k a e rt FA M (2002) C lin a l g e n e tic v a r ia tio n a n d S tinchcom be JR, H o e k stra H E (2007) C o m b in in g p o p u la tio n iso la tio n b y d is ta n c e in th e E u ro p ea n ee l A nguilla anguilla (L.). Biological Journal o fth e Linnean Society, 77 ,5 0 9 -5 2 1 . M artin N H , B ouck A C , A m o ld M L (2006) D e tec tin g a d a p t iv e tra it in tro g re ss io n b e tw e e n Iris fu lva a n d I. brevicaulis in h ig h ly selec tive fie ld co n d itio n s . Genetics, 172 ,2481-2489 . M a r t in s e n G , W h ith a m T G , T u re k RJ, K e im P (2001) H y b rid p o p u la t io n s s e le c tiv e ly f i l te r g e n e in tr o g re s s io n b e tw e e n s p e d e s . Evolution, 55 ,1325-1335 . M ay r E (1947) E co log ical fa c to rs in sp ec ia tio n . Evolution, 1, 2 6 3 - 288. M cC leave JD , K leck n er RC, C as to n g u a y M (1987) Rep ro d u c tiv e s y m p a try o f A m e ric a n a n d E u ro p ea n eels a n d im p lica tio n s fo r m ig ra tio n a n d ta x o n o m y . Am erican Fisheries Society Sym posium , 1 ,2 8 6 -2 9 7 . M ille r N J, C iosi M , S a p p in g to n TW et al. (2007) G en o m e scan of Diabrotica virgifera virgifera fo r g en e tic v a ria tio n a sso c ia ted w ith c ro p ro ta tio n to le rance. lournal o fA pp lied Entomology, 131, 3 7 8 - 385. M in d e r A M , W id m e r A (2008) A p o p u la tio n g en o m ic an a ly sis of s p e r ie s b o u n d a rie s : n e u tra l p ro cesses, a d a p t iv e d iv e rg en c e a n d in tro g re ss io n b e tw e e n tw o h y b r id iz in g p la n t spec ies. Molecular Ecology, 17 ,1552-1563 . N a m ro u d M C , B eau lieu í, Juge N , L aroche J, B o u sq u e t | (2008) S can n in g th e g e n o m e fo r g en e s ing le n u c leo tid e p o ly m o rp h ism s in v o lv e d in a d a p t iv e p o p u la tio n d iffe ren tia tio n in w liite sp ruce. M olecular Ecology, 1 7 ,3 5 99-3616 . N o s i l P , S c o tt P E , F u n k DJ (2008) H e te r o g e n e o u s g e n o m ic d if fe re n t ia tio n b e tw e e n w a lk in g - s tic k e c o ty p e s : 'i s o la t io n by a d a p ta tio n ' a n d m u ltip le ro les fo r d iv e rg e n t selec tion . Evolution, 6 2 ,3 1 6 -3 3 6 . P r i t c h a r d JK , S te p h e n s M , D o n n e l ly P (2000) In fe re n c e o f p o p u la tio n s tru c tu re u s in g m u ltilo cu s g e n o ty p e d a ta . Genetics, 1 5 5 ,9 4 5 -9 5 9 . P u jo lar JM , M aes G E, V olckaert FAM (2006) G en etic p a tch in ess a m o n g re c ru its in th e E u ro p e a n eel, A nguilla anguilla. M arine Ecology Progress Series, 3 0 7 ,2 0 9 -2 1 7 . r D e v e lo p m en t C o re Team (2004) r: A Language and E nvironm entfor Statistical Com puting. r F o u n d a tio n fo r S tatistical C o m p u tin g , V ienna, A u stria . R ieseberg L H , B aird SJE, D esro ch ers A M (1998) P a tte m s o f m a tin g in w ild s u n flo w e r h y b r id zo n es . Evolution, 52, 713-726. R ieseberg LH , W h itto n J, G a rd n e r K (1999) H y b rid z o n es a n d the g e n e tic a rc h ite c tu re o f a b a r r ie r to g e n e flo w b e tw e e n tw o su n flo w e r spec ies. Genetics, 152 ,7 1 3 -7 2 7 . R ogers SM , B em atchez L (2007) T h e genetic architecture o f ecological s p e c ia t io n a n d th e a s s o c ia t io n w i th s ig n a tu re s o f s e le c tio n in n a tu ra l lake w h ite fish (Coregonus sp . S a lm o n id ae ) spec ies p a irs . M olecular Biology and Evolution, 24 ,1423-1438 . R ogers SM , C am p b e ll D , B aird SJE, D a n z m a n n RG, B ern a tch ez L (2001) C o m b in in g th e an a ly se s o f in tro g re ss iv e h y b rid iza tio n a n d l in k a g e m a p p in g to in v e s t ig a te th e g e n e t ic a rc h ite c tu re o f p o p u la t io n d iv e rg e n c e in th e la k e w h i te f is h (Coregonus clupeaformis, M itch ill). Genetica, 11 1 ,2 5 -4 1 . S a v o la in e n V , A n s e t t M C , L ex e r C et al. (2006) S y m p a tr ic sp ec ia - t io n in p a lm s o n a n o c e a n ic is la n d . Nature, 4 4 1 ,210 -213 . S c h m id t I (1925) T h e b re e d in g p la c e s o f th e eel. Smithsonian Institu tion A n n u a l Report, 1924 ,279 -316 . S c o tti-S a in ta g n e C , M a r ie t te S, P o r th I e t al. (2004) G en o m e s c a n n in g fo r in te rsp ec ific d iffe re n tia tio n b e tw e e n tw o closely re la te d o a k s p e r ie s [Quercus robur L. & Q. petraea (M att.) Liebl.]. Genetics, 168 ,1615-1626 . genom ics a n d q u a n tita tiv e genetics: f in d in g th e g en es u n d e rly in g eco log ica lly im p o r ta n t tra its . Herediti/, 100 , 158 -1 7 0 . Tesch FW (2003) The Eel, 5 th e d n . B lackw ell Science, O x fo rd , UK. Via S, W est J (2008) T h e g en etic m o sa ic su g g es ts a n e w ro le fo r h itc h h ik in g in eco log ical sp ec ia tio n . M olecular Ecology, 1 7 ,4 3 3 4 - 4345. W an g C H , T z e n g W N (1998) I n te rp r e ta t io n o f g e o g ra p h ic va ri- a tio n in s ize o f A m e ric an eel A nguilla rostrata e lv e rs o n th e A tla n tic c o a s t o f N o r th A m e ric a u s in g th e ir life h is to ry a n d o to lith ag eing . M arine Ecology Progress Series, 1 6 8 ,3 5 -4 3 . W eir B, C o ck e rh am C (1984) E s tim a tin g F -sta tis tic s fo r th e an a ly sis o f p o p u la tio n s tru c tu re . Evolution, 3 8 ,1 3 58-1370 . W h itn e y K D , R an d e ll R A , R ieseb erg L H (2006) A d a p tiv e in tro - g re s s io n o f h e rb iv o re re s is tan ce tra its in th e w e e d y su n flo w e r H elianthus annuus. Thc Am erican N aturalist, 167, 794-807. W ild in g C S, B u tlin RK, G ra h a m e J (2001) D ifferen tia l g ene e x c h a n g e b e tw e e n p a r a p a t r ic m o r p h s a Littorina saxatilis d e te c te d u s in g A FL P m a rk e rs . fournal o f Evolutionary Biology, 14, 611-619. W illiam s G C , K o eh n RK, M itto n JB (1973) G en etic d iffe ren tia tio n w ith o u t iso la tio n in A m erican eel, A nguilla rostrata. Evolution, 27 ,192-204 . W irth T, B em atch ez L (2001) G en etic e v id e n c e a g a in s t p a n m ix ia in th e E u ro p ea n eel. Nature, 409 ,1037-1040 . W irth T, B ern a tch ez L (2003) D ecline o f N o r th A tlan tic eels: a fa ta l sy n erg y ? Proceedings o fthe Royal Society B: Biological Sciences, 270, 681-688. W ood H M , G ra n h a m e JW , H u m p h ra y S, R ogers T, B u tlin R K (2008) S equence d iffe ren tia tio n in re g io n s id e n tif ie d b y a g e n o m e scan fo r local a d ap ta tio n . M olecular Ecology, 17 ,3123-3135 . W u C I (2001) T he g en ic v ie w o f th e p ro ce ss o f sp ec ia tio n . Joum al o f Evolutionary Biology, 14, 851-865. Z h iv o to v sk y L (1999) E stim a tin g p o p u la tio n s tru c tu re in d ip lo id s w ith m u ltilo cu s d o m in a n t m a rk e rs . M olecular Ecology, 8, 9 0 7 - 913. P.A. G a g n a ire 's c u rre n t re sea rc h in v o lv e s th e in v e s tig a tio n of p o p u la t io n s t r u c tu r in g a n d s p e c ia t io n p ro c e s s e s in th e g e n u s Anguilla . T h e w o rk p re s e n te d in th is p a p e r w a s in itia te d w h ile v is itin g L.B .'s labo ra to ry . V. A lb e rt is a re sea rch a ss is ta n t in L.B.'s lab o ra to ry sp ec ia lized in p o p u la tio n genetics . B. Jo n sso n 's in te res ts a re in th e fie ld o f e v o lu tio n a ry ecology, effects o f c lim atic ch an g e a n d life h is to ry a d a p ta tio n . L o u is B em a tc h e z 's re sea rch focus o n u n d e rs ta n d in g p ro ce sse s o f m o le c u la r a n d o rg a n ism a l e v o lu tio n a n d th e ir sigrtificance fo r c o n se rv a tio n . Supporting inform ation A d d itio n a l S u p p o r tin g In fo rm a tio n m a y b e fo rrnd in th e on lin e v e rs io n o f th is article: A p p e n d ix S1 M ap s h o w in g th e g e o g ra p h ic d is t r ib u t io n o f th e s a m p lin g s ite s in th is s tudy . P lease no te : W iley-B lackw ell a re n o t re sp o n sib le fo r th e co n te n t o r fu n c tio n a lity o f a n y s u p p o r tin g m a te r ia ls s u p p lie d b y th e au th o rs . A n y q u e rie s (o th e r th a n m iss in g m a te ria l) s h o u ld b e d ire c te d to th e c o rre sp o n d in g a u th o r fo r th e artic le . © 2009 B lackw ell P u b lish in g L td Environmental Biology o f Fishes (2007) 78:189-192 DOI 10.1007/s 10641-005-1367-9 © Springer 2006 Effects of water temperature on the swimming and climbing behaviour of glass eels, Anguilla spp. Elizabeth D. L intona'c, Bjarni Jónssona,b, & David L.G. N oakesa~d aDeparíment of Zoology and Axelrod Institute of Ichthyology, University of Guelph, NIG 2WI, Guelph, Ontario, Canada (e-mail: bjarni.jonsson@veidimal.is) bInstitute of Freshwater Fisheries at Hólar, 551, Hólar, Saudárkrókur, Iceland LDillon Consulting, 5 Cherry Blossom Road, Unit I , N3H 4R7, Camhridge, Ontario, Canada ‘'Current. address: Department of Fisheries & Wildlife, Oregon Hatchery Research Center, Oregon State University, Corvallis, Oregon, 97331-3803 USA Received 8 January 2005 Accepted 13 July 2005 Key words: tem perature, m igration, marine, freshwater, Iceland Synopsis We used controlled laboratory experiments to test the hypothesis that glass eels, Anguilla spp., display distinct locom otion behaviour patterns at different water temperatures. The threshold and peak temper- atures for active swimming were lower than those for vertical climbing. These differences in threshold and peak tem peratures for swimming and climbing behaviour correspond to field observations on these eels entering freshwater rivers in Iceland. The differences in threshold and peak tem peratures account for the observations that glass eels first swim into freshwater and then later begin upstream movement over waterfalls or other barriers. Introduction The life cycle o f freshwater eels, Anguilla species, is one of the most complex o f any fish species. One of the most striking parts o f this life cycle is the complex transition of the marine leptocephalus larva to the freshwater glass eel (Aida et al. 2003). Among many other changes, this involves the ini- tiation of active swimming and vertical climbing behaviour o f the glass eels into freshwater rivers and streams. W ater tem perature is arguably the chief environmental variable governing the peri- odicity and magnitude o f upstream eel migration within brackish and freshwater systems (M artin 1995. White & Knights 1997). Field studies com- monly report the threshold tem perature at which inland movement is initiated and the tem perature at which peak m igration occurs (Gandolfi et al. 1984, W hite & Knights 1997), whereas laboratory experiments have largely focused on thermal preference tests (Barila & Stauffer 1980, Tosi et al. 1990, Chen & Chen 1991). No study has investi- gated the different activities o f glass eels during their upstream migration. We collected glass eels below the waterfall (1.5 m high, 5 m wide) at the m outh o f the River Vogslækur, Iceland (6 4 ° 3 0 'N , 22° W), which is within the tide line from the Atlantic Ocean. When the water tem perature was between 6.9 and 11.8°C we captured glass eels only close to the substrate and we did not observe any eels swimming or crawling up the cliffs of the waterfall. At temper- atures between 13.0 and 17.6°C, we caught glass eels swimming near the surface o f the water or mailto:bjarni.jonsson@veidimal.is 190 climbing up the waterfall’s cliffs but did not cap- ture any near the substrate. These field observa- tions lead us to form ulate the hypothesis that increasing water tem peratures in the spring and summer were responsible for the upstream migra- tion o f the glass eels. We predicted that swimming behaviour would be initiated at a lower tempera- ture than would vertical climbing behaviour, once the initial threshold for activity was passed. Materials and methods W e tested our field-generated hypothesis that glass eels display dístinct behaviour patterns at different water tem peratures by observing glass eels under controlled conditions. We captured glass eels, Anguilla spp., for our experiments (total length 6.8 ± 0.03 cm; m eandtSE) below the aforemen- tioned waterfall between 30 June and 3 July 2000, during m orning and evening high tides. W ater tem peratures during capture ranged between 10 and 18°C. Iceland is the only location where both European eel, Anguilla anguilla (Linnaeus), and American eel, A. rostrata (LeSueur), and possibly their hybrids, with the are sympatric in freshwater. F rom m t D N A study, it is estimated that approxim ately 95% of the individuals entering the River Vogslækur are o f A. anguilla origin and 5% are A. rostrata type (Jónsson & Noakes 2001, Kawai 2001). We did not attem pt to differentiate between species in our study, as there was no indication of behavioural differences at this life stage. We held eels in 401 tanks in 18-20°C dechlorinated water for 2 - 3 weeks at the ínstitute o f Freshwater Fisheries at H ólar under the natural Icelandic summer photoperiod (24L: 0D). We changed holding water daily and did not feed eels until experiments were complete. There was no m ortality or m orbidity in the eels during holding or experimentation. We performed two laboratory experiments to assess the influence o f tem perature on the swim- ming and climbing activities o f glass eels. For all trials, we randomly selected 28 - 30 glass eels from the holding tank at approxim ately the same time each day and transferred them to a glass aquarium (46 x 31x35 cm) containing dechlorinated water o f the designated tem perature. Eels were accli- m ated for 30 min prior to experimentation, with the exception that an additional 40-min acclima- tion period at 7°C preceeding acclimation at 4°C. N o specimen was used for more than one trial. The sampling location was simulated by providing a running water stimulus and lining the bottom of the aquarium with a m onolayer o f flat stones. We recorded swimming activity at 4, 7, 12, 17, 22 and 25°C (± 0 .5 °C for each tem perature) for 1.75 h (Panasonic S-VHS video camera). A sub- mersible pum p drew water in at its base and dis- charged it above the water level in the aquarium at a rate of 5.3 1 m in“ ' to provide the running water stimulus. We made eight point counts of the num ber o f glass eels swimming above the substrate immediately following acclimation and every 15 min thereafter for 1.75 h by later viewing the video recordings. We enum erated swimming activity over 1.75 h, instead of the planned 2 h, because we extended the initial 15-min acclimation period to 30 min midway through the trials. We assessed climbing activity at 4, 7, 12, 14.5, 17, 19.5, 22 and 25°C (± 1.0°C for each tempera- ture) by enum erating the num ber o f eels that climbed an artificial waterfall over a 2-h period. We used intermediate tem peratures o f 14.5 and 19.5°C to investigate climbing activity between tem peratures where there were large differences in climbing counts. We placed a piece o f wood cov- ered with coarse net on a 35° angle at one end of the aquarium , serving as the waterfall. W ater flo- wed out o f a 1 cm diam eter hose from an upper holding tank at a rate of 8.2 1 min-1, creating the waterfall and a pool that spilled over and moist- ened the entire slope. A funnel-shaped net encompassed the pool, trapping the eels that sur- m ounted the waterfall. The water level in the aquarium was m aintained by an overfiow hose inserted into the side of the aquarium . Results and discussion The swimming activity o f the eels did not vary over the observation time (p < 0.001; d f= 7 ) (Friedm an 2-way ANOVA; Siegel 1964), therefore we calcu- lated the mean number o f eels that swam at each tem perature from the eight poínt counts. The threshold tem perature for swimming was between 4 and 7°C and the threshold tem perature for ver- tical movement over the waterfall was between 12 191 Table I. Mean number of swimming glass eels (Anguilla spp.) calculated from point counts made over 1.75 h and the number of glass eels that climbed over an artificial waterfall in a 2-h period at water temperatures between 4 and 25°C. Temperature (°C) Number of eels Mean swimming value (±SE) Climbing count 4 0 (0 ) 0 7 5.9 (0.8) 0 12 17(1) 0 14.5 n/a 5 17 15 (1) 19 19.5 n/a 19 22 1 0 ( 1) 27 25 9.6 (0.8) 22 n/a - not applicable; trial not performed at specified tempera- ture. and 14.5°C (Table 1). Swimming activity peaked at 12°C and climbing activity was highest a t 22°C (Table 1). The distribution o f the mean num ber of swimming eels at each tem perature was signifi- cantly different than the distribution of the count of eels that climbed the waterfall at each temper- ature common to the two experiments (p < 0.001, Kolm ogorov-Sm irnov two-sample test; Sie.gel 1964). The higher threshold and maximum tempera- tures for climbing activity relative to swimming activity, as well as the different distributions of the num ber o f swimming and climbing eels at the tem peratures com m on to both experiments, agree with the prediction from our field hypothesis that glass eels display distinct behaviour patterns at different water tem peratures. O ur findings have im portant implications, as natural and anthropo- genic vertical obstacles exist in m any watercourses. For example, the inland penetration of eels in northerly locations may be reduced com pared to southern locations where water tem peratures are warmer. Similarly, the timing o f movement into freshwater may be inversely related to latitude, as a result of lower tem peratures o f more northern streams. Thermal discharge into freshwater sys- tems, whether natural or anthropogenic, and cli- matic changes could also have signiíicant effects on the upstream m igration o f glass eels. In our study, the threshold tem peratures for the two types o f upstream movement, swimming and climbing behaviours were different, but largely in agreement with m igratory data we collected in the field. Studies elsewhere in the range o f these species have found that the threshold tem perature for swimming movement is between 12 and 19°C in A. rosíraía elvers (Sorensen & Bianchini 1986) and range from 14 to 16°C (White & Knights 1997), 10 to 12°C (Gascuel 1986) and 7°C (Tongiorgi et al. 1986) in A. anguilla glass eels, elvers and juveniles. Com parable studies to our climbing behaviour experiments are lacking. O ur results also illustrate that at tem peratures between 17 and 25°C glass eels exhibit both swim- ming and climbing behaviours. Therefore, it is probable that a t these tem peratures overall migra- tory activity will be highest. This finding corre- sponds to field reports that A. anguilla glass eel, elver and juvenile migration is highest when fresh- water tem peratures range from 13 to 17°C (Gan- dolfi et al. 1984), 18 to 20°C (W hite& K nights 1997) and 20 to 25°C (Ezzat & El-Serafy 1977). Our study represents the first laboratory exper- iments on the effects o f water tem perature on the different locom otor behaviour patterns that glass eels or elvers exhibit during their m igratory ascent. Understanding how the distinct m igratory behav- iour patterns o f glass eels are influenced by an im portant environmental variable such as water tem perature is key in our study o f the upstream movement o f eels. Acknowledgements We extend many thanks to M om oko Kawai, G udm undur Ingi Gudbrandsson, the folks at Brúarland, and H alldór O ttó A rinbjarnarson for their assistance in the field. The Icelandic Student Innovation Fund, the Icelandic Agricultural Pro- ductivity Fund, the Icelandic Governm ent, and an Operating G rant from N SERC C anada provided funding for this research. References Cited K. Aida, K. Tsukamoto, K. Yamauchi. 2003. Eel Biology. Springer, Tokyo. 497 pp. Barila. T.Y. & J.R. StaulTer. 1980. Temperature behavioural responses of the American eel. Anguilla rostrala (L.), from Maryland. Hydrobiologia 74: 49-51. 192 C h e n , Y .L . & H . C h e n . 1991. T e m p e ra tu re s e le c tio n o f A m u illa iaponica (L .) e lv e rs . a n d th e ir im p lic a tio n fo r m ig ra tio n . A u s t. J . M a r . F resh v v a te r R es . 42: 4 7 -5 9 . E z z a t. A . & S. E l-S e ra fy . 1977. T h e m ig ra t io n o f e lv e rs o f An- zu illa cmguiUa L . in th e M ex C a n a l, A le x a n d ra . E .gypt. J . F ish B io l. 11: 2 4 9 -2 5 6 . G a n d o lf i , G „ M . P e s a ro & P . T o n g io rg i. 1984. E n v iro n m e n ta l fa c to rs a ffe c tin g th e a sc e n t o f e lv e rs A nguilla anguilla (L .) , in to th e A rn o R iv e r. O e b a lia 10: 17 -3 5 . G a sc u e l. D . 1986. F lo w -c a rr ie d a n d a c tiv e sw im m in g m ig ra tio n o f th e g lass eel (A neuilla anguilla) in th e t id a l a r e a o f a sm all e s tu a rv o n th e F r e n c h A tla n t ic c o a s t . H e lg o la n d e r M eere - s u n te r s u c h u n g e n 40: 3 2 1 -3 2 6 . J ó n s s o n B. & D .L .G . N o a k e s . 2001 . Ic e la n d ic eels. p p . 3 3 - 3 5 . In ; K . T s u k a m o to , M . M ille r & A . A id a (ed s), A d v a n c e s in E el B io lo g y . T h e U n iv e rs i ty o f T o k y o . K a w a i, M „ 2001 . T h e re c ru i tm e n t m e c h a n is m o f Anguilla anguilla a n d A . rostra ta to Ic e la n d , M .S c . th e s is , U n iv e rs ity o f T o k y o . 58 p p . M a r t in . M .H . 1995. T h e e ffec ts o f te m p e ra tu re . r iv e r fiow , a n d t id a l cycles o n th e o n s e t o f g la ss eel a n d e lv e r m ig r a t io n in to fre sh w a te r in th e A m e ric a n eel. J . F ish B iol. 46: 8 9 1 -9 0 2 . S iegel. S. 1964. N o n p a ra m e t r ic S ta tis t ic s fo r th e L ife S ciences. M c G ra w -H ill , N e w Y o rk . 312 p p . S o re n s e n . P .W . & M .L . B ia n ch in i. 1986. E n v iro n m e n ta l c o r- re la te s o f th e f r e s h w a te r m ig r a t io n o f e lv e rs o f th e A m e ric a n eel in a R h o d e I s la n d b ro o k . T r a n s . A m . F is h . Soc. 115: 2 5 8 - 268. T o n g io rg i , P „ L . T o s i & M . B la sa m o . 1986. T h e rm a l p re fe r- en ces in u p s tre a m m ig r a t in g g la ss -e e ls A nguilla anguilla (L .). J . F is h B iol. 28: 5 0 1 -5 1 0 . T o s i, L „ A . S p a m p a n a to , C . S o la & P . T o n g io rg i . 1990. R e la - t io n o f w a te r o d o u r , s a l in ity a n d te m p e ra tu re to a sc e n t o f g la ss eels, A nguilla anguilla (L .): A la b o r a to r y s tu d y . J . F ish B ioi. 36: 3 2 7 -3 4 0 . W h ite , E .M . & B. K n igh ts . 1997. E n v iro n m e n ta l fa c to rs a f ie c tin g m ig ra t io n o f th e E u r o p e a n eel in th e R iv e rs S ev ern a n d A v o n , E n g la n d . J. F ish B io l. 50: 1 104-1116 . MOLECULAR ECOLOGY M o lecu la r E co logy (2014) 23, 2514-2528 do i: 10.1111/m ec .12753 Genome-wide single-generation signatures of local selection in the panmictic European eel J. M. PU IO LA R ,* M. W. JACO BSEN,* T. D. ALS , t j J. F R YD ENB ERG / K. MU N C H, § B. JÓ N SSO N ,! J. B. JIAN,** L. C H E N G , f f G. E. M A E S , J t § § L- BERNATCHEZW and M. M. HANSEN* *Department of Bioscience, Aarhus University, Ny Munkegade 114, Bldg. 1540, DK-S000 Aarhus C, Denmark, iNntional Institute of Aquatic Resources, Technical University of Denmark, Vejlsovej 39, DK-8600 Silkeborg, Denmark, %Department of Biomedicine-Human Genetics, Aarhus University, DK-8000 Aarhus C, Denmark, §Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus C, Denmark, ^Biopoi, Marine Biology and Biotechnology Center, Einbúastigur 2, IS545 Skagastrond, Iceland, **BGI-Shenzhen, Beishan Industrial Zone, Main Building, Yantian District, 518083 Shenzhen, China, f t BGI-Europe, Copenhagen Bio Science Park, Ole Maaloes Vej 3, DK-2200 Copenhagen, Denmark, %%Laboraton/ of Biodiversity and Evolutionany Genomics, University of Leuven (KU Leuven), Deberiotstraat 32, B-3000 Leiwen, Belgium, §§Centre for Sustainable Tropical Fisheries and Aquaculture, School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia, ^ IB IS (Institut de Biologie Intégrative et des Systémes), Université Laval, Québec City, QC, Canada GIV 0A6 Abstract Next-generation sequencing and the collection of genom e-wide data allow identifying adaptive variation and footprints of directional selection. Using a large SNP data set from 259 RAD-sequenced European eel individuals (glass eels) from eight locations betw een 34 and 64°N, w e examined the patterns of genom e-wide genetic diversity across locations. We tested for local selection by searching for increased population differentiation using FsT~t»ased outlier tests and by testing for significant associations betw een allele frequencies and environmental variables. The overall low genetic dif- ferentiation found (Fst = 0.0007) indicates that most of the genom e is hom ogenized by gene flow, providing further evidence for genomic panmixia in the European eel. The lack of genetic substructuring was consistent at both nuclear and mitochondrial SNPs. U sing an extensive number of diagnostic SNPs, results showed a low occurrence of hybrids betw een European and American eel, mainly lim ited to Iceland (5.9%), although individuals with signatures of introgression several generations back in time were found in mainland Europe. Despite panmixia, a sm all set of SNPs show ed high genetic differentiation consistent with single-generation signatures of spatially varying selection acting on glass eels. After screening 50 354 SNPs, a total of 754 potentially locally selected SNPs were identified. Candidate genes for local selection constituted a w ide array of functions, including calcium signalling, neuroactive ligand-receptor interaction and circadian rhythm. Remarkably, one of the candidate genes identified is PERIOD, possib ly related to differences in local photoperiod associated with the >30° difference in latitude between locations. Genes under selection were spread across the genom e, and there were no large regions of increased differentiation as expected when selection occurs w ithin just a single generation due to panmixia. This supports the conclusion that most of the genome is hom ogenized by gene flow that removes any effects of diversifying selection from each new generation. Keywords: anguilla, local adaptation, panmixia, spatially varying selection Received 20 January 2014; revision received 11 April 2014; accepted 11 April 2014 C o rre sp o n d en c e : Jose M . P u jo lar, Fax: +45 89422722; E-m aiI: jm a rtin @ b io lo g y .a u .d k © 2014 Jo h n W iley & S ons Ltd mailto:jmartin@biology.au.dk L OCAL SEL E CT IO N IN THE E U R O P E A N EEL 2515 Introduction Identifying which regions of the genome are under selection is essential for understanding the selective pressures acting upon natural populations and distin- guishing between neutral and adaptive genetic variation (Nielsen 2005; Stapley et nl. 2010; Radwan & Babik 2012; Bourret et al. 2013). Species that occupy heteroge- neous environments (i.e. temperature, salinity) along their geographical distribution experience spatially varying selective pressures, often resulting in local adaptation of ecologically important traits (Kawecki & Ebert 2004; Fraser et al. 2011). Beginning with Levene (1953), a number of studies have shown that balancing selection due to spatial heterogeneitv is an important mechanism responsible for the maintenance of genetic polymorphism (reviewed in Hedrick 2006). While poly- morphism in a varying environment may be maintained even when dispersal results in complete mixing of the gene pool, in such case localities will not differentiate genetically and there will be no local adaptation (Kawecki & Ebert 2004). Recent population genomic studies predict the observation of single points of selec- tion across the genome when gene flow is high, as loci subject to strong selection will tend to diverge indepen- dently from other genes, while highly differentiated genomic regions due to genome hitchhiking are expected with reduced gene flow (Feder & Nosil 2010; Yeaman & Otto 2011; Yeaman & Whitlock 2011; Feder et al. 2012). Genomic regions displaying increased dif- ferentiation referred to as genomic islands of divergence have been observed in many taxa from fungi (Ellison et al. 2011) and invertebrates (Nosil et al. 2008; Nadeau et al. 2012) to fishes (Hohenlohe et al. 2010; Jones et al. 2012a,b; Bradbury et al. 2013; Gagnaire et al. 2013; Hemmer-Hansen et al. 2013) and humans (Hoffer et al. 2012). An excellent opportunity to study the interplay between spatially varying selection and gene flow exists in the European eel (Anguilla anguilla), a putatively panmictic species occupying a broad range of habitats from subarctic environments in Iceland, Norwray and northwestern Russia to subtropical environments in North Africa and the Mediterranean Sea. The European eel is a facultative catadromous species with a complex life cycle, spawning in the remote Sargasso Sea and spending most of their life in continental (fresh, brack- ish and coastal) waters (Van den Thillart et al. 2009). After spawning, larvae are advected towards the coasts of Europe and North Africa, where they arrive follow- ing first the Gulf Stream and later the North Atlantic Drift Current. Upon reaching the continental shelf, larvae metamorphose into glass eels and move into con- tinental growth habitats, settle and become pigmented yellow eels. After a period of intense feeding of (on average) 7 years for males and 11 years for females, they metamorphose into partially mature silver eels that migrate back to the Sargasso Sea covering a distance of 5000-6000 km, spawn and die (Van den Thillart et al. 2009). In the Sargasso Sea, European eel spawns in partial spatial and temporal sympatry v\rith its sister species, the American eel Angiiilla rostrata, which provides opportunity to interbreed. European and American eels are known to hybridize, but hybrids have been reported almost exclusively in Iceland (Avise et al. 1990; Albert et al. 2006; Pujolar et al. 2014). Despite the broad geographical distribution of the species, the European eel is regarded as a textbook example of panmixia, with the existence of a single ran- domly mating population. In the most comprehensive study to date genotyping over 10 0 0 individuals at 2 1 microsatellite loci, AIs et al. (2011) showed a very low and nonsignificant genetic differentiation between geographical locations across Europe and a lack of substructuring among larvae collected in the Sargasso Sea, providing very strong support for panmixia. In American eel, the recent study of Cóté et al. (2013) genotyping over 2000 individuals representing 1 2 cohorts at 18 microsatellite loci over a large geographi- cal scale in North America showred a total lack of genetic differentiation among samples, hence providing decisive evidence for panmixia in American eel. In con- trast, significant geographical clines at some allozyme loci have been detected in both European (Maes & Volckaert 2002) and American eels (Koehn & Williams 1978). Moreover, Gagnaire et al. (2012a) found evidence for spatially varying selection at 13 of 73 candidate genes showing correlations between allele frequencies and environmental variables across the entire distribu- tion range of American eel, particularly determined by temperature regimes. In the case of eels, owing to the apparent panmixia and random larval dispersal across habitats, any signature of spatially varying selection in a given generation is expected to be lost in the subse- quent generation (Gagnaire et al. 2012a), hence prevent- ing heritable trans-generational local adaptation. This study aimed at investigating the influence of spatially varying selection on genetic diversity and potential adaptive divergence in European eel using a population genomics approach. The fact that most population genetic studies in eels have used neutral markers prompts for the investigation of the potential influence of natural selection on the genetic variation of the species. Our first goal was to validate the lack of background level of neutral differentiation between locations, and for that we used a RAD-sequencing approach (Baird et al. 2008; Hohenlohe et al. 2010; Davey et al. 2011) to © 2014 John Wiley & Sons Ltd 2516 J. M. P U JO L A R E T A L . T a b le 1 S a m p lin g d e ta ils in c lu d in g n u m b e r o f E u ro p ea n eel (g lass eels) in d iv id u a ls , g e o g rap h ica l co o rd in a te s , s a m p lin g d a te a n d sea -su rface te m p e ra tu re (°C) a t r iv e r m o u th av e rag e d acro ss th e 10, 30 a n d 90 d a y s p re c e d in g s a m p lin g d a te L o ca tio n C o d e N C o o rd in a te s S a m p lin g d a te T em p-10 d a y T em p-30 d a y T em p-90 d a y V o g slæ k u r , Ic e lan d ICE 34 6 4 °69 'N /22°33 'W 2 /7 /2 0 0 1 9.53 9.38 8.45 Ringhcils, S w ed en RH G 30 57 °21 'N /12°27 'E 1 5 /3 /2 0 0 8 4.76 4.77 4.19 L o u g h E m e, N o r th e m Ire la n d LG 33 5 4 °4 6 'N /7 °7 7 'W 1 /7 /2 0 0 8 13.93 13.81 13.85 B u rrish o o le , I re la n d BG 29 5 3 °9 0 'N /9 °5 8 'W 1 4 /3 /2 0 0 5 9.36 9.79 9.57 G iro n d e , F rance G G 37 44°86 'N / 0°42'W 1 6 /4 /2 0 0 8 11.55 11.78 11.26 C an e t, F rance C A G 32 4 2 °7 0 'N /3 °1 5 'E 2 3 /1 /2 0 0 8 12.73 12.61 13.24 V alenc ia , S p a in VG 31 3 9 °4 6 'N /0 °2 4 'W 1 5 /1 /2 0 1 0 14.06 14.16 15.05 O v e d S ebou , M orocco M O R 33 3 4 °2 6 'N /6 °7 0 'W 2 8 /4 /2 0 0 1 17.53 17.82 17.57 identify 453 062 SNPs from 259 individuals sampled from eight locations across the species range. As part of testing the panmixia hypothesis, we were interested in testing whether genetic differentiation was consistent at nuclear and mitochondrial loci. We were also interested in testing for the presence of hybrids across Europe to assess whether hybridization could have influenced results, using diagnostic SNPs between European and American eels. Our second goal was to contrast the outcome of neutral vs. adaptive differentiation in European eel. Using a subset of 50 354 SNPs with minor allele fre- quency >0.05, we tested for single-generation footprints of spatially varying selection with two main analytical approaches, one that identifies outliers as those markers with greater differentiation among all SNPs and a sec- ond based on determining positive associations between SNP frequencies and environmental variables. Follow- ing the positive associations observed by Gagnaire et al. (2012a) in American eel, variables used were degrees north latitude, degrees east/west longitude and sea-sur- face temperature at river moutlis, corresponding to the sampling locations. Candidate genes were functionally annotated to assess potential functions of genes under selection. We specifically wanted to test whether genes under selection were grouped into clusters/islands as observed in other species (Nosil et al. 2008; Hohenlohe et al. 2010; Jones et al. 2012a,b; Nadeau et al. 2012; Bradbury et al. 2013; Gagnaire et al. 2013; Hemmer-Hansen et al. 2013) or more spread across the genome as expected to occur within just a single generation under a panmixia scenario. M aterials and m ethods Sampling A total of 259 European eel (Anguilla anguilla) individu- als were collected for RAD sequencing at eight locations across the geographical distribution of the species, ranging from Iceland to Morocco (Table 1; Fig. 1). All samples were glass eels collected during January in the Mediterranean and March/April in the Atlantic, except samples from Iceland and Northern Ireland, which were collected in July. Genomic DNA was extracted using standard phenol-chloroform extraction. RAD tag sequencing, RAD data analysis and SNP identification Genomic DNA from each individual was digested with restriction enzyme EcoRl. RADs for all 259 European eel individuals were sequenced (10 individuals per lane) on an Illumina Genome Analyzer II by Beijing Genom- ics Institute (BGI, Hong Kong) using paired-end reads (for details see Pujolar et al. 2013). Sequence reads from the Illumina runs were sorted according to barcode tag. Sequences were quality-filtered © 2014 John Wiley & Sons Ltd LO CA L S ELE CT IO N IN THE E U R O P E A N EEL 2517 using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx- toolkit), and reads with ambiguous barcodes/poor qual- ity were removed from the analysis. Any read that presented a single nucleotide position with a Phred score lower than 10 was eliminated. This corresponds to the threshold generally used in SNP discovery stud- ies (Van Bers et al. 2010; Ellison et al. 2011; Scaglione et al. 2012; Wagner et al. 2012). Final read length was trimmed to 75 nucleotides to reduce sequencing errors present at the tail of the sequences (Pujolar et al. 2013). For SNP calling, only the fírst (left) paired read was used due to the lower coverage of the second paired- end reads (Etter et al. 2011). The un-gaped aligner b o w t ie version 0.12.8 (Lang- mead et al. 2009) was used to align sequence reads to the European eel genome draft (www.eelgenome.com), which consists of 179 Mbp of small contigs and 923 Mbp of larger contigs or scaffolds (Henkel et al. 2012). A maximum of two mismatches between the individual reads and the genome were allowed. Reads with altemative (two or more) alignments were excluded to avoid paralogous sequences. Reference-aligned reads were processed using the ref_map.pl pipeline in s t a c k s version 0.9995 (Catchen et al. 2013). First, exactly matching reads were aligned together into stacks and subsequently merged to form putative loci. A minimum stack depth of 10 reads was used. Subsequently, a maximum-likelihood framework was used to call SNPs, and a catalogue was built of all existing loci and alleles against which all individuals were matched. Finally, the program Populations in Stacks was used to process all the SNP data across individuals. Prior to the SNP analysis, loci in the catalogue were further filtered to remove paralogs and otherwise spuri- ous loci according to the following three criteria: (i) loci with higher-than-average number of reads were excluded, because an extremely high coverage might be an indication of the presence of more than one locus (twice the standard deviation from the mean number of reads was used as threshold); (ii) loci with more than two alleles were eliminated because those might result from sequencing errors; and (iii) loci deviating from Hardy-Weinberg equilibrium (HWE), tested using g e m e p o p version 4.2 (Raymond & Rousset 1995), were excluded after adjusting significance levels for multiple comparisons using the sequential Bonferroni technique (Rice 1989). As a final filtering step, minimum percent- age of individuals in a population required to process a locus was set to 66.67%. RAD analysis was also conducted separately for mitochondrial SNPs by aligning all reads against the European eel mitogenome (GenBank Accession no. NC_006531) in b o v v t ie . SNP analysis Genome-wide measures of genetic diversity, including nucleotide diversity (II) and observed (Hp) and expected (HJ heterozygosities, were calculated in Stacks (Table 2). Differences in genetic diversity among samples were tested by one-way a n o v a using s t a t i s t i c a version 6.0 (StatSoft Inc). Deviations from HWE, differ- ences in allele and genotype frequencies among samples, F-statistics for all samples and all sample pairs and iso- lation by distance (IBD) were tested using g e n e p o p (Ray- mond & Rousset 1995). In all cases, significance levels were corrected for multiple comparisons using the sequential Bonferroni technique (Rice 1989). Pairwise Fst values were used to conduct a multivariate ordina- tion by multidimensional scaling (MDS) analysis using s t a t i s t i c a . IBD was tested using Mantel test (Mantel 1967) by correlating linearized genetic distance (FST/ (1 —FST)) v s . geographical distance (shortest waterway distance in kilometre between sample pairs). All analy- ses were conducted considering (i) all nuclear DNA sequences and (ii) all mitochondrial sequences. Finally, we tested the presence of hybrid individuals in the data set using s t r u c t u r e v.2 .3 .4 (Pritchard et al. 2000). For this purpose, the analysis also included a sample of 30 RAD-sequenced American eel (yellow and glass eels) Anguilla rostrata individuals collected in Quebec, Nova Scotia and Florida (Pujolar et al. 2013). A preliminary analysis was conducted using 20 random European and American eel individuals to identify diagnostic species-specific SNPs fixed at different alleles in each species (FST = 1) following the same approach as in Pujolar et al. (2014). We identified a total of 2148 diagnostic SNPs between European and American eels that were used for hybrid identification in the data set. The analysis in s t r u c t u r e was performed using 1 < k < 9, with 10 replicates per k to check the consis- tency of results. We assumed an admixture model and uncorrelated allele frequencies, and we did not use population priors. A burn-in length of 100 000 steps fol- lowed by 1 million additional iterations was performed. The most likely k was determined using the criterion of Evanno et al. (2005). The presence and nature of hybrids was further tested using the Gensback setting in s t r u c t u r e . When using prior population information for individuals, the program tests whether each individual has an immigrant ancestor in the last G generations, where G = 0 corresponds to the individual being an immigrant itself. The analysis was performed with G = 5. Tests for local selection Evidence of local selection was tested by searching for increased population differentiation using FST-based © 2014 Jo h n W iley & S ons L td http://hannonlab.cshl.edu/fastx- http://www.eelgenome.com 2518 J. M . P U J O L A R E T AL . T a b le 2 D iv e rs ity in d ice s ac ro ss E u ro p e a n eel (g lass eels) sam p les c o n s id e rin g (i) n u c le a r D N A seq u e n c es a n d (ii) m ito c h o n d ria l seq u en c es L ocation N N u c lea r M ito c h o n d ria l tfo H c 4) H e O M N A T N A V o g slæ k u r, Tceland 34 0.036 (0.006) 0.040 (0.008) 0.041 (0.008) 0.056 (0.012) 0.057 (0.012) 1.34 55 R in g h a ls , S w e d en 30 0.039 (0.007) 0.041 (0.008) 0.042 (0.008) 0.056 (0.006) 0.057 (0.005) 1.54 63 L o u g h E rne, N o r th e m Ire la n d 33 0.033 (0.006) 0.038 (0.007) 0.039 (0.008) 0.064 (0.009) 0.065 (0.009) 1.51 62 B urrishoo le , I re la n d 29 0.036 (0.007) 0.039 (0.008) 0.040 (0.008) 0.050 (0.006) 0.051 (0.007) 1.44 59 G iro n d e , F ran ce 37 0.035 (0.006) 0.039 (0.007) 0.034 (0.008) 0.064 (0.007) 0.065 (0.008) 1.56 64 C an e t, F rance 32 0.036 (0.006) 0.039 (0.007) 0.040 (0.008) 0.068 (0.010) 0.070 (0.010) 1.46 60 V alencia , S p a in 31 0.035 (0.006) 0.039 (0.008) 0.034 (0.008) 0.069 (0.008) 0.070 (0.008) 1.46 60 O v ed S ebou , M orocco 33 0.036 (0.006) 0.040 (0.008) 0.041 (0.008) 0.067 (0.010) 0.068 (0.010) 1.59 65 H 0, o b se rv e d h e te ro z y g o sity ; H e, ex p ec te d h e te ro zy g o sity ; (t>, n u c le o tid e d iv e rs ity ; M N A , m e a n n u m b e r o f a lle les; T N A , to ta l n u m b e r o f a lle les. S ta n d a rd d e v ia tio n in p a re n th e se s . outlier analyses implemented in l o s i t a n (Antao et al. 2008) and b a y e s c a n (Foll & Gaggiotti 2008) and by test- ing for significant associations between allele frequen- cies and environmental variables using b a y e n v (Coop et al. 2010). Loci showing either significantly greater population differentiation or significant covariance with environmental variables relative to reference SNP distri- butions were considered candidates for being under local selection. In all three approaches, only SNPs with a minor allele frequency >0.05 were included in the analysis. The selection detection workbench l o s i t a n (http:// popgen.eu/soft/lositan/) uses a coalescent-based simu- lation approach to identify outliers based on the distri- butions of heterozygosity and FST (Beaumont & Nichols 1996). First, l o s i t a n was run using all SNPs to estimate the mean neutral FST as recommended by Antao et al. (2008). After the fírst run, the mean neutral Fst was recomputed by removing those SNPs outside the confidence interval to obtain a better approxima- tion of the mean neutral FST. This mean was then used to conduct a second and final run of l o s i t a n using all SNPs. An estimate of P-value was obtained for each SNP. We used a strict threshold of 0.995 and a false discovery rate of 0 .1 to minimize the number of false positives. Outlier SNPs were also detected using the Bayes- ian test of FoII & Gaggiotti (2008) implemented in b a y e s c a n (http:/ / cmpg.unibe.ch/software/bayescan/). The method is based on a logistic regression model that separates locus-specific effects of selection from popula- tion-specific effects of demography. Loci under selection are detected after comparing the posterior probabilities of a neutral model considering only population-specific Fst parameters and a model includmg selection via a locus-specific Fst component to describe the observed allele frequencies. Outlier analysis was conducted on the whole data set divided according to sampling loca- tion. b a y e s c a n runs were implemented using default values for all parameters, including a total of 100 000 iterations after an initial burn-in of 50 000 steps. A íj-value of 1 0 % was used. As an alternative to these FST-based outlier tests, we also searched for SNP-environment associations using b a y e n v (Coop et ál. 2010), which tests for covariance between candidate SNP allele frequencies and environ- ment variables that exceed the expected covariances under genetic drift. In the first step, the program is run to estimate the covariate matrix using an MCMC algo- rithm. In the second step, the program is run to esti- mate the Bayes Factors (BF) for the environmental variables of interest. A BF >3 was considered indicative of an allele frequency correlation with an environmental variable. Results were compared over five independent runs for consistency. Environmental variables used included degrees north latitude, degrees east/west longitude and sea-surface temperature at river mouth averaged across the 10 days, 30 days and 3 months preceding the sampling date. Temperature data were obtained from the IRI (Intemational Research Institute for Climate and Society) Climate Data Library (http:// iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/. OISST). Gene predictions for the European eel genome (http://www.zfgenom ics.org/sub/eel) were used to establish the genomic position of the candidate SNPs for local selection using a custom-made script. SNPs were considered to be located in a gene when included in complete coding sequences (CDS) and ex- onic and intronic regions. Functional annotation of © 2014 Jo h n W iley & Sons Ltd http://www.zfgenomics.org/sub/eel L O CA L SEL E CT IO N IN THE E U R O P E A N EEL 2519 these genes was obtained using the B la s t2 G o suite (Götz et nl. 2008), which conducts b l a s t similarity searches and maps Gene Ontology (GO) terms to the homologous sequences found. Only ontologies with E- value < 1 E-6 , annotation cLit-off >55 and a GO weight >5 were considered for annotation. A more systematic functional interpretation of the set of candidate genes was obtained using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway approach for higher- order functional annotation implemented in the Database for Annotation, Visualization and Integrated Discovery ( d a v i d ) web-server v6.7 (http://david.abcc. ncifcrf.gov). Zebrafish Danio rerio was used as refer- ence genome for annotation. Prior to the analysis in d a v i d , a local b l a s t was conducted for significant matches directly against zebrafish Ensembl proteins using b l a s t x . Zebrafish Ensembl Gene IDs were obtained from the corresponding Ensembl protein entries using the b i o m a r t data mining tool in the En- sembl website (http://www.ensembl.org/biomart/). Gene functional analysis in d a v i d was conducted defín- ing the zebrafish IDs corresponding to those genes including a locally selected SNP as 'Gene list' and the zebrafish IDs corresponding to all genes as 'Back- ground'. Standard settings of gene count = 2 and ease = 0 .1 were used. Finally, the pattenis of differentiation across genome regions were characterized to test whether genes putatively under selection were grouped into clusters (genomic islands of differentiation) or more scattered across the genome. We estimated the levels of genetic differentiation between populations by calculating aver- age F St for 50-kb genomic sliding windows. Altemative slidtng windows (10 0 and 200 kb) were also tested. ^st was calculated between the two most ecologically and geographically differing locations, Iceland and Morocco. Windows were restricted to the 30 longest scaffolds (903 936-2 025 234 bp) from the European eel draft genome. R esults RAD sequencing Sequencing of the RAD libraries generated an average of 9.59 million reads of 90 bp per individual. After trimming sequences to 75 bp and quality filtering, on average, 7.90 million (82.19%) reads per individual were retained. Mean quality score of the retained reads was 38.65, with a GC content of 41.1% (Table 3). An average of 69.96% of the quality-filtered reads aligned to the European eel draft genome and 4.46% of the reads were discarded due to altemative (two or more) alignments. Aligned reads were assembled into an average of 526 821 stacks and subsequently into a set of 335 343 loci (Table 3). A total of 118 016 (35.5%) reads per indi- vidual were discarded due to insufficient depth of cov- erage. Loci with a minimuni stack depth of 10 reads were retained to construct a catalogue of 527 504 loci, using a total of 80 individuals (10 individuals per loca- tion). Prior to SNP discovery, loci were further filtered to minimize errors in sequencing, alignment or assem- bly. First, 815 loci showing >57.35 reads (twice the stan- dard deviation from the mean number of reads, 19.16 ± 19.09) were discarded, as a lúgher-than-average number of reads suggest the presence of more than one locus. Second, 40 270 loci showing three alleles per indi- vidual were eliminated. Tlurd, 1749 loci not adjusting to Hardy-Weinberg proportions after Bonferroni correc- tion were also removed, representing either loci at which all individuals were heterozygotes or loci at which one single individual was homozygote for an allele not observed in the rest of the individuals. Finally, after a fíltering step selecting only loci geno- typed in >66.7% of individuals in all sampling locations, a total of 72 932 loci were retained for SNP discovery. Using the program Population in Stacks, a total of 453 062 SNPs were discovered. After aligning against T a b le 3 S ta tis tics d e sc rib in g th e d is tr ib u tio n o f d iffe re n t p ro p e r tie s o f RA D seq u en ces a f te r each s te p o f filte r in g (FASTX -Toolkit), a lig n m e n t to th e eel d ra f t g e n o m e (b o v v tie ) a n d a ssem b ly in to loci (R ef_m ap .p l) FASTX R aw re a d s 9593701 F ilte red re a d s 7S99505 % E lim in a ted 17.81 M ean Q 38.65 Q i 37.97 M ed Q3 39.40 40.22 % A %C 29.5 20.7 %G %T 20.4 29.3 BO W TIE R eads 7899505 A lig n e d 5527660 % A lig n ed 69.96 N o n a lig n ed 2018833 % N o n a lig n e d 25.59 D isca rd ed 353042 % D isca rd ed 4.46 R EF_M A P R ead s 5527660 Stacks 526821 Loci 335343 Loci u s e d 217326 % Loci u s e d Loci d is c a rd e d 64.50 118016 % Loci d is c a rd e d 35.50 © 2014 Jo h n W iley & S ons L td http://david.abcc http://www.ensembl.org/biomart/ 2520 J. M. P U JO L A R ET AL . the European eel mitogenome, a total of 11 loci and 41 SNPs were identified as mitochondrial. Genetic diversity and differentiation Measures of genetic variability across locations consid- ering all identified SNPs are summarized in Table 2. No differences in values of observed heterozygosity (H0 = 0.038-0.039), expected heterozygosity (He = 0.038- 0.041) and nucleotide diversity (II = 0.034—0.042) were found across locations (P > 0.05 in all comparisons). No differences were observed when H0, He and n were calculated using all (fixed and variable) positions. Simi- larly, genetic diversity was similar across locations (He = 0.056-0.069; II = 0.051-0.070) when considering only mitochondrial RADs (41 SNPs at 11 loci). When investigating the genetic structure among loca- tions, all pairwise Fst comparisons were not significant (P > 0.05), with an average pairwise Fst value of 0.0007. Comparison of allele frequencies across locatíons showed highly significant differences at only 26 of 453 062 SNPs after Bonferroni correction for multiple testing. An MDS plotting the first and second coordi- nates obtained from pain\dse genetic distances showed all samples clustering togetlier fitting no apparent geo- graphical pattem (Fig. Sla, Supporting infonnation). A Mantel test showed no correlation between genetic and waterway distances (r = —0.232; P = 0.250), which suggests no IBD pattem (Fig. 2a). When considering only mitochondrial markers (41 SNPs), genetic differentiation was low (FST = 0.0002), and no significant differences were found when com- paring allele frequencies across locations after Bonfer- roni correction. Flowever, pairwise FST values were significant at five of 28 comparisons, all involving Iceland. Concordantly, Iceland was the most distant sample in the MDS analysis (Fig. Slb, Supporting infor- mation) and also contributed to the observed positive but nonsignificant pattern of IBD (r = 0.311; P = 0.107; Fig. 2b). Using 2148 species-diagnostic nuclear SNPs with an Fst value of 1 between the two species, s t r u c t u r e was used to investigate the possible presence of admixed individuals in the data set. A scenario with two groups (K = 2) corresponding to the two species was inferred to be the most likely (Fig. 3). Occurrence of hybrids was low, with a total of three admixed mdividuals found within European eel: one from Gironde with an admixture proportion of 0.053 (0.037-0.070) and two from Iceland with admixture proportions of 0.190 (0.176-0.218) and 0.192 (0.176-0.217), respectively. Addi- tionally, three individuals (two from Canet and one from Ringhals) presented an admixture proportion of 0.03. Within American eel, one single admixed individ- (a) w Multi-/?-squared = 0.05487; F = 1.509 ; df = 26; P = 0.250 Distance(km) (b) Multi-R-squared = 0.09678; F = 2.786 ; df = 26; P = 0.107 Distance(km) Fig. 2 M an te l te st c o rre la tin g p a irw is e lin e a riz ed g enetic d is- tances ( F s r / ( l - F s T)) vs. g e o g ra p h ic a l d is ta n ce s (sh o rte s t w a te r- w a y d is ta n c e in k ilo m e tre ) b e tw e e n a ll g la ss eel s a m p lin g lo ca tio n s co n s id e rin g (a) a ll RA D seq u en c es a n d (b) m ito c h o n - d r ia l R A D seq u en c es on ly . ual was found, with an admixture proportion of 0.056 (0.041-0.073). Using the Gensback setting in s t r u c t u r e , the two admixed individuals from Iceland were classi- fied as first-generation backcrosses, while the admixed individual from Gironde was classified as a third-gener- ation backcross, same as the admixed American eel individual. Finally, all individuals were identified as European or American eel on the basis of the mitochondrial RADs (Fig. 3). Five of 41 SNPs were diagnostic, that is, fíxed at different alleles. All European eels plus the three hybrids from Iceland and Gironde showed the European eel-diagnostic mitochondrial alleles, except one individ- © 2014 John Wiley & Sons Ltd LOCA L S EL E CT IO N IN THE E U R O P E A N EEL 2521 AR VG GG AA BG CAG LG RHG ICE MOR Fig. 3 A d m ix tu re a n a ly s is u s in g s t r u c t u r e . (a) In d iv id u a ls w e re a ss ig n e d on th e b a s is o f th e m o s t like ly K (in th is case, K = 2). Each v e rtic a l lin e re p re s e n ts o n e in d iv id u a l, p a r titio n e d in to seg m e n ts a cco rd in g to a d m ix tu re p ro p o r tio n o f E u ro p e a n eel (AA; g reen ) a n d A m e rican eel (AR; re d ). L o ca tio n s a re lab e lled as in T ab le 1. (b) Id en tif íca tio n o f all in d iv id u a ls a s E u ro p e a n o r A m e ric a n ee l o n th e b a sis o f th e m ito c h o n d r ia l R A D s is a lso in c lu d e d (b o tto m pan el). ual from Lough Erne identified as pure European eel on the basis of all nuclear loci presenting the five Amer- ican eel-diagnostic mitochondrial alleles. All American eels plus the admixed American eel individual showed the American eel-diagnostic mitochondrial alleles, except one individual identified as pure American eel on the basis of all nuclear loci that presented the five European eel-diagnostic mitochondrial alleles. Local selection In all tests for local selection, a total of 50 354 SNPs with a minor allele frequency >0.05 were included in the analysis. Using l o s i t a n , a total of 670 SNPs repre- senting 639 unique loci were identified as outliers possi- bly under directional selection, after applying a signifícance level of 0.995. A smaller number of outlier loci were identified using b a y e s c a n : 33 SNPs represent- ing 30 unique loci, all of which were part of the outliers identified using l o s i t a n . A s expected when considering that both l o s i t a n and b a 'í'E S C an are f ST-based methods, all outhers showed high Fst values (0.04-0.12) compared with the background FST. Bayesian tests for SNP-environment associations in b a y e n v identifíed a total of 87 candidate SNPs repre- senting 74 unique loci: 12 SNPs representing 12 unique loci associated with latitude, 29 SNPs representing 28 unique Ioci associated with longitude and 51 SNPs representing 49 unique loci associated with tempera- ture, with a few SNPs being correlated with more than one variable. Highly similar results were obtained when using the three temperature data sets (last 10 days, last 30 days and last 90 days prior to sam- pling), with only eight nonshared candidate SNPs across data sets. Collectively, a total of 754 potentially locally selected SNPs were identified, only three of which were com- mon to both FST-based and SNP-environment associa- tion approaches. These three SNPs showed both strong SNP-environmental correlations ( b a y e n v ) and increased Fst relative to the reference-based threshold ( l o s i t a n and b a y e s c a n ) . By contrast, 84 candidate loci exceeded the reference-based significance threshold solely for the b a y e n v test of environmental association, without being significant outliers in FST. When genomic position of the locally selected SNPs was investigated, a hit with a gene was obtained for 39.8% of the SNPs. Thus, no hits were obtained for 60.2% of the SNPs, although 10.2% were located in upstream (5000 bp) regions of the genes. Most hits represented intronic regions (86.9%), with CDS and exons representing only 7.8% and 5.3% of the hits, respectively. Among hits, 255 (65.4%) were associated with one or more among 1476 unique GO terms, for a total of 2628 term occurrences. Subsequently, the KEGG pathway approach for higher-order functional annotation was implemented using the tool d a \ t d . Using zebrafish as reference genome, a total of 335 zebrafish genes homol- ogous to European eel were mapped to KEGG path- ways. Enriched KEGG pathways using a standard setting of gene count = 2 are summarized in Table 4. The pathway with the highest number of genes was neuroactive ligand-receptor interaction (eight genes), including several genes implicated in behaviour such as dopamine receptor, glutamate receptor subunit AMPA3 and alpha-lD adrenoreceptor. Other pathways of partic- ular interest were calcium signalling pathway (six genes) and circadian rhythm (two genes), including PERIOD. Finally, average FST values calculated using a 50-kb sliding window were plotted for the 30 longest scaf- folds (Fig. 4). Fst was low throughout the scaffolds, with just a few narrow peaks. No regions of the scaffolds with pronounced divergence peaks were observed, consistent with panmixia removing any effect of diversifying selection from each new generation. Similar results were obtained when using altemative (10 0 and 200 kb) sliding windows. D iscu ssion Further evidence for genomic panmixia This study represents the first high-density SNP-based genome scan of genetic diversity and differentiation in (© 2014 Jo h n W iley & S ons L td 2522 J. M. P U JO L A R E T A L . Table 4 K EG G pathways and genes identified using the Fst outlier approach implemented in lositan/bayescan and by testing for associations with environmental variables in bayenv KEGG p a th w a y G en e A p p ro a c h C alc iu m s ig n a liin g p a th w a y A T P ase , C a++ tra n sp o rtin g , ca rd iac m u sc le , s lo w tw itch 2a Fst o u tlie r C a lc iu m ch an n e l, v o lta g e -d e p en d e n t, L type , a lp h a 1S s u b u n it F s t o u tlie r C a lc iu m ch an n e l, v o lta g e -d e p en d e n t, L ty p e , a lp h a 1S s u b u n it, a FST o u tlie r S im ila r to N -m e th y 1-D-aspartate re c ep to r c h an n e l s u b u n it ep s ilo n 1 Fst o u tlie r S im ila r to N e u ro m e d in -K re c e p to r (NKR) F g r o u tlie r S im ila r to a lp h a - lD a d re n o re ce p to r Fst o u tlie r N e u ro a c tiv e l ig a n d - re c e p to r D o p a m in e re c ep to r D1 Fst o u tlie r in te ra c tio n G a m m a -a m in o b u ty ric acid (GABA) A re c ep to r , a lp h a 1 Fst o u tlie r G lu ta m a te re c ep to r, io n o tro p ic , A M P A 4b; g lu ta m a te recep to r, io n o tro p ic , A M P A 4a; g lu ta m a te re c ep to r, io n o tro p ic , A M P A 2a; g lu ta m a te recep to r, io n o tro p ic , A M P A lb ; g lu ta m a te recep to r, io n o tro p ic , A M P A la ; s im ila r to g lu ta m a te re cep to r, io n o tro p ic , A M P A 4; g lu ta m a te re c ep to r, io n o tro p ic , A M P A 3b; g lu ta m a te re c ep to r, io n o tro p ic , A M P A 3a Fst o u tlie r P y rim id in e rg ic re c e p to r P2Y, G -p ro tem co u p le d , 4-like Fst o u tlie r S im ila r to a d e n o s in e A1 re c ep to r Fst o u tlie r Focal a d h e s io n In teg rin , a lp h a 5 F s t o u tlie r P h o s p h a ta s e a n d te n sin h o m o lo g B BAYENV T alin 1 Fst o u tlie r V -crk sa rco m a v iru s CT10 o n co g en e h o m o lo g (av ian )-like Fst o u tlie r V -raf m u r in e sa rco m a v ira l o n co g en e h o m o lo g B1 F s t o u tlie r C a lp a in 2, (m /II ) la rg e s u b u n it, like Fst o u tlie r W n t s ig n a llin g C -te rm in a l b in d in g p ro te in 2 Fst o u tlie r M A D h o m o lo g 2 (D rosoph ila ) F g - f o u tlie r S ec re ted fr iz z led -re la ted p ro te in 1 F s t o u tlie r W in g le ss -ty p e M M T V in te g ra tio n s ite fam ily , m e m b e r 7b F g r o u tlie r W in g le ss -ty p e M M T V in te g ra tio n s ite fam ily , m e m b e r 8b F s t o u tlie r M u c in - ty p e O -g ly c an b io sy n th e s is U D P -N -ace ty l-a lpha-D -galactosam ine: p o ly p e p tid e N - a ce ty lg a lac to sam in y ltran sfe ra se 7 BAY EN V W D re p e a t d o m a in 51B, like BAYENV C irc a d ian rh y th m P e rio d c irca d ian p ro te in h o m o lo g 2 BAYENV P erio d c ircad ian p ro te in hom olog -Iike 2 Fst o u tlie r K EG G , K yo to E n c y c lo p e d ia o f G en es a n d G enom es. the European eel. AIl analyses of genetic diversity, genetic differentiation and isolation by distance are con- sistent with the interpretation of genomic panmixia that European eels sampled along the coasts of Europe and northem Africa belong to a single spatially homogenous population. The low levels of genetic differentiation in our study, revealed by both nuclear (FST = 0.0007) and mitochondrial loci (FST = 0.0002), are concordant with the recent study of Als et al. (2011), the most extensive study to date in terms of spatial sampling, which showed nonsignificant genetic differentiation among samples using 21 microsatellite loci, with an FST value of 0.00076 among larvae in the Sargasso Sea and 0.00024 among glass eels samples across Europe. Very low mean FST values have also been reported in all other studies on European eel that included large num- bers of sampling sites and individuals (e.g. Wirth & Bernatchez 2001: FST = 0.0017; Dannewitz et aí. 2005: Tst = 0.0014; Maes et al. 2006: FST = 0.0099), the only © 2014 John Wiley & Sons Ltd exception being a recent study showing a microsatellite Fst value of 0.02 (this about 10 times more than reported in other studies) and a mitochondrial FST of 0.11 (Baltazar-Soares et al. 2014). Random matmg and larval dispersal may lead to the lack of spabal structure found in European eel despite its broad geographical distribution from Iceland to Morocco. While congregating at a single dominant spawning site could lead to panmixia, the vastness (c. 3 x 106 km2) and heterogenous hydrographic struc- ture of the Sargasso Sea plus changes in oceanographic conditions caused by ocean-atmospheric regime shifts may affect the location of spawning areas by silver eels (Friedland et al. 2007). Based on the occurrence of eel larvae, it has been proposed that particular thermal fronts within the subtropical convergence zone charac- terized by steep temperature and salinity gradients are used by eels to locate spawning areas and facih- tate mating (McCIeave 1993; Munk et al. 2010). LOCA L S EL E CT IO N IN THE E U R O P E A N EEL 2523 scaffoldl scaffold11 scaffold14 scaffold141 scaffold142 scaffold178 Ö.Ö15 - 0.010 - , aooo-i'Ayv^ ^ J 'S /'V -0.005 - -0 .0 1 0 - u j V A f r w A v ' V \ scaffold196 scaffold2 scaffold21 scaffold24 scaffold254 scaffold27 0.015 - 0.010 - . 0.005 - V A 0.000 - \ -0.005 - -0.010 - iAAâ / ' scaffold3 scaffold30 scaffold31 scaffold34 scaffold36 scaffold4 0.015 - 0.010 - S 0.005 - / \ 0.000 - \ J -0 .005 - -0.010 - V V ^ / V A a, scaffold46 scaffold5 scaffold54 scaffoldð scaffold63 scaffold68 0.010 0.005 0.000 -0.005 -0.010 ■ 0.015 • 0.010 ■ 0.005 ■ 0.000 • -0.005 ■ -0.010 • scatfold7 scaffol 'V 'A u ^ v \ scaffold84 scaffold90 ■ i i i i i i i 500 1000 1500 2000 500 1C00 1500 2000 lots of average FSt calculated using a 50-kb i i i i i i i i i i i i i i i i 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 bp (x1000) s lid in g w in d o w fo r th e 30 lo n g est sca ffo ld s in th e E u ro p ea n eel g en o m e. Hydrographic profíling studies show that the position and strength of the thermal fronts are highly variable and unstable (Munk et al. 2010), which suggests no pos- sibilities of philopatry of adults to the original birth- place within the Sargasso Sea and hence random mixing of individuals. In regard to larval dispersal, despite circulation patterns and oceanic currents in the Atlantic Ocean bemg complex, it is well established that European eel larvae are advected towards Europe fol- lowing the Gulf Current and the North Atlantic Current (Lecomte-Finiger 1994). An alternative shorter transat- lantic journey following the Subtropical Counter Cur- rent towards the Azores and Europe has been proposed for southern European eels (Munk et al. 2010) that would explain the observed highly significant heteroge- neity in size and condition between Mediterranean and North European glass eels (Pujolar et al. 2007), with Mediterranean samples showing smaller size and condi- tion. A shorter transatlantic migration route for Medi- terranean larvae was also indicated in the modelling study of Kettle & Haines (2006). The putative existence of different larval migratory routes contrasts with the lack of spatial genetic structure in our study, in which European eel samples were compared with the largest number of markers to date. In accordance with Als et al. (2 0 1 1 ), this seems to indicate that larval migration is random and that any segregation of individuals that might occur in the Sargasso Sea (either spatial or tem- poral) is not reinforced by larval homing to the parental original freshwater habitat. Low occurrence of hybrids irt Europe Our study identified a total of 214S SNP markers that were diagnostic betw'een European and American eels (F s t = 1 a s they were fixed for different alleles), which were used for hybrid identification. Admixture analysis showed a low level of hybridization, with three hybrids among European glass eels (two in Iceland and one in Gironde) and one single hybrid among American eels. We observed a hybrid occurrence of 5.9% in Iceland that fits the values found in previous studies, ranging from 2^4% to 15.5% (Avise et al. 1990; Albert et al. 2006; Pujolar et al. 2014). By comparison, four out of 225 (1 .8 %) individuals were identified as hybrids in main- land Europe, one individual with a 0.05 admixture pro- portion and three individuals with a 0.03 admixture proportion. The low occurrence of hybrids in mainland Europe is in agreement with the recent study of Als et al. (2011) that identified 0.2% of hybrids (one in Ire- land and one in Belgium) using 21 microsatellites. Col- lectively, our data corroborate previous findings that a moderate percentage of Icelandic eels have American eel ancestry, showing that a much lower percentage of eels in mainland Europe is of admixed origin. The low occurrence of hybrids in mainland Europe also suggests strong natural selection against hybrids. As a consequence of reduced hybrid viability and/or fertility, hybridizing individuals usually experience several costs that result in selection against heterospeci- fic pairing (i.e. development instability; Coyne & Orr © 2014 Jo h n W iley & S ons Ltd 2524 J. M. P U JO L A R ET AL . 2004). Recently, Gagnaire et al. (2012b) identified a pos- sible cytonuclear incompatibility between North Atlan- tic eels after showing that positive selection has operated on both the mitochondrial atpó gene and its nuclear interactor atp5cl. However, our data show that individuals presenting the nuclear genome of one spe- cies and the mitogenome of the other species are viable. One individual from Lough Erne (Northem Ireland) presented a pure European nuclear genome, but an American mitogenome. The reverse pattern was also observed, and European eel mtDNA was found in an individual with a pure American nuclear genome. This suggests that, albeit rare and sporadic, hybridization over several generations is possible and can occur in both directions. Single-generation signatures of selection Considering the high historical effective population size estimated for the European eel (from 100 000 to 1 x 106 individuals; Pujolar et al. 2013), random drift is expected to be negligible, while natural selection (together with gene flow) would be the major force determining allele frequency differences, in a patteni that is expected to vary from locus to locus. Effectively, the great majority of SNPs in our study showed no appreciable differences in allele frequencies among sampling locations, whereas a small set of SNPs showed significantly high genetic differentiation, consistent with the action of natural selection. The low levels of baseline differentiation ( F S t of 0.0007) found in the European eel with no highly differ- entiated genome regions except a few narrow peaks suggest that most of the genome is homogenized by gene flow. When gene flow is high, strong divergence selection acting directly on individual target genes that diverge independently from other genes is expected (i.e. direct selection with no hitchhiking), while genomic islands of divergence due to genome hitchhiking are expected in the case of reduced gene flow (Feder et al. 2012). The observation of single points of selection rather than regions (islands) under selection in our study is in agreement with panmixia in the European eel. After screening over 50 000 SNPs with a minor allele frequency >0.05, we identified several candidate genes possibly undergoing divergent selection associated with the highly variable environmental conditions used by the European eel along its geographical range. Our results are in accordance with the study of Gagnaire et al. (2012a) in American eel, which showed significant correlations between allele frequencies at 13 loci and the same variables used in our study (temperature, latitude and longitude). We found large variation betw'een the approaches used (Fst outlier vs. environment association methods), and few7 SNPs were identified as targets of local selec- tion by both methods. This is in agreement with recent studies in which genes that showed positive SNP-envi- ronment associations were not outliers in analyses of population structure (Hancock et al. 2010; Ma et al. 2010; Keller et al. 2012), which suggests that the SNP- environment association approach is more sensitive to subtle/gradual shifts in allele frequencies and may be complementary (rather than concordant) to FST-based outlier methods when testing for selection (Coop et al. 2010). Nevertheless, some of the putative targets of local selection in our study showed both high FST and SNP- environment associations, including genes in two important pathways, calcium signalling and circadian rhythm. Calcium serves a number of functions in fish and controls processes as diverse as fertilization, develop- ment, learning and memory, mitochondrial function, muscle contraction and secretion (Berridge et al. 2000). It is also recognized as very important in ion exchange and osmoregulation. Spatially varying selection in regard to osmoregulation seems plausible in the Euro- pean eel, because the species is facultatively catadro- mous and can occupy either freshwater or salt water (i.e. marine and brackish) habitats (Daverat et al. 2006). Within the circadian rhythm pathway, the gene that showed the strongest and most consistent evidence for local selection across all analyses was the central circa- dian gene PERIOD (per), showing both a highly increased population differentiation in the outlier FST approach and a strong pattern of covariance wdth two environmental variables, temperature and latitude (allele frequencies ranged from 0.12 in Ringhals to 0.02 in the Mediterranean locations and Morocco). Many organisms exhibit circadian rhythms based on 24-h intervals regulated by endogenous biochemical oscillators or clocks that enable organisms to organize physiological and behavioural processes to occur at bio- logically advantageous times in a day (Hastings et al. 1991). Changing photoperiod lengths can also be an important environmental cue controlling seasonal activi- ties. Clocks can be synclironized with environmental factors, most notably changes in temperature and light intensity, which is consistent with the statistical associa- tion in our study between PERIOD allele frequencies and temperature and Iatitude. PERIOD could be under local selection, in this case related to differences in local photoperiod associated with the >30° difference in lati- tude between the geographically most extreme locations (Iceland vs. Morocco). The remaining genes showed high FST but no SNP- environment associations, including many genes associated © 2014 Jo h n W iley & S ons Ltd LOCAL S EL E CT IO N IN THE E U R O P E A N EEL 2525 with behaviour, namely dopamine receptor DRDl, glu- tamate receptor subunit AMPA3 and alpha-lD adreno- receptor. Dopamine and glutamate are neurotransmitters mediating a wide range of actions, including stress and aggressiveness and also locomotion and exploring behaviour. Social behaviour related to aggressiveness (agonistic behaviour) could be important for food acces- sibility and size-related sex determination in eels. Alpha-ID adrenoreceptors are also involved in a variety of stimulus-induced changes in locomotor behaviours. It should be noted that due to the methodological approach used (i.e. RAD sequencing), SNPs under selection could be underestimated because only a por- tion of the restriction fragments will be located in actual gene-coding regions. Impossibility of local adaptation High gene flow associated with the particular life his- tory characteristics of eels prevents heritable trans-gen- erational local adaptation. Genomic panmixia suggests that larval dispersal is random and there is no larval homing to the parental original freshwater habitat. As a consequence, the offspring of surviving individuals experiencing specific local conditions (e.g. high tempera- ture) have no chance to retum to the parental habitat in which the phenotype was originally advantageous and selected for. Despite evidence for single-generation foot- prints of spatially varying selection, local adaptation is impossible in the case of eels and locally adapted SNPs in a given generation may not be favoured by selection in the next generation. In fish, a similar scenario in which strong selection occurs in every generation was suggested for lagoon populations of the European sea bass Dicentrnrchus labrax (Lemaire et al. 2000). As spawn- ing only occurs at sea, any adaptation to the lagoon environment is Iost as surviving young adults migrate from the lagoons to the open sea to mate with individu- als from marine populations. Spatially and temporally varying selection has also been reported previously in several marine invertebrates, including blue mussel (Mytilus edulis) (Koehn et al. 1976) and acorn bamacle (Semibalanus balanoides) (Véliz et al. 2004). The resilience of a species depends on its vulnerabil- ity in the face of environmental changes, which can lead to either genetic (local adaptation) or plastic (pheno- typic plasticity) responses (Hoffmann & Willi 2008). Heritable local adaptation can allow species to cope with environmental variability. This has been shown in the mummichog Fundulus heteroclitus, in which local populations have evolved pollution tolerance allowing them to survive concentrations of contaminants that are lethal to populations from clean environments, in a response that is not plastic but adaptive and heritable (Nacci et al. 2010; Whitehead et al. 2011). Gagnaire et al. (2012a) argued that locally selected polymorphisms are not easily maintained by spatially varying selection in the panmictic American eel and that under such condi- tions phenotypic plasticity provides a more functionally adaptive response to spatial environmental variation. As such, high phenotypic plasticity could explain the presence of eels in extremely heterogenous environ- ments across Europe in terms of salinity, temperature, substrate, depth or productivity, as well as the large variance observed in life history traits such as age at maturity or growth rate. C onciusions Analysis of hundreds of thousands of SNPs provides compelling support for the notion that European eel is a panmictic species. Panmixia at the genomic level agrees with previous genetic studies using neutral markers (microsatellites and AFLP) and is also concor- dant with the hybrid ecological-genetic model of And- rello et al. (2011). Mitochondrial SNPs in our study also showed no differentiation (41 SNPs: Fsx = 0.0002), which contrasts with the significant differences recently reported by Baltazar-Soares et al. (2014), with a mito- chondrial Fsx of 0.11. Reasons for such a high discrep- ancy betvv'een studies are unclear; they might be related to differences in sample sizes, but this clearly deserves further investigation. The results also demonstrate that the occurrence of hybrids between European and American eel is rare outside Iceland. Nevertheless, the extensive number of SNPs allows for tracking hybridization several genera- tions back in time and indicates the presence of intro- gressed individuals that may contribute to genuine gene flow between the species. Despite panmixia, some genes are identified that are candidates for being under local selection within generations. By considering their functions and the ecological and geographical diversity covered by the sampled sites, it is also biologically plausible that they are indeed under selection. Although phenotypic plasticity undoubtedly plays a major role in the persistence of eels in a range of highly variable environments, the present study and the related study by Gagnaire et al. (2012a) of American eel draw attention to the importance of spatially and tem- porally varying selection in high gene flow organisms, among which European and American eel represent extreme cases. Future work directions include testing whether the same genes are under spatially varying selection in glass eels and yellow/silver eels or whether the response involves a different set of genes. The latter option seems plausible considering the different selec- tive pressures that affect eels in early vs. late life stages. © 2014 John W ile y & Sons Ltd 2526 J. M. P U JO L A R E T AL . A ck n ow led gem en ts W e th a n k R usse ll Poo le , Jav ie r L o b ó n -C erv ia , E ric F e u n te u n , F rango ise D a v e ra t a n d H á k a n W ick strö m fo r p ro v id in g sam - p les; A n n ie B ra n d s tru p fo r te c h n ica l a ss is tan ce ; M ichae l G lad fo r m a in ta in in g c o m p u te rs ; M aien e G re li U lrik fo r h e lp in o b ta in in g te m p e ra tu re d a ta ; a n d V irg in ia S e ttep an i a n d A nne- L a u re F e rch au d fo r h e lp in p re p a r in g th e figu res. W e a ck n o w l- ed g e fu n d in g fro m th e D a n ish C o u n c il fo r In d e p e n d e n t R esearch , N a tu ra l Sciences (G ran t 09-072120 to M M H ). R eferences A lb e rt V, Jó n sso n B, B ern a tch ez L (2006) N a tu ra l h v b rid s in A tlan tic eels (A nguilla anguiUn, A . rostrata): ev id en ce fo r suc- cess fu i re p ro d u c tio n a n d f lu c tu a tin g a b u n d a n c e in sp ace a n d tim e. M oh’cular Ecologt/, 15, 1903-1916. A ls TD , H a n se n M M , M aes G E et al. (2011) All ro a d s lead to h om e: p a n m ix ia o f E u ro p e a n eel in th e S a rg asso Sea. M olecit- lar Ecology, 20, 1333-1346. A n d re llo M , B ev acq u a D, M aes G E, D e Leo G A (2011) A n in te - g ra te d g e n e tic -d e m o g rap h ic m o d e l to u n ra v e l th e o rig in a n d g en etic s tru c tu re in E u ro p ea n eel (Anguilla auguilla). E~ooln- tionan/ Applications, 4, 517-533. A n ta o T, L o p es A , L o p es RJ, B eja-P ereira A, L u ik a rt G (2008) LO S IT A N - a w o rk b e n c h to d e te c t m o le c u la r a d a p ta tio n b a se d on a FST -ou tIier m e th o d . B M C Bioinformatics, 9, 323. A v ise JC, N e lso n W S, A m o ld J, K oehn RJ, W illiam s G C , T io r - s te in sso n V (1990) T h e e v o lu tio n a ry s ta tu s o f Ic e lan d eels. E volution, 44, 1254-1262. B aird N A , E tte r PD , A tw o o d TS, et al. (2008) R ap id S N P d is- c o v ery a n d g e n e tic m a p p in g u s in g s e q u e n c ed R A D m a rk e rs . PLoS O N E , 3, e3376. B altazar-S oares M , B iastoch A , H a rro d C ct al. (2014) R ecru itm en t co llapse a n d p o p u la tio n s tru c tu re o f th e E u ro p ea n eel sh a p e d by local ocean c u rre n t dynaxnics. Current Biologi/, 2 4 ,1 -5 . B eau m o n t M A , N ic h o ls R A (1996) E v a lu a tin g loci fo r u s e in th e g en e tic a n a ly s is o f p o p u la tio n s tru c tu re . Proceedings o f the Royal Society B-Biological Sciences, 263, 1619-1626. B errid g e M J, L ip p P, B o o tm an M D (2000) T he v e rsa tility a n d u n iv e rs a lity o f ca lc iu m s ig n a llin g . N nture Reviezos Molecular Cell Biology, 1, 11-21. B o u rre t V, D io n n e M , K en t M P, L ien S, B ern a tch ez L (2013) L an d sc a p e g e n o m ics in A tlan tic sa lm o n (Sahno salar): s ea rch - in g fo r g e n e -e n v iro n m e n t in te ra c tio n s d r iv in g local a d a p ta - tion . Evolulion, 67, 3469-3487. B ra d b u ry IR, H u b e r t S, H ig g in s B et al. (2013) G en o m ic is la n d s o f d iv e rg e n c e a n d th e ir c o n seq u e n ces fo r th e re so lu tio n of s p a tia l s tru c tu re in a n e x p lo ite d m a r in e fish. Evolutionary Applications, 6, 450—461. C a tch en fM , H o h e n lo h e PA , B assham S, A m o res A , C resko W A (2013) Stacks: a n a n a ly sis tool se t for p o p u la tio n g en o m - ics. M olecular Ecolozv, 22, 3124-3140. C o o p G , W ito n sk y D , D i R ienzo A , P r itc h a rd JK (2010) U sing e n v iro n m e n ta l c o rre la tio n s to id e n tify loci u n d e r lv in g local a d a p ta tio n . Genetics, 185, 411-1423. C ö té C , G a g n a ire PA , B o u rre t V , V e rra u lt G , C as to n g u a y M , B em atch e z L (2013) P o p u la tio n g en etics o f th e A m erican eel (Anguilla rostrata): FST = 0 a n d N o rth A tla n tic O sc illa tio n effects o n d e m o g ra p liic f lu c tu a tio n s o f a p an m ic tic spec ies. M olecular Ecology, 22, 1763-1776. C o y n e JA , O rr H A (2004) Speciation. S in a u e r A ssoc ia tes , Sun- d e rla n d , M a ssach u se tts . D a n n e w itz J, M aes GE, Jo h an sso n L, W ick strö m H , V o lck aert FA M , Jarv i T (2005) P a n m ix ia in th e E u ro p e a n eel: a m a tte r of tim e. Proceedings o f the Royal Society B-Biological Sciences, 272, 1129-1137. D av era t F, L im b u rg K, T h ib a u t I et nl. (2006) P h e n o ty p ic p la s- tic ity o f h a b ita t u s e b y th re e te m p e ra te eel spec ies A nguilln nnguilln, A . japonica a n d A . rostratn. M arine Ecologu Progress Series, 308, 231-241. D avey JW, H o h e n lo h e PA , E tte r P D et al. (2011) G e n o m e-w id e g en etic m a rk e r d isco v e ry a n d g e n o ty p in g u s in g n ex t-g en era - tion seq u en c in g . N nturc Revieios Cenetics, 12, 499-510. E llison CE, H a ll C, K ow bel D et al. (2011) P o p u la tio n gen o m ics an d local a d a p ta tio n in w ild iso la te s o f a m o d e l m ic rob ia l eu k ary o te . Proceedings o f the Nntionnl Academ y o f Science o f the U SA, 108, 2831-2836. E tte r PD , P res to n JL, B assham S, C re sk o W A , Jo h n so n EA (2011) L ocal de novo a sse m b ly o f R A D p a ire d -e n d con tig s u s in g sh o r t seq u e n c in g rea d s . PLoS O N E , 6, e!8561. E v a n n o G, R eg n a u t S, G o u d e t J (2005) D e tec tin g th e n u m b e r o f c lu s te rs of m d iv id u a ls u s in g the so ftw a re STRUCTURE: a s im u la tio n s tu d y . M olecular Ecologi/, 14, 2611-2620. F ed e r JL, N o sil P (2010) T h e efficacy o f d iv e rg e n c e h itc h h ik in g in g e n e ra tin g g en o m ic is la n d s d u r in g eco log ica l sp ec ia tion . Evolution, 64, 1729-1747. F ed e r JL, E g an SP, N o sil P (2012) T h e g e n o m ics o f sp ec ia tio n - w ith -g en e-flo w . Trends in Genetics, 28, 342-350. Foll M , G ag g io tti O (2008) A g en o m e-scan m e th o d to id en tify se lec ted loci a p p ro p r ia te fo r b o th d o m in a n t a n d c o d o m in a n t m arkers : a B ayesian p e rsp ec tiv e . Genetics, 180, 977-993. F rase r DJ, W eir LK, B em atc h ez L, H a n se n M M , T ay lo r EB (2011) E x tend a n d scale o f local a d a p ta tio n in sa im o n id fishes: rev iew a n d m e ta -an a ly s is . H eredity, 106, 404-420. F ried lan d KD, M ille r MJ, K n ig h ts B (2007) O cean ic c h an g es in th e S a rg asso Sea a n d d e d in e s in re c ru itm e n t o f th e E u ro p ea n eel. IC ES ]oum nl o f M arine Science, 64, 519-530. G a g n a ire PA , N o rm a n d e a u E, C ö té C , H a n se n M M , B em atc h ez L (2012a) T he g en etic c o n seq u en ces o f sp a tia lly v a iy in g selec tion in th e p a n m ic tic A m erica n eel (Anguilla rostrata). Genetics, 190, 725-736. G a g n a ire PA , N o rm a n d e a u E, B ern a tch ez L (2012b) C o m p ara - tive g en o m ics rev ea ls a d a p t iv e p ro te in e v o lu tio n a n d a pos- sib le c y to n u c lea r in c o m p a tib ility b e tw een E u ro p e a n a n d A m e ric an eels. Molecular Biology and Evolution, 29, 2909-2919. G a g n a ire PA , P av ey SA , N o rm a n d e a u E, B ern a tch ez L (2013) T he gen etic a rc liite c tu re o f re p ro d u c tiv e iso la tio n d u r in g sp e- c ia tio n -w ith -g en e-flo w in lake w h ite fish sp ec ies p a irs a sse ssed b y RA D seq u e n c in g . Evolution, 67, 2483-2497. G ö tz S, G arc ia -G o m ez JM , T ero l J ct al. (2008) H ig h th ro u g h p u t fu n c tio n a l a n n o ta tio n a n d d a ta m in in g w ith th e B last2G o su ite . Nucleic Acids Research, 36, 3420-3435. H an co ck A M , W ito n sk y DB, E h ler E et al. (2010) C o llo q u iu m p a p er : h u m a n a d a p ta tio n s to d ie t, su b sis ten ce , a n d ecore- g io n a re d u e to s u b tle sh if ts in a lle le freq u en cy . Proceedings o f the National Academ y o f Scicnccs o f thc U SA , 107, 8924— 8930. H a s tin g s JW , R u sak B, B oulos Z (1991) C irc a d ia n rh y tlu n s: the p h y s io lo g y o f b io log ica l tim ing . In: Neural and Integrative A n i- mal Physiology (ed P ro ss e r C L), p p . 435-546. W iley-L iss , N ew Y ork. © 2014 John W ile y & Sons Ltd LOCAL SELECTION IN THE EURO PEAN EEL 2527 H e d ric k PW (2006) G en etic p o ly m o rp h ism in h e te ro g e n eo u s M aes GE, P u jo lar JM , H e lle m an s B, V o lckae rt FA M (2006) Evi- e n v iro n m e n ts : th e ag e o f gen o m ics. A n m ta l Reviezv o f Ecologi/ Evolution and System atics, 37, 67-93. H e m m e r-H a n se n J, N ie lse n EE, T h e rk ild se n N J et al. (2013) A g en o m ic is lan d lin k ed to e co ty p e d iv e rg e n c e in A tlan tic cod. M olecular Ecologi/, 22, 2653-2667. H e n k e l C V , B u rg e rh o u t E, D an ie lle L et al. (2012) P rim itiv e d u p lic a te ho x c lu s te rs in the E u ro p ea n e e l 's g en o m e . PLoS O N E , 7, e32231. H o ffe r T, Foll M , E xcoffier L (2012) E v o lu tio n a ry fo rces sh ap - in g g en o m ic is la n d s o f p o p u la tio n d iffe ren tia tio n in h u rn a n s . B M C Genomics, 13, 107. H o ffm an n A A , W illi Y (2008) D e tec tin g g en etic re sp o n se s to e n v iro n m e n ta l c h an g e . N ature Reviezvs Genetics, 9, 421-432. H o h e n lo h e PA , B assh an S, E tte r PD , S tiffler N , Jo h n so n EA , C re sk o W A (2010) P o p u la tio n g e n o m ic s o f p a ra lle l a d a p ta - tion in th re e sp in e s tick leb ack u s in g s e q u e n c e d RA D tags. PLoS Genetics, 6, e l 000862. Jo n es FC , C h a n YF, S c h m u tz J et al. (2012a) A g e n o m e -w id e S N P g e n o ty p in g a r ra y rev e a ls p a t te m s of g lo b a l a n d re p e a te d s p ec ie s -p a ir d iv e rg e n c e in stick lebacks. Current Biol- ogy, 22, 83-90. Jones FC, G ra b h e rr M G , C h a n YF et al. (2012b) T h e g en o m ic b a sis o f a d a p t iv e e v o lu tio n in tlu reesp ine s tick lebacks. N ature, 4 8 4 ,5 5 -6 1 . K aw eck i TJ, E b e rt D (2004) C o n ce p tu a l is su e s in loca l a d a p ta - tio n . Ecology Lctters, 7, 1225-1241. K eller SR, L evsen N , O lson M S, T iffin P (2012) Local a d a p ta - tion in the f lo w erin g -tim e g e n e n e tw o rk o f b a lsa m p o p la r, Populus halsamifera. M olecular Biologt/ and Evolution, 29, 3143- 3152. K ettle A , H a in e s K (2006) H o w d o e s th e E u ro p e a n eel (A nguilla anguiUa) re ta in its p o p u la tio n s tru c tu re d u r in g its la rv a l m ig ra tio n ac ro ss th e A tlan tic O cean? Canadian Journal o f Fish- eries and A quatic Sciences, 63, 90-106. K oehn RK, W illia m s G C (1978) G en etic d iffe re n tia tio n w ith o u t iso la tio n in A m erican eel, A nguilla rostrata. 2. T e m p o ra l s ta- b ility o f g e o g ra p h ic p a tte m s . Evolution, 32, 624-637. K o eh n RK, M ilk m a n R, M itto n JB (1976) P o p u la tio n gen etics o f m a rin e p e le cy p o d s . IV. se lec tio n , m ig ra tio n , a n d g enetic d if- fe re n tia tio n in th e b iu e m u s se l M ytilu s edulis. Evolution, 30, 2 -30 . L an g m e a d B, T rap n e ll C, P o p M , S a lzb e rg SL (2009) U ltra fa s t a n d m em o ry -effic ien t a lig n m e n t o f sh o r t D N A seq u en ces to th e h u m a n g en o m e . Genornc Biologi/, 10, R25. L eco m te -F in ig er R (1994) T h e e a r lv life o f th e E u ro p ea n eel. N ature, 370, 424. L em a ire C, A lleg ru cc i G , N ac ir i M , B ahri-S far L, K ara H , B on- h o m m e F (2000) D o d isc rep a n c ie s betwreen m ic ro sa te llite a n d a llo z y m e v a r ia tio n re v e a l d iffe ren tia l se lec tio n b e tw e e n sea a n d la g o o n in th e sea b a ss (D iccntrarchus labrax). M olecular Ecology, 9, 457-467. L evene H (1953) G en etic e q u ilib r iu m w h e n m o re th a n o n e eco- logical n ic h e is av a ilab le . Am erican N aturalist, 87, 331-333. M a XF, H a ll D, O n g e KR, ]a n sso n S, In g v a rs so n PK (2010) G enetic d iffe ren tia tio n , c lin a l v a r ia tio n a n d p h e n o ty p ic asso- c ia tio n s w ith grow rth cessa tio n a cro ss th e Poyulus tremula p h o to p e r io d ic p a th w a y . Genetics, 186, 1033-1044. M aes G E, V o lck ae rt FA M (2002) C lina l g en e tic v a ria tio n a n d iso la tio n b y d is ta n ce in th e E u ro p e a n eel Anguilla anguilta. Biological journal o f the Linnean Socieh/, 77, 509-522. d e n ce for iso la tio n by tim e in th e E u ro p e a n eel (A nguilla anguiUa). M olecular Ecology, 15, 2095-2107. M an te l N (1967) T he d e te c tio n o f d isea se c lu s te r in g an d g e n er- a lis ed re g re ss io n a p p ro a c h . Cancer Research, 27, 209-220. M cC leave JD (1993) P h y sica l a n d b e h av io ra l co n tro ls o n th e ocean ic d is tr ib u tio n a n d m ig ra tio n o f lep to cep h a li. Journal o f Pish Biology, 43, 243-273. M u n k P, H a n se n M M , M aes G E et al. (2010) O cean ic fro n ts in th e S argasso Sea co n tro l th e ea r ly life a n d d r if t o f A tlan tic eels. Proceedings o f the Royal Society B-Biological Sciences, 277, 3593-3599. N acci DE, C h am p lin D, Jay a ra m a n S (2010) A d a p ta tio n o f th e e s tu a rin e fish Fundulus heteroclitus (A tlan tic killifish) to p o ly - ch lo rin a te d b ip h e n y ls (PCBs). Estuaries and Coasts, 33, 853-864. N a d e a u N J, W h ib le A , Jones RT et al. (2012) G en o m ic is la n d s o f d iv e rg e n c e in h y b rid iz in g Heliconius b u tte rf lie s id en tified b y la rg e sca le ta rg e te d seq u en e in g . Philosophical Transactions o f the Royal Society B-Biological Sciences, 367, 343-353. N ie lsen R (2005) M o lecu la r s ig n a tu re s o f n a tu ra l selec tion . A nnua l Review o f Genctics, 39, 197-218. N o sil P, E gan SP, F u n k DJ (2008) H e te ro g en o u s g en o m ic d iffer- en tia tio n b e tw ee n w a lk in g -s tick eco ty p es: " iso la tio n b v a d ap - ta tio n " a n d m u ltip le ro le s fo r d iv e rg e n t se lec tion . Evolution, 62, 316-336. P ritch a rd JK, S te p h e n s M , D o n e lly P (2000) In feren ce o f p o p u - Iation s tm c tu re u s in g m u ltilo c u s g e n o ty p e d a ta . Genetics, 155, 945-959. P u jo la r JM, M aes GE, V o lckaert FAM (2007) G en etic a n d m o r- p h o m e tric h e te ro g e n e ity a m o n g re c ru its o f th e E u ro p ea n eel Anguilla anguilla. Bulletin o f M arhie Science, 81, 297-308. P u jo la r JM , Jacobsen M W , F ry d en b e rg J et al. (2013) A re so u rce o f g e n o m e -w id e s in g le -n u c leo tid e p o ly m o rp h ism s b y R A D tag seq u e n c in g in the c ritica lly e n d a n g e re d E u ro p ea n eel. M olecular Ecology Resources, 13, 706-714. P u jo la r JM , Jaco b sen M W , A ls T D et al. (2014) A sse ss in g p a t- te rn s o f h y b rid iz a tio n b e tw e e n N o r th A tlan tic eels u s in g d ia g n o stic s in g le n u c le o tid e p o ly m o rp h ism s . Heredih/. in p ress. R ad w a n J, B abik W (2012) T he g en o m ics o f a d a p ta tio n . Proceed- ings o f the Royal Society B-Biological Sciences, 279, 5024-5028. R av m o n d M , R o u sse t F (1995) G E N E P O P (v e rs io n 1.2): a p o p u - la tio n gen etics so ftw a re fo r ex ac t te sts a n d ecu m en ic ism . Journal o f Heredih/, 86, 248-249. R ice W R (1989) A n a ly z in g tab les a n d s ta tis tica l tests. Evolution, 43, 223-225. S cag lione S, A c q u a d ro A, P o rtis E, T iro n e M , K n a p p SJ, L an teri S (2012) R A D tag s e q u e n c in g as a so u rc e o f S N P m a rk e rs in Cynara cardunculus. B M C Genomics, 13, 3. S tap ley J, R eg er J, F e u ln e r P G D et al. (2010) A d a p ta t io n g en o m - ics: th e n e x t g e n e ra tio n . Trends in Ecology and Evolution, 25, 705-712. V an Bers N E M , V an O ers K, K e rs ten s H H D (2010) G en o m e- w id e SN P d e tec tio n in the g re a t tit Parus major u s in g h igh th ro u g h p u t seq u en c in g . M olecular Ecology, 19, 89-99. V an d e n T h illa r t G , R an k in JC, D u fo u r S (2009) Spauming M igration o f the European Ecl: Rcproduction Index, a Useful Tool for Conseroation M anagem ent. S p rin g e r , D o rd ech t, T h e N e th e r- lan d s. V éliz D , B o u rg e t E, B ernatchez L (2004) R eg ional v a ria tio n in th e s p a tia l sca le o f se lec tion a t M PI* a n d G PI* in th e a co m © 2014 John W ile y & Sons Ltd 2528 J. M. P U J O L A R E T A L . b a m a c le Semibalanus baíanoides (C ru stacea ). Journal o f Evolu- tionan/ Biology, 17, 953-966. W ag n e r CE, K elle r I, W ittw e r S ct al. (2012) G en o m e-w id e R A D seq u e n c e d a ta p ro v id e u n p re c e d e n te d re so lu tio n in sp ec ies b o u n d a r ie s a n d re la tio n s h ip s in th e L ake V ictoria c ich lid a d a p t iv e ra d ia tio n . M olecular Ecology, 22, 787-798. W h iteh ea d A , G a lv ez F, Z h a n g S, W illiam s LM , O lek siak M F (2011) F u n c tio n a l g e n o m ic s o f p h e n o ty p ic p la s tic ity a n d loca l a d a p ta tio n in k illifish . Journal o f Herediti/, 102, 499-511. W irth T, B em atc h e z L (2001) G en etic ev id e n ce a g a in s t p a n - m ix ia in the E u ro p e a n eel. N ature, 409, 1037-1040. Y eam an S, O tto SF (2011) E s ta b lish m en t a n d m a in te n a n c e of a d a p t iv e g en e tic d iv e rg e n c e u n d e r m ig ra tio n , se lec tio n an d d rift. E volution, 65, 2123-2129. Y eam an S, W h itlo c k M C (2011) T h e g en etic a rc h ite c tu re of a d a p ta tio n u n d e r m ig ra tio n -se lec tio n b a lan ce . Evolution, 65, 1897-1911. J.M.P. and L.B. conceived and designed the project. J.M.P., M.W.J., T.D.A., K.M. and M.M.H. conducted bioinformatics and population genomics analyses. J.B.J., L.C. and J.F. were involved in data gen- eration. J.M.P. wrote the manuscript with contributions from M.M.H., M.W.J., L.B., G.E.M., T.D.A., K.M., B.J., J.B.J., J.F. and L.C. Data accessib ility Sequence reads have been deposited in the NCBI Sequence Read Archive (Project Number PRJNAl95555). Raw SNP data and a custom-made script are available from Dryad database (http://datadryad.org) under doi:10.5061 /dryad.s8v7q. Supporting inform ation A dditional supporting inform ation m ay be found in the online ver- sion o f this article. Fig. S1 P lo ts from M u lti-D im e n s io n a l S ca ling a n a ly sis b ased o n p a irw is e Fst v a lu e s c o n s id e rin g (a) all R A D seq u en ces a n d (b) m ito c h o n d ria l R A D seq u e n c es on ly . © 2014 John W ile y & Sons Ltd http://datadryad.org Heredity (2014), 1-11 © 2014 Macmillan Publishers Limited All rights reserved 0018-067X/14 www.nature.com/hdy ORIGINAL ARTICLE Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms JM Pujolar1, M W Jacobsen1, TD Ais2,3, J Frydenberg1, E M agnussen4, B Jónsson5, X J ia n g 6, L C heng7, D Bekkevold2, GE M aes8,9, L Bernatchez10 and MM H ansen1 The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from lceland [N = 159) and from the neighboring Faroe Islands [N = 29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of lcelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female x American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid x pure European eel) and three individuals identified as second-generation backcrosses originating from American eel x F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to lceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of lceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization. Heredity advance online publication, 15 January 2014; doi:10.1038/hdy.2013.145 Keywords: admixture analysis; anguilla; hybridization; RAD sequencing; SNPs IN TR O DU CTIO N T h e s tu d y o f h y b rid iza tio n b e tw een in d iv id u a ls fro m genetica ily d is tin c t p o p u la tio n s o r species is o f co n sid e rab le in te re s t to u n d e r- s tan d th e d y n a m ic s o f s p ec ia tio n a n d ad ap tiv e d ivergence (M allet, 1995; G ra n t a n d G ra n t, 2002; R ieseberg a n d W illis, 2007; H ew itt, 2011; S to ltin g e t ciL, 2013). In p a rticu la r, h y b rid zones are w idely recogn ized as ‘w in d o w s’ o r ‘n a tu ra l la b o ra to rie s ’ fo r e v o lu tio n a ry s tu d ie s co n ce rn in g m o d e ls o f sp ec ia tio n , selective fo rces invo lved in sp ec ia tio n , gen e flow be tw een species a n d th e m a in te n an c e o f species b o u n d a rie s (H e w itt, 1988, 2011; H a rr is o n , 1990; M allet, 1995; P e tit a n d Excoffier, 2009). A key q u e s tio n in m a n y in s tan ces o f hyb rid iza - t io n c o n ce m s w h e th e r h y b rid iza tio n is re s tric te d to F l h y b rid s a n d f irs t-g en e ra tio n backcrosses a fte r w h ic h g enetic in c o m p a tib ilitie s a n d / o r n a tu ra l se lec tion e lim in a te h y b rid ofifspring, o r i f h y b rid iza tio n p ro ceed s to th e e x te n t th a t in tro g re ss io n o ccu rs (A lle n d o rf et a l , 2001). In th e la t te r case, in c o m p le te re p ro d u c tiv e iso la tio n m ay have im p o r ta n t b earin g s o n th e e v o lu tio n a ry tra jec to rie s o f species by d ecreas ing d ivergence b e tw ee n species b u t a lso by a llow ing favourab le n ew m u ta tio n s a n d allelic c o m b in a tio n s to tran sg ress species b o u n d - aries. T h is h o ld s p a rtic u la r ly t ru e fo r pe lag ic m a rin e e n v iro n m e n ts w h ere few o b v io u s physical b a rrie rs are p re s e n t a n d s p ec ia tio n -w ith - g ene-flow processes m ay b e c o m m o n (F ed er e t «/., 2012). A p ecu lia r p a tte m o f h y b rid iz a tio n is fo u n d in th e tw o N o r th A tlan tic eel species, th e E u ro p ea n [A nguilla anguilla) a n d the A m e rican eei (A. rostrata). B o th species show w id e d is tr ib u tio n ranges, w ith th e E u ro p ea n eel b e in g fo u n d in th e e as te rn A tlan tic fro m M o ro cco to lce land in c lu d in g th e M ed ite r ra n ea n Sea a n d the A m erican eel b e in g fo u n d in th e w este rn A tlan tic fro rn th e C arib b ean to G reen lan d . N o r th A tlan tic eels a re facu lta tively c a tad ro m o u s , sp aw n in g in p a rtia l sy m p a try in lro n ta l zo n es o f th e so u th e rn Sargasso Sea. A fte r sp aw n in g , larvae (lep to c ep h ali) a re tra n s p o r te d b y surface c u rre n ts o f th e G u lf S tream to th e sh o res o f E u ro p e /N o r th Afirica a n d N o rtlr A m erica , respectively. W lien larvae reach th e c o n tin e n ta l shelf, th e y u n d e rg o m e ta m o rp h o s is in to glass eels th a t c o m p ie te th e m ig ra tio n in to fresh , b rac ld sh a n d coasta l w a ters as yellow eels. A fter a h ig h ly va riab le feed in g p e rio d o f 5 -3 0 years, yellow eels m e ta m o rp h o s e in to silver eels th a t m ig ra te fro m tlie ir h igh ly d isp ersed fo rag ing areas to th e c o m m o n sp aw n in g g ro u n d in th e Sargasso Sea, w h ere th e y re p ro d u c e o n ly o n ce a n d d ie (van den T h illa r t e t al., 2009 ). M o lec u la r s tu d ie s in b o th species have ^Department of Bioscience, Aarhus University, Aarhus C, Denmark; 2National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark; 3Department of Biomedicine-Human Genetics, Aarhus University, Aarhus C, Denmark; 4Faculty of Science and Technology, University oí the Faroe Islands, Torshavn, Faroe Islands; 5Biopol, Marine Biology and Biotechnology Center, Skagastrond, lceland; 6BGI-Shenzhen, Shenzhen, China; 7BGI-Europe, Copenhagen Bio Science Park, Copenhagen, Denmark; 8Laboratory of Biodiversity and Evolutionary Genomics, Deberiotstraat 32, University of Leuven (KU Leuven), Leuven, Belgium; 9Centre for Sustainable Tropical Fisheries and Aquaculture, School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia and 10IBIS (Institut de Biologie Intégrative et des Systémes), Université Laval, Québec City, Québec, Canada Correspondence: Dr JM Pujolar, Department of Bioscience, Aarhus University, Ny Munkegade 114, Building 1540, Aarhus 8000, Denmark. E-mail: jmartin@blology.au.dk Received 27 August 2013; revised 9 December 2013; accepted 10 December 2013 http://www.nature.com/hdy mailto:jmartin@blology.au.dk Hybridization between North Atlantic eels JM Pujolar et at d e m o n s tra te d th a t th e y a re p a n m ic tic (Als et a i , 2011; C ó té e t a l , 2013 ). R em arkab iy , a lth o u g h m ito c h o n d r ia l D N A lineages o f th e tw o species a re reciprocaU y m o n o p h y le tic (Avise e t a l , 1986), low d iffe ren ta tio n is fo u n d a t m ic ro sa te llite loci, w ith Fyp values o f 0 .055 a n d 0 .018 re p o r te d in p re v io u s s tu d ie s (M a n k a n d Avise, 2003; W ir th a n d B ernatchez , 2003). I t is w ell e s tab lish ed tlra t th e sp aw n in g g ro u n d s o f th e tw o species o verlap in th e S argasso Sea a n d th e re is a lso overlap in sp aw n in g tim e , w ith th e A m erican eel sp aw n in g in F e b ru a ry -A p ril a n d th e E u ro p ea n eel sp aw n m g in M a rc h - J u n e (M cC leave e t a l , 1987). E u ro p ean an d A m erica n eels a re k n o w n to h y b rid ize b u t h y b rid s a re ob serv ed a lm o s t exclusively in Iceland . T h e íir s t ev id en ce o f h y b rid s in Ice land cam e fro m th e s tu d y o f Avise e t al. (1990) based o n a llozym es, m ito c h o n - d ria l D N A m a rk e rs a n d v e rteb ra l c o u n ts th a t d e m o n s tra te d th a t Ice lan d p o p u la tio n s in c lu d e h y b rid s in lo w freq u en c ies o f 2 -4 % . T he lack o f d is c r im in a to ry p o w e r o f th e m a rk e rs u sed d id n o t a llow d e te rm in in g th e s ta tu s o f h y b rid s a n d q u a n ti íy the ra te o f in tro g re s- s ion . T h is w as a lso a p ro b le m in a la te r s tu d y u s in g m ic ro sa te llite loci, a sc rib ed p rim a r ily to h o m o p la s y (M a n k a n d Avise, 2003). A m o re ex tensive s tu d y o n th e s ta tu s o f eels in lce lan d w as c o n d u c te d u sing a m p lifie d f rag m e n t le n g th p o ly m o rp h ism analysis o f eels s am p led a t m u ltip le Ice land ic lo c a tio n s (A lbert et a i , 2006). T h e s tu d y revealed an overaE h y b rid p ro p o r t io n o f 15.5% in Iceland , ran g in g ffo m 6.7 to 100% across lo ca tio n s, a n d th e occu i'rence o f h y b rid s b ey o n d th e first g e n e ra tio n . H ow ever, th e m a rk e rs u sed w ere n o t ab le to classify la ter- g e n e ra tio n (p o s t-F l) h yb rid s . H en ce , th e n a tu re o f in tro g ress io n in Ice land ic eels re m a in s largely un reso lv ed . O u ts id e Ice land , o n ly few h y b rid s have b e e n id en tifie d . A lb e rt e t al. (2006) observed n o hyb rid s o u t o f 186 E u ro p e a n eels a n d 3 la te r-g e n e ra tio n h y b rid s o u t o f 193 A m erica n eels. Als e t a l (2011) id en tified a s ing le h y b rid a m o n g S argasso Sea eel la rvae a n d tliree p u ta tiv e h y b rid s a m o n g E u ro p ean glass eels, in c lu d in g o n e in d iv id u a l fro m Iceland . H ow ever, g iven the l im ited re s o lu tio n o f availab le m a rk e rs , i t is u n c e r ta in w h e th e r h y b rid iza tio n has b een u n d e re s tim a te d . H e re , w e use a R A D (R e str ic tio n s ite A ssoc ia ted D N A ) seq u en c in g a p p ro a c h (B aird e t al., 2008; H o h e n lo h e e t a i , 2010) to id en tify s in g le -n u c leo tid e p o ly m o rp h ism s (S N P s) d iag n o stic fo r E u ro p ean a n d A m erican eels. W e u se a su b se t o f th e se SN Ps to analyze p a tte rn s , d ire c tio n a lity a n d e v o lu tio n o f h y b rid iza tio n , w hereas a d e ta iled analysis o f g en o m ic d ivergence be tw een th e species w ill be p resen ted in a fo r th c o m in g p aper. Specifically, w e analyze eels fro m Ice land , the N o r th A tlan tic F a ro e Is lan d s a n d th e sp aw n in g reg io n in th e Sargasso Sea to ad d re ss th e foU ow ing q u e stio n s: (1) H as th e level o f h y b rid iza tio n in p re v io u s s tu d ie s b een u n d e re s tim a ted ? (2) W h ich h y b rid classes a re p re sen t; d o e s h y b rid iza tio n lead to in tro g re ss io n o r is it re s tric te d to F I h y b rid s a n d p e rh a p s firs t-g en e ra tio n backcrosses? (3 ) Is th e h ig h o c cu rre n ce o f h y b rid s re s tric ted to Ice land o r can h y b rid s a lso b e fo u n d in th e n e ig h b o u r in g F aroe Islands th a t a re the c losest b o d ie s o f la n d to Iceland? In a d d it io n to c la rify ing im p o r ta n t aspec ts o f th e b io lo g y o f eels, th e re su lts w ill a d d to o u r u n d e rs tan d in g o f sp ec ia tio n a n d h y b rid iza tio n processes in pelagic m a rin e e n v iro n m e n ts . MATERIALS AND M ETHO DS Sampling A total o f 50 pure N orth Atlantic eels, 25 European and 25 American eels, were used for RAD sequencing and SNP discovery. All individuals were later conlirm ed as pure species using the developed SNP markers. European eels were collected usLng fyke nets at one location in the westem M editerranean, Valencia (Spain), and two locations in the easlcm Atlantic, Bordeaux (Fmnce) and Burrishoole (Ireland). American eels were collected along the western Atlantic coast at Riviere Blanche (Quebec), Mira River (Nova Scotia) ;md St Johns River (Florida). Genomic DNA was purified using standard phenol/ chloroform extraction. A total o f 282 eels were included in the subsequent study o f hybridization. Icelandic samples (jV = 159) were collected at 9 sites between 2000 and 2003, covering most o f the known geographical distribution range o f the species in Iceland, from Vatndalsa in the northern coast to Steinsmyrarfljot in the southern coast (Figure I). The eels were not the same individuals analyzed by Albert et a i (2006) and Gagnaire ct al. (2009), but they came from the sanie samples. Sampling locations, life stages and num ber o f individuals sampled are detailed in Table 1. Glass eels were caught by electrofishing, whereas yellow eels were caught w ith traps. Samples firom the Faroe Islands (N = 29) were collected at two locations (Grodiusvam and Kaldbaksbotnur) in 2011 using fyke nets. The study was supplem ented w ith the analysis o f European and American eel larvae collected in the Sargasso Sea during M arch-April 2007 as part o f the Danish Galathea 3 expedition (for details see Als et al., 2011). Samples o f the two species were collected at 37 stations covering 600 km o f the Subtropical Convergence ffontal zone in the Sargasso Sea (64-70 'W and 24-30 JN) using a ring net o f diam eter 3.5 m equipped with a 25 m long net o f 560 pm mesh. A subset o f 94 larvac (49 European and 45 American eel) were included in the present study (Table 2). DNA from ethanol-preserved larvae was extracted using the EZNA kit (Omega Biotek, Norcross, GA, USA). Individual larvae were initially identified as European o r American eel based on the analysis o f the mitochondrial cytochrome b gene (Trautner, 2006). RAD tag sequencing, RAD data analysis and SNP identification Genomic DNA trom each individual was digested with restriction enzyme EcoRI. All 50 individuals (25 European eels and 25 American eels) were RAD-sequenced (10 individuals per lane) on an Illumina Genome Analyzer II Figure 1 Sampling locations of European eels, including detailed locations in lceland (labelled as in Table 1). Heredity Hybridization between North Atlantic eels JM Pujolar e f al Table 1 Details of genetic samples for North Atlantic eels including sampling locations, code, geographic location, life stage, year of sampling and number of individuals Location Code Location Life stage Year N lceland Vatnsdalsá VA 65.49, -2 0 .3 4 Y 2000 10 Vogslækur VO 64.69, -2 2 .3 3 G 2001 27 Seljar SE 64.56, -2 2 .3 1 G 2001 10 Grafarvogur GR 64.15, -2 1 .8 1 Y 2003 10 Vifilsstadvatn VI 64.07, -2 1 .8 7 Y 2002 10 G 2001 33 Gríndavik GD 63.83, -2 2 .4 2 Y 2003 10 Olfus OL 63.93, -2 1 .6 2 G 2000 16 Stokkseyri ST 63.81, -2 1 .0 4 G 2001 10 Steinsmyrarfljot SM 63.61, -1 7 .9 2 Y 2000 23 Faroe Islands Grothusvatn GV 61.84, -6 .8 3 Y 2011 15 Kaldbaksbotnur KA 62.06, -6 .9 1 Y 2011 14 Abbreviations: G, glass eels; Y, yellow eels. Table 2 Details of larvae sampling in the Sargasso Sea including transect, station, geographic coordinates and species sampled Transect Station Lon. W Lat. N 44 AR 1 6 63.6 24.3 0 1 1 7 64.0 25.16 4 1 1 8 64.01 26.01 4 1 1 9 64.01 26.31 4 2 1 10 63.58 27.01 1 0 1 11 63.6 27.2 4 1 1 12 64.0 27.42 1 1 1 13 63.59 28.01 2 0 2 16 67.01 28.29 2 0 2 17 67.0 27.44 3 1 2 19 66.6 26.3 0 1 2 20 67.0 25.5 0 2 2 21 66.6 25.37 2 2 2 22 67.0 25.19 1 3 2 23 67.0 24.6 3 4 2 24 67.05 24.31 1 0 3 25 69.59 24.6 0 3 3 26 69.58 25.29 1 2 3 27 69.58 25.27 7 2 3 28 69.59 26.34 6 8 3 29 69.6 26.6 1 1 3 30 70.05 27.32 1 4 3 31 70.02 27.59 0 4 3 32 70.02 26.6 0 1 3 33 70.01 30.0 1 0 Abbreviations: AA. Anguilla anguilla-, AR, A. rostrata-. Lat., latitude; Lon., longitude. by Beijing Genomics Institute (BGI, H ong Kong) using paired-end reads (for details see Pujolar ct a l , 2013). Sequence reads from the IUumina (San Diego, CA, USA) runs vvere sorted according to barcode tag. Sequences were quality-filtered using FASTX-Toolkit (http://hannoniab.cshl.edu/fastx_toolkit) and rcads with ambiguous barcodcs/ poor quality were removed ffom the analysis. A m inim um Phred score o f 10 (equivalent to 90% probability o f being correct) per nucleotide position was chosen, meaning that reads were dropped if a -nucleotide position had a score o f < 10. This is the Phred score generally used in SNP discovery studies (Van Bers ct al., 2010; EUison et al., 2011; Scaglione e ta l , 2012; W agner et al„ 2012). Final read length was trim m ed to 80 nucleotides in order to reduce sequencing errors present at the tail o f the sequences. For subsequent analyses, only the first (left) paired-read was used. The DNA fragments created by RAD tag library preparation have a restriction site at one end and are random ly sheared at the other end that results in each instance o f a restriction site sequence being sampled many times by thc first rcads and the genomic DNA scqucnce in the nearby region being randomly sampled at a lower coverage by the second paired-end reads (Etter et a l, 2011), which are therefore less suitable for caUing SNPs. Sequence reads were aligned to the European eel genome draft (www.eel- genome.com) (Henkel et aL, 2012) using the ungapped aligner Bowtie version 0.12.8 (Langmead ct al., 2009). A m aximum o f two mismatches between the individual reads and the genome were allowed and alignments were suppressed for a piuticular read when m ore than one reportable alignment existed, thereby decreashig the risk o f paralogous sequences in the data. The reference-aligned data were tlren used to assemble tlie RAD sequences into loci and idcntify aUeles using thc ref_map.pl pipeline in Stacks version 0.9995 (Catchen et a i, 2011). First, exactly m atching sequences are aligned together into stacks that are in turn merged to form putative loci. At each locus, nucleotide positions are examined and SNPs are caUed using a m axim um likelihood framework. Second, a catalog is created o f aU possible loci and alleles. Third, each individual is m atched against the catalog. A m inim um stack depth o f 10 reads was used, which is the num ber o f exactly matching reads that must be found to create a stack in an individual. Finally, the program Populations in Stacks was used to process aU the SNP data across individuals. Loci were processed when present in both species in at least 66.67% of the individuals. Genomc-wide measures o f genetic divcrsity, including obscrved (H0) and expected (H e) heterozygosíties, were calculated at each nucleotide site for aU individuals. Genetic differentiation between European and American eel samples measured by was estimated for aU individual SNPs. SNP low-density array design and scoring Species-diagnostic SNPs were chosen to design a 96-SNP genotyping array on the basis o f the following criteria: (1) a m inim um Fst value o f 0.95, (2) target SNP is present along with no more than five additional singleton SNPs per locus and (3) the presence o f at least lOObp llanking sequence when extending the RAD loci using the European eel genome to allow for optimal prim er design. SNPs meeting those criteria were labeUed as diagnostic for the purpose o f the study, aldrough not 100% fixed. AU selected SNPs were distributed across different scaffolds and contigs in the eel genome in order to guarantee a good representation o f the genome. SNPs were genotyped on 96.96 Dynamic Arrays (Fluidigm Coiporation, San Francisco, CA, USA) using the Fluidigm EPl instrum entation and according to the m anufacturer’s protocols. The Fluidigm system uses nano-fluidic circuitry to simultaneously genotype up to 96 samples w ith 96 loci (see Seeb et a l, 2009 for a description o f the Fluidigm system methodology). Genotypes were called and the data compiled using the Fluidigm SNP Genotv'ping Analysis software. Each assay was assessed for plot quality and expected clustering patterns. Hybrid identification Hybrids were identified using STRUCTURE (Pritchard et a l, 2000) and NEWHYBRIDS (Anderson and Thom pson, 2002). We used STRUCTURE to estimate individual admixture proportions and their probabUity intervals. For this purpose we assumed an adm ixture model, uncorrelated allele frequencies and we did not use population priors. Given that two panmictic species were analyzed, we assumed K — 2 and conducted 10 runs to check the consistency o f results. A burn-in o f 100 000 steps followed by 1000 000 additional Markov Chain M onte Carlo iterations were performed. Rather than assigning individuals to a single hybrid category, NEWHY- BRIDS uscs a Bayesian framcwork to com pute the posterior probability o f one individual belonging to each parental and dislinct hybrid class (F l, F2 and backcrosses between F1 x European eel and F1 x American eel). The genotype Heredity http://hannoniab.cshl.edu/fastx_toolkit Hybridization between North Atlantic eels JM Pujolar et al frequency class file was expanded to include third-generation hybrid classes originating from crosses between backcrosses and pure European eels, pure American eels and F1 hybrids. The sofhvare was run for 100000 iterations in the burn-in, followed by 100 000 M arkov Chain M onte Carlo iterations in each analysis. Before the analysis, the power o f the selected SNP markers to discriminate hybrid status was assessed using HYBRIDLAB (Nielsen e ta l , 2006), a program for generating simulated hybrids from population samples. Based on the obscrved allelic frequencies at the selected SNPs in the European and Amcrican eel baseline populations, the program generated 10000 random genotypes o f each o f the following 12 categories: (1) pure European eel, (2) pure American eel, (3) F1 hybrid, (4) F2 hybrid, (5) first-generation backcross European eel x F1 hybrid, (6) first-generation backcross American eel x F1 hybrid, (7) second-generation backcross between -generation backcross (European eel x F1 hybrid) and European eel, (8) second-generation backcross between first-generation backcross (European eel x F1 hvbrid) and American eel, (9) second-generation backcross between first-generation backcross (European e e lx F1 hybrid) and F1 hybrid, (10) second-generation backcross between first-generation backcross (American eel x F1 hybrid) and European eel, (11) second-generation backcross between first-generation backcross (American eel x F1 hybrid) and American eel and (12) second-generation backcross between first-generation backcross (American eel x F1 hybrid) and F1 hybrid. All simulated individuals were then blindly reassigned to their most probable category using both STRUCTURE and NEWHYBRIDS. RESULTS RAD sequencing S e q u en cin g o f th e R A D lib raries g e n e ra ted a n average o f 8.8 m illion reads p e r in d iv id u a l o f 90 b p , be fo re any q u a lity filtering , ran g in g fro m 4.4 to 13.4 m illio n reads. A fte r q u a lity filtering , o n average 7.3 m illio n (8 2 .7% ) seq u en ces p e r in d iv id u a l w ere re la in ed . R eta in ed sequences p re sen te d a m e a n q u a lity sco re o f 38.5, a m e d ia n o f 39.2 a n d a G C c o n te n t o f 4 0 .6% , w ith n o a p p a re n t d ifferences o b served b e tw een species (T able 3). R eta in ed seq u en ces w ere a ligned to tlie E u ro p ea n eel d ra ft g enom e. As expec ted , a h ig h e r n u m b e r o f E u ro p ean eel sequences a ligned (67 .16% ) in c o m p a ris o n w ith A m e ric a n eel sequences (61 .33% ). T h e n u m b e r o f sequences d isca rd ed b ecau se o f a lte m ativ e a lig n m en ts was s im ila r fo r b o th species (1 .6% ; Table 3). A ligned sequences w ere a ssem b led in to a n average o f 663 555 stacks p e r in d iv id u a l a n d su b se q u en tiy in to a se t o f 322 314 loci. U sing a m in im u m coverage o f 10 read s, an average o f 214 178 (66 .45% ) loci w ere re ta in e d a n d 108,136 (33 .55% ) loc i w ere d isca rd ed p e r in d iv i- d u a l because o f in su ffic ien t d e p th o f coverage. S im ilar n u m b e rs o f loci w ere re ta in e d in b o th species (T able 3). A cata log o f 502 526 loc i w as c o n s tru c ted u s in g ali in d iv id u a ls . A to ta l o f 9 5 8 8 4 loci (19% ) sh a red b e tw een th e tw o species in a t ieast 66 .67% o f in d iv id u a ls p e r species w ere re ta in e d fo r S N P discovery. U sing th e p ro g ra m P o p u la tio n s in Stacks, a to ta l o f 767 015 SN Ps w ere id en tified . W h en ca lcu la tin g Es r values be tw een th e tw o species fo r each SN P de te c ted , 3348 SN Ps sh o w ed a n FS p > 0 .9 5 . SNP genotyping S u p p le m e n ta ry Table 1 show s de ta ils o f 86 d ia g n o stic SN Ps fo r N o r th A tlan tic eels a n d gives th e c o n 'e sp o n d in g allele frequencies fo r E u ro p ea n a n d A m e ric an eel, to g e th e r w ith th e p o s itio n in th e E u ro p ea n eel d ra f t g en o m e . W e exc lu d ed 10 m a rk e rs (o u t o f the o rig in a l 96; 10.4% ) because o f p r im e r m is m a tc h o r in c o rre c t/m u ltip le p ro d u c t am p lific a tio n . A to ta l o f 75 o u t o f 86 SN Ps (87 .2% ) h a d an jFSt va lue o f 1.0 b e tw een E u ro p ea n a n d A m erican eei. T h e re m a in in g 9 SN Ps (12 .8% ) h a d an P ST o f 0 .9 5 -0 .9 6 . Hybrid identification In o rd e r to te s t the p o w e r o f th e m ark e rs , a to ta l o f 120 000 in d iv id u a ls w ere s im u la ted u s in g 86 SN Ps fo r 12 eel categories in c lu d in g first- a n d s ec o n d -g e n e ra tio n backcrosses a n d reass igned b lindiy . U sing S T R U C T U R E , a d m ix tu re p ro p o r t io n values ran g ed fi'om 0 .995 (p u re E u ro p ean eel) to 0 .004 (p u re A m erican eel). F irst- g en era tio n backcrosses sh o w ed u n iq u e a d m ix tu re p ro p o r tio n s (0.75 Table 3 Statistics describing the distribution of different properties of RAD sequences after each step of filtering (FASTX-Toolkit), alignment to the eel draft genome (Bowtie) and assemblage into loci (Ref_map.pl) FASTX Species Raw reads Filtered reads % Eliminated Mean Q Q1 Med Q3 %A %C %G %T All 8 8 1 0 898 7 2 81642 17.32 38.45 37.80 39.24 40 29.8 20.5 20.1 29.6 AA 8 76 9 8 31 7 007 835 19.92 38.36 37.72 39.10 40 29.7 20.5 20.1 29.6 AR 8 8 5 1 9 6 4 7 555450 14.72 38.53 37.88 39.37 40 29.8 20.5 20.1 29.6 Bowtie Species Reads Aligned % Aligned Nonaligned % Nonaligned Discarded % Discarded All 7 281642 4 707 002 64.25 2 504043 34.15 117 695 1.60 AA 7 0 0 7 8 3 5 4 768089 67.16 2 2 1 8 1 7 6 31.22 115152 1.63 AR 7 555450 4 6 4 5 9 1 5 61.33 2789 910 37.09 120238 1.58 R efjvap Species Reads Stacks Loci Loci used % Loci used Loci discarded % Loci discarded All 4 707 002 663 555 322314 214178 66.45 108136 33.55 AA 4 768089 745193 333871 224896 67.36 109 309 32.74 AR 4 6 4 5 9 1 5 581918 310756 203 638 65.53 107 118 34.47 Abbreviations: AA, Anguilla anguilla-, AR, A. rostrata; RAD, Restriction site Associated DNA. Heredity Hybridization between North Atiantic eels JM Pujolar et al a n d 0 .25). H ow ever, F1 a n d F2 h y b rid s a n d s ec o n d -g en e ra tio n backcrosses c o u ld n o t b e co m p le te ly d is tin g u ish ed (F igu re 2). U sing N E W H Y B R ID S , a co rre c t a ss ig n m e n t w as m a d e fo r 100% o f F1 h y b rid s , 89% o f F2 hy b rid s , 97% o f firs t-g en e ra tio n backcrosses a n d 9 4 -9 9 % o f se c o n d -g e n e ra tio n backcrosses (T able 4 ). T h is suggests th a t o u r m a rk e rs have e n o u g h d is c r im in a to ry p o w e r to coiTectly id en tify u p to th ird -g e n e ra tio n hyb rid s. W h en th e e m p iric a l d a ta w ere e x am in ed w ith ST R U C T U R E , s im ila r resu lts w ere o b ta in e d across rep lic a te ru n s , il lu s tra tin g th a t th e b ase line d a ta c o n sis tin g o f 25 E u ro p ea n a n d A m eric an eel cou ld be c lassified w ith h ig h co n fid en ce (F igu re 3a). All Sargasso Sea larvae id e n tif ie d as A m erican eel u s in g th e c y to c h ro m e b m ito c h o n d ria l m a rk e r w ere suggested to b e n o n a d m ix e d . H ow ever, a m o n g p u ta tiv e E u ro p ea n eel la rvae , tw o in d iv id u a ls w ere clearly h y b rid s , w ith a d m ix tu re p ro p o r tio n s sug g estin g th a t th e y w ere sec o n d -g e n e ra tio n backcrosses (F igu re 3a). All 29 in d iv id u a ls fro m F aroe Islands w ere classified as p u re E u ro p ea n eels (F ig u re 3 b ). H ow ever, in Ice land , 142 in d iv id u a ls (89 .3% ) w ere p u re E u ro p ean eels, w h ereas 17 in d iv id u a ls (10 .7% ) w ere classified as ad m ix e d w ith d iffe ren t degrees o f A m erican eel an ce s try (F igu re 3 b ). O u t o f th e 17 ad m ix ed in d iv id u a ls , 13 sh o w ed a 90% p ro b a b ility in te rv a l o v e rlap p in g 0.5, suggestive o f e ilh e r F l o r F2 h y b rid s . T h e re m a in in g fo u r in d iv id u a ls sh o w ed a d m ix tu re p ro p o r tio n s suggestive o f backcrosses. A c o n firm a tio n o f th e in d iv id u a l s ta tu s catego ries o b ta in e d ffo m ST R U C T U R E a n d a d e ta iled c lass ifica tion o f th e h y b rid s was c o n d u c ted in N E W H Y B R ID S (T able 5 ). Id e n tif ic a tio n o f p u re a n d h y b rid in d iv id u a ls c o rre s p o n d e d 100% to th e re su lts o b ta in e d w ith ST R U C T U R E . All A m eric an eel la rvae w ere id e n tified as p u re A m erican eels. O f th e E u ro p ea n eel larvae, 96% w ere p u re E u ro p ea n eels, w hereas th e re m a in in g 2 in d iv id u a ls w ere id en tified as sec o n d -g e n e ra tio n backcrosses b e tw een firs t-g en e ra tio n backcrosses (A m erican eel x F1 h y b rid ) a n d p u re E u ro p ean eels. All F a roe Islands B k k A A b A A x A A b A A b A A x F I b A R x A A F1 0 .995 0 .8 7 2 0 .7 5 0 0 .6 2 5 0 .625 0 .500 F2 b A A xA R b A R x F I 0 .5 0 0 0 .375 0 .375 b A R b A R x A R A R 0 .2 5 0 0 .128 0 .004 0.001 0 .0 2 4 0 .028 0 .0 3 6 0 .023 0 .0 0 3 0 .0 3 7 0 .0 2 3 0 .0 3 6 0 .0 2 7 0 .0 2 3 0.001 Figure 2 Admixture analysis of simulated individuals in STRUCTURE. A total o f 12 categories were simulated: pure European eel (AA), pure American eel (AR), F1 hybrid, F2 hybrid, first-generation backcross European eel x F1 (bAA), first-generation backcross American eel x F1 (bAR) and second-generation backcrosses (b A A xA A , b A A x A R , b A A x F l , b A Rx AA , bAR x AR and bAR x F l) . Average admixture proportion value and s.d. values are presented for each simulated category. Table 4 Assignment probability of simulated individuals in NEWHYBRIDS Assignment probability AA AR F1 F2 bAA bAR bAA x AA bAA x AR bAA x F1 bAR x AA bAR x AR bAR x F1 AA AR 1.000 1.000 i n n n — — — - — — — — — r 1 F2 — — J..U U U 0.885 — — _ _ 0.064 _ _ 0.052 bAA — — — — 0.971 — 0.019 — — 0.010 — — bAR — — — — — 0.973 — 0.012 — — 0.014 — bAAx AA — — — — 0.001 — 0.990 — — — — — bAA x AR — — — — — 0.012 — 0.988 — — — — bAAx F1 — — — 0.062 — — — — 0.937 — — — bAR x AA — — — — 0.013 — — — — 0.987 — — bARxAR — — — — — 0.009 — — — — 0.991 — bAR x F1 — — — 0.068 — — — — — — - 0.932 A total of 12 categories were simulated: pure European eel (AA), pure American eel (AR), F1 hybrid, F2 hybrid, first-generation backcross European eel x F1 (bAA), first-generation backcross American eel x F1 (bAR) and second-generation backcrosses (bAA x AA, bAA x AR, bAA x F l , bAR x AA, bAR x AR and bAR x F l) . Heredity Hybridization between North Atlantic eels JM Pujolar et al European eel < ► E u r o p e a n e e l l a r v a e Am erican eel American eel larvae M---------- M --------------------------- ► 20 40 Faroe Islands Iceland Individual no. Figure 3 Admixture analysis in STRUCTURE, assuming the presence of two groups (K = 2); European and American eels. Individual admixture proportions along with 95% credible intervals are shown for each individual. Top panel shows baseline individuals of European eels and American eels followed by American eel larvae and European eel larvae from the Sargasso Sea. Bottom panel shows eels from the Faroe Islands and from lceland. Table 5 Assignment probability in NEWHYBRIDS of all lcelandic and Sargasso Sea hybrids Location Individual Assignment probability AA AR F1 F2 bAA bAR bAA X AA bAA X AR bAA X F1 bAR x AA bARxAR bARx F1 VA VADA-1 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 VA VADA-2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 VO VOGG-11 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 VO VOGG-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 VO VOGG-9 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SE SSG-10 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SE SSG-7 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 VI VFG-9 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 VI VIFIG-2 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 VI VIFIG-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 OL OLFG-5 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ST STG-2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 ST STG-3 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SM STEG-1 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SM STEG-31 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SM STEG-38 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SM STEG-40 0.000 0.000 0.000 0.000 0.983 0.000 0.000 0.000 0.017 0.000 0.000 0.000 Sargasso L-125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 Sargasso L-211 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.995 0.000 0.000 Categories include pure European eel (AA), pure American eel (AR), F1 hybrid, F2 hybrid, first-generation backcross European eel x F1 (bAA), first-generation backcross American eel x F1 (bAR) and second-generation backcrosses (bAA x AA, bAA x AR, bAA x F l, bAR x AA, bAR x AR and bAR x F l) . Locations are labelled as in Table 1. in d iv id u a ls w ere c o n íirm e d as p u re E u ro p ea n eels. W ith respec t to Iee lan d ic in d iv id u a ls , NEWHYBRJLDS c o n firm e d th e re su lts f ro m ST R U C T U R E (142 p u re E u ro p ea n eels a n d 17 h y b rid s ). O u t o f 17 ad m ix ed in d iv id u a ls , 13 w ere F1 h y b rid s w ith a p ro b a b ility o f P = 1.00. T h e fo u r la te r-g e n e ra tio n h y b rid s id en tif ie d in c lu d ed o n e firs t-g en e ra tio n backcross b e tw een p u re E u ro p ea n eel a n d F1 Heredity Hybridization between North Atlantic eels JM Pujolar et al h y b rid , w hereas th e re m a in in g th re e in d iv id u a ls rep re sen ted s ec o n d -g e n e ra tio n back cro sses b e tw een f irs t-g en e ra tio n backcrosses (A m erican eel x F1 h y b rid ) a n d p u re E u ro p e a n eels. A cross lo ca tio n s in Ice land , h y b rid s w ere d e te c te d in 7 o u t o f 9 lo ca tio n s (F igu re 4 ), in c lu d in g th e n o r th e rn m o s t (V atnsdaisá) a n d s o u th e m m o s t (S te in sm y ra rfljo t) lo c a tio n s , w ith a p ro p o r t io n ran g in g fro m 5 to 20% . O n ly a t tw o lo c a tio n s (G ra fa rv o g u r a n d G rin d av ik ) w ere all in d iv id u a ls id en tified as p u re E u ro p ea n eels. F1 h y b rid s w ere fo u n d in all lo c a tio n s in w h ic h h y b rid s w ere p re sen t, w hereas backcrosses w ere fo u n d a t fo u r lo c a tio n s (V ogslæ kur, V ifilstadvatn , S tokksey ri a n d S te in sm y ra rf ljo t) . A cross life stages, tlre p ro p o r t io n o f hy b rid s ra n g e d fro m 9 to 20 % in glass eels a n d fro m 0 to 20% in yellow eels. W e f ii r th e r ex p lo red th e n a tu re o f th e six in d iv id u a ls id en tified as la te r-g e n e ra tio n h y b rid s (fo u r Ice land ic in d iv id u a ls a n d tw o Sargasso Sea larvae) b y c o m p a rm g th e o b se rv ed p ro p o r t io n o f h e te ro zy g o te loci a t eac h in d iv id u a l w ith th e e x p ec te d p ro p o r t io n in first- g e n e ra tio n backcrosses (E u ro p e an e e l x F l ) a n d s ec o n d -g en e ra tio n 100i ---- ---- ---- ---- ---- ---- ---- ---- ---- 8 0 - Jfí « 6 0 - •o '> VA VO SE GR VI GD OL ST SM Sam pling location Figure 4 Proportion of pure European eels (light grey), F1 hybrids (dark grey) and later-generation hybrids (black) in all lcelandic locations, labelled as in Table 1. b ackcrosses be tw een firs t-g en e ra tio n backcrosses (A m erica n eel x F l ) an d E u ro p ean eels (F igu re 5 ), u s in g th e s im u la ted d a ta fro m HYBRIDLAB. In a cco rd an ce w ith N E W H Y B R ID S , o n ly o n e in d iv i- du a l f ro m Iceland clearly p re sen ted a n ob serv ed h e te ro zy g o sity vvithin th e ex p ec ted values fo r fir s t-g en e ra tio n backcrosses (E u ro p e an Eel x F l) . T h e re m a in in g th re e in d iv id u a ls fro m Ice la n d p re sen te d m u ch h ig h e r h e te rozygosity values th a n firs t-g en e ra tio n backcrosses, con - c o rd a n t w ith seco n d -g e n e ra tio n backcrosses b e tw een f irs t-g en e ra tio n backcrosses (A m erican eel x F l ) a n d p u re E u ro p ea n eels. O b se rv ed heterozygosities fo r th e tw o Sargasso la rvae fitted th e e x p ec ta tio n fo r sec o n d -g e n e ra tio n backcrosses b u t w ere a lso w ith in th e 5% u p p e r- m o s t d is tr ib u tio n o f fir s t-g en e ra tio n backcrosses. ln a d d itio n to S N P g en o ty p in g , all in d iv id u a ls w ere id en tified as E u ro p ean o r A m erican eel o n th e basis o f th e m ito c h o n d ria l cy to c h ro m e b gene. A ll h y b rid in d iv id u a ls (2 E u ro p ea n eel larvae fro m th e Sargasso Sea a n d 17 Ice land ic in d iv id u a ls ) sh o w ed th e E u ro p ean eel m ito c h o n d ria l h ap lo ty p e . S u rprising ly , 1 in d iv id u a l o u t o f th e 142 Ice land ic in d iv id u a ls id en tified as p u re E u ro p ean eels (o n th e basis o f th e SN P a rra y w ith a 100% p ro b a b ility u s in g b o th ST R U C T U R E a n d N E W H Y B R ID S ) p re sen te d th e A m eric an eel m ito c h o n d ria l h ap lo ty p e . DISCUSSION Species-diagnostic markers for detecting hybridization T h e g rea te r cap ac ity to analyze g e n o m e -w id e p a tte rn s o f v a ria tio n u s in g g e n o ty p in g -b y -seq u e n c in g ap p ro a ch e s has im p ro v ed th e m eans o f id en tify in g h y b rid s a n d e x am in in g th e genetic a n d ev o lu tio n a ry co n sequences o f species h y b rid iza tio n . U sing a n a rray o f d ia g n o stic R A D -genera ted SN Ps w ith h ig h e st F s t va lues b e tw een E u ro p ean a n d A m erican eel, w e w ere ab le to reh ab ly id en tify h y b rid s u p to th e th ird gen era tio n . S im u la tio n s sh o w ed a h ig h d is c r im in a to ry p o w er o f th e m ark ers , as w e w ere able to co rrec tly id en tify 100% o f F1 hy b rid s a n d 99% o f backcrosses w ith p u re p a re n ta l species. O u r re su lts co n firm th a t SN Ps are effective m a rk e rs to s tu d y h y b rid iza tio n a n d de tec t in tro g re ss io n (H o h e n lo h e et a l , 2011, 2013; A m ish e t a l., 2012; N u ssb e rg e r e t aL, 2013). B ecause o f th e ir re la tively lo w m u ta tio n ra te a n d co n se q u en tly low n u m b e r o f alleles, SN Ps a re m o re likely to b e d iag n o stic loci th a n h ig h ly p o ly m o rp h ic m a rk e rs such as m ic ro - sate llites th a t p re sen t a h ig h e r p ro b a b ility o f allele sh a r in g betw een re la ted species d u e to h o m o p la sy (B alloux a n d G o u d e t, 2002 ). Expected proportion of he te ro zyg o u s loci o u r w ca J ó ó ó V _ i _ i S >«/) > Figure 5 Comparison of observed and expected proportion of heterozygous loci in (1) first-generation backcrosses European eel x F1 (dark grey) and (2) second-generation backcrosses between first-generation backcrosses American eel x F1 hybrid and European eels (light grey) based on 10000 simulated individuals per category using HYBRIDLAB. Arrows indicate observed proportion of heterozygous loci. Heredity Hybridization between North Atlantic eels JM Pujolar e f a/ Has hybridization in North Atlantic eels been nnderestimated? T h e h ig h d is c r im in a to iy p o w er o f th e set o f d iag n o stic loci allow s us to ad d re ss th e q u e s tio n o f w h e th e r p rev io u s s tu d ies have u n d e r- e s tim a te d th e n u m b e r o f h y b rid s b e tw ee n th e tw o species. T h is seem s o n ly to a m in o r e x te n t to be th e case. Als e t al. (2011) id en tified a s ing le h y b rid a m o n g la rvae co llec ted in th e Sargasso Sea, w hereas the p re sen t s tu d y id e n tifie d tw o h y b rid s a m o n g a su b sa m p le o f th e sam e larvae, b o th sec o n d -g e n e ra tio n backcrosses. A n eel la rvae s u n 'e y c o n d u c te d in th e S argasso Sea in M a rc h -A p r il 2007 d u r in g th e D a n ish G a la th ea 3 m a r in e e x p ed itio n , f ro m w h ich th e la rvae in c lu d e d in o u r s tu d y are d e riv ed , shovved b o th species c o o ccu rr in g a t m o s t o f th e 37 sam p lin g s ta t io n s d is tr ib u te d a lo n g th e lo n g itu d e s 64 W, 65 °W , 6 7 c W a n d 7 0 ' W b e tw een 24 a n d 30° la titu d e , w ith A m erican eel b e in g p re d o m in a n t in th e W est a n d g rad u a lly b e in g rep laced by E u ro p ea n eel to w a rd s th e E ast (Als e t a l , 2011). N evertheless, th e o b se rv a tio n in o u r s tu d y o f o n ly 2 p u ta tiv e h y b rid s o u t o f 96 in d iv id u a ls (2 .0 6 % ) does n o t s u p p o r t tlie ex istence o f a d is tin c t m a r in e h y b rid zo n e w h e re th e tw o N o r th A tlan tic eel species adm ix . F u r th e rm o re , th e tw o la rvae id e n tif ie d as h y b rid s w ere sam p led a t s ta t io n s > 600 k m a p a r t: o n e h y b rid w as co llected a t lo n g itu d e 64 °W / la titu d e 27.42 °N in tlre m id -e a s te rn S argasso Sea, w hereas th e o th e r h y b rid w as co llected a t lo n g itu d e 6 9 .6 'W /la t i tu d e 26 °N in th e w este rn Sargasso Sea. I t is su rp ris in g th a t th e tw o h y b rid s fro m th e Sargasso Sea w ere s e c o n d -g e n e ra tio n backcrosses, w h ereas n o F l h y b rid s o r first- g e n e ra tio n backcrosses w ere observ ed . O n e possib le e x p la n a tio n co u ld b e th a t th e o c cu rre n ce o f h y b rid iza tio n d iffers b e tw een years, a p a tte rn th a t h a s p rev io u s ly b e en suggested to exp la in te m p o ra lly v a ry in g p ro p o r t io n s o f h y b rid s o b se rv ed in Ice lan d (Avise et a l , 1990; A lbert e t a l , 2 0 0 6 ). T h is c o u ld be because o f d ifferences in te m p o ra l overlap o f sp aw n in g t im e be tw een th e species across years, possib ly m ed ia ted b y a m o re s o u th e rn o r n o r th e rn d isp la ce m e n t o f th e rm a l fro n ts across years. In d e ed , th e th e rm a l fro n ts w h e re eels a re a ssu m ed to spaw n s h o w c o n sid e ra b le d ifferences in in te n s ity a n d geog rap h ica l p o s itio n b e tw ee n years (M u n k e t a l , 2010). N o h y b rid s w ere d e te c te d in th e F a roe Islands. In the case o f Ic e lan d ic eels, th e set o f d ia g n o stic m a rk e rs co n firm s th a t hyb rid s a re c o m m o n . T h e p ro p o r t io n o f hybi'id in d iv id u a ls fo u n d in o u r s tu d y (1 0 .7% ) is lo w er th a n th e values re p o r te d by A lb e rt e t al. (2006) u s in g am p lified frag m e n t le n g th p o ly m o rp h ism m ark e rs (15 .5% ). H ow ever, th e h ig h e r p ro p o r t io n o f h y b rid s in th e la tte r s tu d y m ig h t be b e cau se o f th e d iffe ren t lo c a tio n s sam p led across s tud ies. T h e tw o lo ca tio n s w ith th e h ig h e s t p e rcen tag e o f hy b rid s in th e s tu d y o f A lb e rt e t al. (2006) w ere n o t in c lu d e d in o u r s tudy : th e n o r th e a s te rn m o s t lo c a tio n , S au d a rk ro k u r , c o n s ti tu te d b y 100% h y b rid s , a n d th e n o r th w e s te rn m o s t lo c a tio n , R eykholar, c o n s ti tu te d b y 4 5 % h y b rid s . W lren c o m p a r in g lo c a tio n s across s tu d ies, h y b rid s w ere fo u n d in all ío c a tio n s sh a red , a l th o u g h h y b rid p ro p o r tio n s w ere o n iy s im ila r a t o n e lo c a tio n , V ogslaekur (11 .1% in o u r s tu d y a n d 11.9% in A lb e rt e t a l , 2 0 0 6 ). O n ly a t o n e lo ca tio n , S tokkseyri, th e p ro p o r t io n o f h y b rid s w as h ig h e r in o u r s tu d y (20% ) in c o m p a ris o n w ith th e A lbert e t al. (2006) s tu d y (8 .3 % ). A t th e re m a in in g lo ca tio n s, h y b rid p ro p o r t io n s w ere h ig h e r in A lbert e t al. (2 0 0 6 ). H ow ever, th e overall h y b rid p ro p o r t io n in b o th s tu d ie s w as w ell h ig h e r th a n th e v alues re p o r te d by th e earlie r s tu d y o f Avise e t al. (1990) th a t suggested th a t — 2 -4 % o f th e gene p o o l o f Ice land ic eels is d e riv ed fro m A m e rican eel ancestry . T h e low er h y b rid iza tio n d e tec ted m ig h t be a ttr ib u ta b le to th e lo w re so lu tio n o f th e m ark e rs u sed (a llozym es a n d m ito c h o n d r ia l D N A ) in c o m p a ris o n w ith a m p lified f rag m en t le n g th p o ly m o rp h ism s (A lb e rt e t al., 2006 ) o r SN Ps (th is s tu d y ). Patterns of hybridization T h e inc reased re so lu tio n o f o u r a rray o f d ia g n o stic R A D -genera ted SN P m arke rs sheds new lig h t o n th e s ta tu s o f h y b rid s a n d th e n a tu re o f in tro g re ss io n in Ice land ic eels. A cco rd in g to o u r SN P survey, p u re E u ro p ea n eels m a d e u p th e m a jo rity o f lce lan d ic eels b u t th e re is also an im p o r ta n t in flux o f in d iv id u a ls o f ad m ix e d ancestry . In o u r s tu d y hyb rid s en co m p assed : F1 hy b rid s re su ltin g from crosses betw een E u ro p ean eel fem ales a n d A m e rican eel m ales, f ir s t-g en e ra tio n back- crosses be tw een p u re E u ro p ea n eels a n d F1 h y b rid s (o n e in d iv id u a l) a n d sec o n d -g e n e ra tio n backcrosses be tw een firs t-g en e ra tio n back- c rosses (p u re A m e ric a n e e l x F l h y b rid ) a n d p u re E u ro p ea n eels ( th ree in d iv id u a ls ). N o n e o f th e ad m ix e d in d iv id u a ls w ere F2 hy b rid s re su ltin g fro m crosses b e tw een F1 hyb rid s. A lth o u g h th e h y b rid classes o b serv ed w ere re s tric ted to th e first th re e g en era tio n s , th e f in d in g o f A m erican eel m tD N A in a n in d iv id u a l w ith a seem ing ly p u re E u ro p ea n n u c le a r g e n o m e suggests th a t successfu l h y b rid iza tio n o ver several g en era tio n s is possib le , a l th o u g h rare . In th is sense, la te r h y b rid s m ig h t have b e en m issed becau se o f lo w sam p le sizes. I t sh o u ld a lso be n o te d th a t SN Ps th a t a re fixed b e tw een species a re likely to m a rk c h ro m o so m a l re g io n s u n d e r s tro n g d irec tio n a l selec tion o r g en o m ic in c o m p a tib ilitie s (G ag n aire e t a l , 20 1 2 ). D u rin g su b seq u en t gen era tio n s o f backcross ing , se lec tion c o u ld rem o v e in trog ressed alleles a t d iag n o stic m ark e rs . T h e n u m b e r o f in d iv id u a ls rep re sen tin g m u ltig e n e ra tio n backcrosses co u ld th e re fo re in p rin c ip le be u n d e re s tim a ted . A lth o u g h F1 h y b rid s a re likely to o u tp e rfo rm e ith e r p u re p a ren ta l species in su iw iving d u e to h y b rid v ig o r (T em p le to n , 1986; Jo h n so n e t a l , 2010 ), in m a n y species F l h y b rid s have b een s h o w i to be in fertile , o ften reg a rd ed as a n e v o lu tio n a ry d e ad e n d w h e n h y b rid s are u n ab le to p ro d u c e v iab le progeny. T h is is n o t th e case o f th e E u ro p ean eel, as o u r s tu d y show s the p resen ce o f firs t- a n d sec o n d -g en e ra tio n backcrosses in Ice lan d th a t n o t o n ly in d ic a tes th a t F1 h y b rid s are viab le a n d can su rv ive in Ice land , b u t a lso th a t th ey can successfu lly m ig ra te b ack to th e Sargasso Sea as s ilver eels a n d re p ro d u c e as p a r t o f th e sp aw n in g stock. O u r s tu d y also show s th a t it is possib le fo r a backcross o r ig in a te d from a cross be tw een an F1 a n d an A m erican eel to re tu rn to th e Sargasso a n d in te rb ree d w ith a p u re E u ro p ea n eel, w ith th e re su ltin g sec o n d -g e n e ra tio n b ackcross ev en tually se ttlin g d o w n in Iceland. A ltem atively , th o se in d iv id u a ls id e n tified as s ec o n d -g en e ra tio n backcrosses m ig h t be firs t-g en e ra tio n backcrosses b e tw een E u ro p ean eel x F l h y b rid sh o w in g h ig h e r- th an -ex p e c ted h e te rozygosities (F igu re 5). O n e m e c h an ism th a t c o u ld exp la in th is is in tr in s ic o u tb re e d in g d ep re ss io n (T em p le to n , 1986; A llen d o rf et a l , 2001 ) th o u g h t to b e because o f g enetic in c o m p a tib ilitie s b e tw een species invo lv ing d e le te r io u s e p ista tic in te ra c tio n s c au sed by th e co m b in a tio n o f in c o m p a tib le alleles fro m d iffe ren t loci in hy b rid s (D obzhansky , 1936; M uller, 1942). I t is o ften fo u n d th a t F2 h y b rid s sh o w red u c ed fitness because o f d is ru p tio n o f sets o f c o -a d a p te d genes by re c o m b in a tio n th a t o c cu rs in tlie seco n d o r la te r g e n e ra tio n s w hen a ss o rtm e n t o f alleles a t d iffe ren t loci takes p lace (G h a rre tt a n d Sm oker, 1991; Jo h n so n e t a l , 2010 ). Eels a re h ig h ly fecu n d , w ith an e s tim a te d m e a n fe c u n d ity o f 3 .6 m illio n o f eggs p e r fem ale (M acN am ara a n d M cC arthy , 2012); the re fo re , even th o u g h th e expec ted p ro p o r t io n o f h e te ro zy g o u s loci in firs t-g en e ra tio n back- crosses is 50% , th e re w ill b e v a ria n ce a ro u n d th is n u m b e r. In a large n u m b e r o fo f f s p r in g from a sing le cross, th e re w o u ld co n seq u e n tly be so m e in d iv id u a ls th a t sh o w h ig h h e te ro z y g o sity fo r d iag n o stic alleles at loci th a t p re su m ab ly a re u n d e r se lec tion . T hese in d iv id u a ls m ig h t be fu n c tio n a lly c loser to F1 h y b rid s , w ith m o re sets o f c o -ad ap ted alleles fro m each o f th e p a re n ta l species re la tive to average Heredity Hybridization between North Atlantic eels JM Pujolar ef al backcrosses, w h e re p ro n o u n c e d d is ru p t io n o f c o -a d a p te d gene c o m - plexes is expected . Finaliy, a h ig h e r- th an -ex p e c te d h e te rozygosity co u ld a lso b e ex p la in ed by p ro d u c tio n o f p a rtly u n re d u c ed gam etes in F1 h y b rid s g iven rise to tr ip lo id p ro g e n y w h en back cro ssed to e ith e r p a re n ta l species ( Jo h n so n a n d W rig h t, 1986; C astillo et al., 2 0 0 7 ), a lth o u g h h e te ro zy g o sity va lues sh o u ld vary ra n d o m ly a n d n o t necessarily fit the o b se rv ed p a tte rn o f d ev ia tin g backcrosses. In to ta l, w e fin d it m o s t likely th a t th e d ev ia tin g backcrosses a re in d e e d se c o n d -g e n e ra tio n backcrosses, as th ey w ere id en tified as su ch w ith h ig h p ro b a b ility u s in g N ew H y b rid s a n d as th e o b serv ed h e te ro zy g o sity m a tc h e d ex p ec ta tio n s fo r th is ty p e o f cross. T h e f in d in g th a t F1 h y b rid s can back cro ss to o n e s p e d e s (A m erican eel) a n d in th e su b se q u e n t g e n e ra tio n b ackcross to th e o th e r species (E u ro p e an eel) is re m ark ab le . A t p re sen t, th e u n d e rly in g m e ch an ism s c a n n o t b e id en tified . H ow ever, as E u ro p ea n a n d A m e rican eels have d iffe ren t p eak spaw m ing tim e ( M cC leave e t a i , 1987), th is is likely to be an im p o r ta n t p rezy g o tic re p ro d u c tiv e iso la tio n m e ch an ism . T h is m a y b e b ro k e n u p in h y b rid s le ad in g to in te rm e d ia te sp aw n in g t im e a n d a h ig h e r p ro b a b ility o f in te rb ree d in g w ith e ith e r o f th e p a re n ta l species. Why are hybrids primarily found in Iceland? A lth o u g h genetic m a rk e rs have sh o w n th e o ccu rre n ce o f hyb rid s in Ice lan d (Avise e t a i , 1990; A lb e rt c t a l , 2 0 0 6 ), th e g eo g rap h ic ran g e lim it o f h y b rid s a n d th e ir p resen ce in o th e r E u ro p ea n lo ca tio n s has re m a in e d u n c e r ta in . T h e o b se i'v a tio n in o u r s tu d y o f 100% p u re E u ro p ean eels in th e F a ro e Is lands, w h ich a re th e c losest b o d ies o f la n d to Ic e la n d a t a d is ta n ce o f 450 k m , suggests th a t h y b rid s d o n o t sp re ad m u c h to w ard s th e E ast a n d are lim ited to Iceland . E arly in d ic a tio n s tlia t h y b rid s m ig h t o c cu r in th e F a roe Is lands cam e fro m th e s tu d y o f B oétiu s (1980) based o n to ta l n u m b e r o f v erteb rae , p rev io u s ly reg a rd e d as th e b e s t d is tin g u ish in g ch a rac te r b e tw een E u ro p ean a n d A m erican eels. In a c o m p reh e n siv e su rvey o f over 15 000 in d iv id u a ls c o m p ris in g all o f E u ro p e a n d N o r th A frica, N o r th e m E u ro p e a n lo c a tio n s sh o w ed 1^1% in d iv id u a ls w ith relatively lo w v e rteb rae c o u n ts , as is ty p ica l o f A m e ric a n eel. A lth o u g h ve rteb rae co u n ts in Ita ly (N = 1287) ra n g e d b e tw een 111 a n d 119, in d iv id u a ls sh o w in g v e rteb ra e c o u n ts o f < 1 1 0 w ere o b se rv ed in b o th Iceland (1 0 8 -1 1 0 ) a n d F a ro e Is lan d s (1 0 6 -1 1 0 ) th a t p o in te d to th e presence o f e ith e r p u re A m e ric a n eels o r h y b rid s in N o r th e rn E u ro p e a n d a rela tively h ig h deg ree o f mLxing b e tw een th e tw o species. H ow ever, the o b se rv a tio n in o u r s tu d y o f 100% p u re E u ro p ea n eel in d iv id u a ls w ith n o s ig n a tu re s o f a d m ix e d a n ce s try in th e F aroe Is lan d s suggests th a t th e sh ift to w a rd s A m e ric a n values in v e rte b ra e c o u n ts o b served by B oétiu s (1980) is n o t b ecau se o f th e p resen ce o f h y b rid s a n d m ig h t be th e re su lt o f a h ig h v a ria b ility in th is tra it. W h y a re h y b rid s b e tw een E u ro p e a n a n d A m erican eel fo u n d p rim arO y in Iceland? H y b rid s c o u ld ex h ib it a genetica lly d e fin e d in te rm e d ia te d u ra t io n o f th e larval p h a se sy n ch ro n ized w ith an in te rm e d ia te d e v e io p m e n t tim e (Avise e t a l , 1990). T h is w o u ld ex p la in th e p resen ce o f h y b rid s in Ic e lan d th a t is s o m e w h a t s itu a ted halfw ay e n ro u te fro m th e S argasso Sea to E u rope. H ow ever, th e m ig ra tio n d u ra t io n o f E u ro p e a n a n d A m erican eel la rv ae fro m th e Sargasso Sea to th e ir respective c o n tin e n ts re m a in s un reso lv ed a n d h ig h ly d e b a ted , a lth o u g h i t is o b v io u s th a t m ig ra tio n d is tan ce is m u c h lo n g e r fo r E u ro p ea n th a n fo r A m erica n eels. F o r E u ro p ean eels, m ig ra tio n t im e e s tim a te s ran g e fro m 7 to 9 m o n th s to 2 years d e p e n d in g o n th e a s s u m p tio n s a n d m e th o d s u sed , w hereas estim ates fo r A m eric an eels ran g e b e tw een 6 a n d 12 m o n th s ( B o n h o m m e au e t al. , 2009 ). D iffe ren t la rva l m ig ra tio n d u ra t io n is a lso s u p p o r te d by a tra n s c r ip to m e s tu d y o f la rvae o f b o th eel species co llected in the Sargasso Sea (B em atch ez et al., 2 0 1 1 ). L arvae show ed very s im ila r tra n s c r ip to m e pro files a t dififerent age stages, b u t th e re w as a s ign ifican t delay o f u p - a n d d o w n -re g u la tio n in E u ro p ea n as o p p o sed to A m erican eels, c o n sis te n t w ith th e a s s u m p tio n o f a s h o r te r larval stage a n d m ig ra tio n tim e in tlie la tter. I t is possib le to sp ecu la te th a t h y b rid s m ig h t sh o w a n in te rm e d ia te m ig ra to ry b e h av io u r a n d larval d e v e lo p m en ta l (m e ta m o rp h o s is ) b e tw een th e tw o N o r th A tlan tic p a re n ta l species th a t u ltim a te ly b rin g s h y b rid la rvae to th e sh o re s o f Ice land . Several s tu d ie s have sh o w n a n in te rm e d ia te m ig ra to ry b e h a v io u r in h yb rid s . E x p e rim en - tally p ro d u c e d h y b rid s o f a n exclusively m ig ra to iy E u ro p ea n p o p u la - tio n a n d a p a rtia lly m ig ra to ry A frican p o p u la tio n ofi th e b lackcap Sylvia atricapilla sh o w ed in te rm e d ia te m ig ra to ry restlessness a n d an in te rm e d ia te p e rcen tag e o f b ird s d isp lay in g restlessness c o m p a re d w ith th e tw o p a re n ta l s tocks (B e rth o ld a n d Q u e m er , 1981). Sim ilarly, hyb rid s b e tw een c o m m o n re d s ta r ts P hocnicurus phoei:icurus a n d b lack re d s ta r ts P. ochruros sh o w e d in te rm e d ia te tim e co u rse o f m ig ra to ry activ ity re la tive to th e p a re n ta l species (B e rth o ld a n d Q u e m e r , 1995). In fish, h y b rid s be tw een coasta l c u t th ro a t t ro u t (O ncorhynchus clarki clarki) a n d stee lh ead t r o u t (O . m ykiss ) sh o w ed b o th in te rm e d ia te sw im m in g ab ility a n d in te rm e d ia te m ig ra to ry b e h a v io u r to th a t o f e ith e r species (M o o re e t a l , 20 1 0 ). H en ce , it is p lau sib le th a t hyb rid s b e tw een E u ro p ean a n d A m erican eels w o u ld a lso sh o w in te rm e d ia te m ig ra to ry b e hav iou r, a lth o u g h tliis re m a in s to be investigated . T h e q u e sd o n still re m a in s o f w hy h y b rid eels are a b u n d a n t in Tceland b u t n o t in th e n e ig h b o u rin g F aroe Islands. H e re it sh o u ld b e n o te d th a t th e N o r th A tlan tic C u rre n t ( th e n o rth e a s tw a rd ex ten sio n o f th e G u lf S tream ) t ra n s p o r tin g th e eel la rv ae ac tu a lly separa te s in to tw o b ran ch es ~ 1 0 0 0 k m so u th w es t o f Iceland . T h e o n e b ra n c h passes th e Faroese sh e lf a n d c o n tin u e s in to tlre N o r th Sea a n d N o rw eg ian Sea to w ard s th e co as t o f N orw ay. T h e o th e r b ra n ch , th e I rm in g e r C u rre n t, sh ifts in a n o rth w e s te rn d ire c tio n to w a rd s a n d a lo n g th e w est coasts o f Iceland . H ence , in te rm s o f m ig ra to ry ro u te s , eels fro m Ice land a n d th e F a roe Is lands a re ex p ec ted to b e sep a ra ted by > 1 0 0 0 k m , even th o u g h th e sh o rte s t d irec t w a terw ay d is tan ce is c o n sid e rab ly sho rte r. Biological implications o f pattems o f hybridization E u ro p ean a n d A m e rican eel re p re sen t cx tre m e life h is to rie s a n d a p e cu lia r h y b rid iz a tio n scen ario invo lv ing tw o p a n m ic tic species an d yet a very loca lized o ccu rren ce o f h yb rid s . N evertheless, even very low g en e flow b e tw een th e species m a y b e b io log ica lly s ig n ifican t a n d co u ld exp la in th e su rp ris in g ly low gen etic d iffe ren tia tio n be tw een N o r th A tlan tic eels o b serv ed in p rev io u s s tu d ie s (M an k a n d Avise, 2003; W irth a n d B ernatchez , 2003). A t eq u ilib r iu m , F$r sh o u ld be ap p ro x im a te ly equal to l / ( l + 4 N em ) (W rig h t, 1931), w h ere N e d en o tes effective p o p u la tio n size a n d m is m ig ra tio n ra te p e r gen e ra tio n . E s tim a tes o f lo n g -te rm N e in A tlan tic eels d e riv ed fro m m ic ro sa te llite m a rk e rs are o n th e o rd e r o f 4 0 0 0 -1 0 0 0 0 (W irth a n d B ernatchez , 2003; P u jo la r e t a l., 2 0 1 1 ), w hereas a recen t s tu d y em p lo y in g RA D seq u en c in g suggests th a t h is to rica l N c in E u ro p ean eel m ay b e as h ig h as ca. 1000 0 0 to 1 000 000 ( P u jo la r e t a l , 2013). If w e a ssu m e th a t F ^r b e tw een th e species is ca. 0.05 (ro u g h ly re flec ting th e e stim ates by M an k an d Avise, 2003; W ir th a n d B ernatchez , 20 0 3 ) th e n a t N e values o f 4000 to 1 0000 th is w o u ld c o rre s p o n d to m ig ra tio n ra te s o f 1.2 x 10 ~ 3 a n d 4.8 x 10 ~ 4, w hereas fo r N e values o f 100000 a n d 1 OOOOOOm it w o u ld be as low as 4.8 x 1 0 -5 a n d 4.8 x 1 0 - 6 . H ence , d e p en d in g o n w h ich o f th e N e estim ates b est reflects th e tru c N e, i t w o u ld o n ly tak e a lo w to very lo w level o f gene flow to m a in ta in overall Iow gen etic d ififeren tiation betrween th e species. Heredity Hybridization between North Atlantic eels JM Pujolar et al 10 W e p re d ic t th a t th e o c c u rren ce o f low g enetic d iffe ren tia tio n b e tw een closely re la ted a n d occasio n a lly h y b rid iz in g species m ay be a c o m m o n o c cu rre n ce a m o n g m a rin e fishes a n d in v e rteb ra tes e x h ib itin g la rge effective p o p u la tio n sizes, even i f gene flow is q u a n tita tiv e ly v e ry low. In th e N o r th e rn H e m isp h e re , p laice (Pleur- onectes p la tesa ) a n d f lo u n d e r (P la tich thys flesus) rep re sen t a g o o d ex am p le o f h y b rid iz in g spec ies tlia t c o u ld be u sed fo r fu r th e r s tu d y in g th e g en era lity o f su ch p a t te m s ( K ijew ska e t a l , 2 0 0 9 ). DATA ARCHIVING All seq u en c in g files (.fastq ) c an b e fo u n d o n N C B I’s S equence Read A rchive u n d e r p ro je c t n u m b e r P R J N A l95555 (E u ro p ean eel) a n d PR JN A 230782 (A m e ric a n eei). CONFLICT OF INTEREST T h e a u th o rs dec lare n o c o n flic t o f in te res t. ACKNOWLEDGEMENTS W e t h a n k R u s s e l P o o l e , J a v i e r L o b o n , E r í c F e u n t e u n a n d p a r t i c i p a n t s i n t l i e G a l a t h e a 3 E e l P r o j e c t f o r p r o v i s i o n o f s a m p l e s , K a r e n - L i s e D M e n s b e r g , D o r t e M e l d r u p a n d A n n i e B r a n d s t r u p f o r t e c h n i c a l a s s i s t a n c e a n d t h r e e a n o n y m o u s r e v i e w e r f o r c o n s t r u c t i v e c o m m e n t s o n t h e m a n u s c r i p t . W e a c k n o w l e d g e f u n d i n g f f o m t h e D a n i s h C o u n c i l f o r I n d e p e n d e n t R e s e a r c h , N a t u n i l S c i e n c e s ( G r a n t 0 9 - 0 7 2 1 2 0 ) . Allendorf FW. Learv RF. Spruell P. Wenbure JK (2001). The problems with hvbrids: setting conservation guidelines. Trends Ecot Evol 16: 613-622. Albert V. Jónsson B. Bernatchez L Í2006). Natural hvbrids in Atlantic eels ÍAneuilla ansuilla. A. rostrata): evidence for successful reoroduction and fluctuating abundance in space and time. Mol Ecol 15: 1903-1916. Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aarestrup L et al. (2011). All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol 20. 1333-1346. Amish SJ, Hohenlohe PA, Painter S. Learv RF. Muhfeld C. Allendorf FW etal. (2012). RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout species-diagnostic SNP assavs. Mol Ecol Res 12: 653-660. Anderson EC. Thompson EA (2002). A model-based method for identifvingspecies hvbrids using multilocus genetic data. Genetics 160: 1217-1229. Avise JC. Helfman GS, Saunders NC, Hales LS (1986). Mitochondrial DNA differentiation in North Atiantic eels: population genetic consequences of an unusual life historv pattern. Proc Natl Acad Sci USA 83: 4350-4354. Avise JC. Nelson WS. Arnold J. Koehn RK. Williams GC. Thorsteinsson V (1990). The evolutionarv genetic status of lcelandic eels. Evolution 44: 1254-1262. Baird NA. Etter PD. Atwood TS. Currev MC, Shiver AL. Lewis ZA etal. (2008). Raoid SNP discoverv and genetic maoping using seauenced RAD markers. PLoS One 3: e3376. Balloux F. Goudet J (2002). Statistical properties of population differentiation estimators under stepwise mutation in a finite island model. Mol Ecol 11: 771-783. Bernatchez L. St-Cvr J. Normandeau E. Maes GE. Als TD, Kaluinaia S et al. (2011). Differential timing of gene expression regulation between leptocephali of the two Ansuilla species in the Sargasso Sea. Ecol Evol 1: 459-467. Berthold P. Querner U (1981). Genetic basis of migratorv behaviour in European warblers. Science 212: 77-79. Berthold P. Querner U (1995). Microevolutionary aspects of bird migration based on experimental results. Isr J Zool 41: 377-335. Boétius J (1980). Atlantic Aneuilla: a presentation of old and new data of total number of vertebrae with special reference to the occurrence of Ansuilla rostrata in Europe. Dana 1: 93-112. Bonhommeau S. Blanke B. Tréguier AM. Grima N. Rivot E. Vermand Y etat. (2009). How fast can the European eel (AnsuiUa ansuilla) larvae cross the Atlantic Ocean? Fish Oceanosr 18: 371-385. Castillo AGF. Beall E. Moran P. Martinez JL. Ayllon F. Garcia-Vazquez E (2007). Introgression in the genus Sa/mo via allotriploids. Mol Ecol 16: 1741-1746. Catchen JM. Amores A. Hohenlohe PA, Cresko WA, Postlethwait JH (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genom Genet 1: 171-182. Cöté C, Gagnaire PA, Bourret V, Verrault G, Castonguay M, Bernatchez L (2013). Population genetics of the American eel (Anguilla rostrata). F s t = 0 and North Atlantic Oscillation effects on demographic fluctuations of a panmictic species. Mol Ecol 22: 1763-1776. Dobzhanskv T (1936). Studies on hvbrid sterilitv. II. Location of sterilitv factors on Drosophila oseudoobscura. Genetics 21: 113-135. Ellison CE. Hall C. Kowbel D. Welch J. Brem RB, Glass NL et al. (2011). Population genomics and local adaptation in wild isolates of a model microbial organism. Proc Natl Acad Sci USA 107: 2831-2837. Etter PD, Preston JL. Bassham S, Cresko WA, Johnson EA (2011). Local de novo assemblv of RAD paired-end contigs using short sequencing reads. PLoS One 6: e!8561. Feder JL, Egan SP, Nosil P (2012). The genomics of speciation-with-gene-flow. Trends Ecol Evol 28: 342-349. Gagnaire PA. Albert V. Jónsson B, Bernatchez L (2009). Natural selection influences AFLP intraspecific genetic variabilitv and introgression patterns in Atlantic eels. Mol Ecol 18: 1678-1691. Gagnaire PA. Normandeau E. Bernatchez L (2012). Comparative genomics reveals adaptive protein evolution and a possible cvtonuclear incompatibilitv between Eur- opean and American eels. Mol Biol Evol 29: 2909-2919. Gharrett AJ. Smoker WW (1991). Two generations of hvbrids between even- and odd-vear pink salmon tOncorhvnchus sorbuscha)-. a test for outbreeding depression? Can J Fish Aauat Sci 48: 1744-1749. Grant BR. Grant PR (2002). Simulating secondary contact in allopatric speciation: an empirical test of premating isolation. Biol J Linn Soc 76: 545-556. Harrison RG (1990). Hybrid zones: windows on the evolutionary process. Oxford Surv Evol B ioH : 69-128. Henkel CV, Burgerhout E, de Wijze DL, Dirks RP, Minegishi Y, Jansen HJ et al. (2012). Primitive duplicate Hox clusters in the European eeís genome. PLoS One 7: e32231. Hewitt GM (1988). Hybrid zones: natural laboratories for evolutionary studies. Trends Ecol Evol 3: 158-167. Hewitt GM (2011). Quaternarv phvlogeography: the roots of hvbrid zones. Genetica 139: 617-638. Hohenlohe PA. Bassham S. Etter PD. Stiffler N. Johnson EA. Cresko WA (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6: 23. Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011). Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westlope cutthroat trout. Mol Ecol 11: 117-122. Hohenlohe PA, Day MD, Amish SJ, Miller MR, Kamps-Hugues N, Boyer MC etat. (2013). Genomics patterns of introgression in rainbow and westlope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Mol Ecol 22. 3002-3013. Johnson KR, Wright JM (1986). Female brown trout x male Atlantic salmon hybrids produce gvnogens and triploids when backcrossed to male Atlantic salmon. Aauaculture 57: 345-358. Johnson JR, Fitzpatrick BM, Shaffer HB (2010). Admixture dynamics of tiger salaman- ders: fitness of early-generation hybrids and the retention of low-fitness genotypes in contemporary populations. BMC Evol Biol 10: 147. Kiiewska A, Burzvnski A. Wenne R (2009). Molecular identification of European flounder [Piatichthvs fíesus) and its hybrids with European plaice (Pleuronectes olatessa). ICES J Mar Sci 66: 902-906. Langmead B, Trapnell C. Pop M, Salzberg SL (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. McCleave JD. Kleckner RC, Castonguav M (1987). Reproductive svmpatrv of American and European eels and implications for migration and taxonomy. Arn Fish Soc Svmp 1: 286-297. MacNamara R, McCarthy TK (2012). Size-related variation in fecunditv of European eel (Ansuilla ansuilla). ICES J Mar Sci 69: 1333-1337. Mallet J (1995). A species definition for the modem svnthesis. Trends Ecol Evol 10: 294-299. Mank JE. Av:se JC (2003). Mícrosatellite variation and differentiation in North Atlantic eels. J Hered 94: 30-34. Moore ME, Goetz FA. Van Doornik DM. Tezak EP. Quinn TP, Reves-Tomassini JJ et al. (2010). Early marine migration patterns of wild coastal cutthroat trout (Oncorhynchus clarki clarki), steelhead trout (Oncorhynchus mvkiss) and their hybrids. PLoS One 5: e!2881. Muller HJ (1942). Isolation mechanisms, evolution and temperature. Biol Symp 6: 71-125. Munk P, Hansen MM, Maes GE, Nielsen TG, Castonguay M, Riemann L et al. (2010). Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. P Roy Soc B Biol Sci 277. 3593-3599. Nielsen EE. Bach LA. Kotlicki P (2006). HYBRIDLAB (version 1.0): a program for generating simulated hvbrids from population samoles. Mol Ecol Res 6: 971-973. Nussberger B. Greminger MP. Grossen C. Keller LF. Wandeler P (2013). Development of NSP markers identifying European wildcats, domestic cats. and their admixed progenv. Mol Ecol Res 13: 447-460. Petit RJ, Excoffier L (2009). Gene flow and species delimitation. Trends Ecol Evol 24: 386-393. Pritchard JK. Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945-959. Puiolar JM. Bevacqua D. Cappocioni F. Ciccotti E, De Leo GA. Zane L (2011). No apparent genetic bottleneck in the demographicallv declining European eel using molecular genetics and forward-time simulations. Conserv Genet 12: 813-825. Puiolar JM. Jacobsen MW. Frvdenberg J. Als TD. Larsen PF. Maes GE et al. (2013). A resource of genome-wide single-nucleotide polvmorphisms generated bv RAD tag sequencing in the criticallv endangered European eel. Moi Ecol Res 113: 706-714. Rieseberg LH, Willis JH (2007). Plant speciation. Science 317: 910-914. Heredity Hybridization between North Atlantic eels JM Pujolar et al Scaglione S, Acqnadro A. Portis E, Tirone M. Knapp S, Lanteri S (2012). RAD tag seguencinK as a source of SNP markers in Cynara cardunculus. BMC Genomics 13: 3. Seeb JE. Pascal CE. Ramakrishnan R. Seeb LW (2009). SNP genotyping bv the 5'- nuclease reaction: advances in high-throughput genotyping with nonmodel organisms. Method Mol Biol 578: 277-292. Stolting KN, Nipper R, Lindtke D, Caseys C, Waeber S, Castíglione S ef al. (2013). Genomic scan for single nucleotide polymorphisms reveals patterns of divergence and gene flow between ecologically divergent species. Mol Ecol 22. 842-855. Templeton AR (1985). Coadaptation and breeding depression. In: Soulé ME (ed.) Conserva- tion Biology: The Science of Scarcity and Diversity. Sinauer: Sunderland, pp 105-116. Trautner J (2006). Raoid identification of European (Ansuilla ansuilla) and North American eel (Aneuilla rostrata) bv polymerase chain reaction. Inf Fischereiforsch 53: 49-51. Van Bers NEM, Van Oers K, Kerstens HHD (2010). Genome-wide SNP detection in the great tit Parus major using high throughtput sequencing. Mol Ecol 19: 89-99. van den Thillart G. Rankin JC. Dufour S (2009). Spawnins Mieration of the European Eel: Reproduction Index, a Useful Tool for Conservation Management. Springer: Dordecht: The Netherlands. Wagner CE. Keller I. Wittwer S. Selz OM. Mwalko S. Greuter L et al. (2012). Genome-wide RAD sequence data provide unprecedented resolution in species boundaries and relationships in the Lake Victoria cichlid adaotive radiation. Mol Ecol 22: 787-798. Wirth T. Bernatchez L (2003). Decline of Atlantic eels: a fatal svnergy? P Roy Soc B Biol Sci 270: 681-688. Wright S (1931). Evolution m Mendelian populations. Genetics 16: 97-159. S u p p le m e n ta ry In fo rm a tio n a cc o m p an ie s th is p a p e r o n H e re d ity w ebsite (h ttp ://w w w .n a tu re .c o m /h d y ) Heredity http://www.nature.com/hdy Ulrik er al. BMC Evolutionary Biology 2014, 14:138 http://www.biomedcentral.eom/1471 -2148/14/138 ( b m c Evolutionary Biology R E S E A R C H A R T I C L E O pen Access Do North Atlantic eels show parallel patterns of spatially varying selection? Malene G Ulrik1 f , José Martín P u jo lar1 f , Anne-Laure Ferchaud1, Maqnus W Jacobsen1, Thomas D Als2'3, Pierre A lexandre Gaqnaire4, Jane Frydenberq1, Peder K Bocher1, Bjarni Jónsson5, Louis Bernatchez6 and M ichael M Hansen1" Abstract Background: The tw o North Atlantic eel species, the European and the American eei, represent an ideal system in which to study parallel selea ion patterns due to their sister species status and the presence o f ongo ing gene flow. A panel o f 80 coding-gene SNPs previously analyzed in American eel was used to genotype European eel individuals (glass eels) from 8 sampling locations across the species distribution. We tested fo r single-generation signatures o f spatially varying selection in European eel by searching fo r elevated genetic d ifferentia tion using Fs r based outlie r tests and by testing fo r significant associations between allele frequencies and environm ental variables. Results: We found signatures o f possible selection at a total o f 11 coding-gene SNPs. Candidate genes for local selection constitu ted m ainly genes w ith a major role in metabolism as well as defense genes. Contrary to what has been found for American eel, on ly 2 SNPs in our study correlated w ith differences in tem perature, which suggests tha t o ther explanatory variables may play a role. None o f the genes found to be associated w ith explanatory variables in European eel showed any correlations w ith environm ental factors in the previous study in American eel. Conclusions: The d iffe rent signatures o f selection between species could be due to distinct selective pressures associated w ith the m uch longer larval m igration for European eel relative to American eel. The lack o f parallel selection in North Atlantic eels could also be due to most phenotypic traits being polygenic, thus reducing the likelihood o f selection acting on the same genes in both species. Keywords: Adaptation, European eel, Genetic-by-environm ent associations, Parallel selection, Single nucleotide polym orphism s Background Parallel adaptive changes under replicated environmental conditions have been particularly valuable for under- standing evolutionary processes in natural populations. One of the classical questions in evolutionary bioiogy concerns whether different species and populations within species will adapt to the same agent of selection in the same way or whether the response will involve different traits and genes [1,2]. Parallel genotypic adapta- tion appears to be frequent and occurs at all taxonomic levels from microbes and plants to humans [3,4] and is * Correspondence: michael.m.hansen(S>biology.au.dk +Equal contributors 'Department o f Bioscience, Aarhus University, Ny Munkegade 114, 8ldg. 1540, DK-8000 Aarhus C, Denmark Full list o f author information is available at the end o f the artide BioMed Central likely to result in changes at a relatively small number of genes ]5]. For instance, the study of Colosimo et al. [6] demonstrated that selection on a single gene, ectodyspla- sin (Eda), is responsible for the parallel reduction of armor plates in freshwater populations of threespine sticldeback Gasterosteus aculeatus. However, more complex physio- logical processes relevant in the context of parallel fresh- water adaptation of threespine sticklebacks are influenced by several genes, each of small effect [7-10]. Using a survey of the published literature on parallel adaptation of independent lineages of natural populations, Conte et al. [5] concluded that divergence at loci under selection is most likely to be based on standing genetic variation derived from a common ancestor rather than mutations occurring de novo after divergence. Hence, probability © 2014 Ulrik er al.; licensee BioMed Central Ltd. This is an Open Access artide distributed under the ternns of the Creative Commons Attribution Ucense (httpy/creativecommons.org/licenses/by/4.0), which peimits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.Org/publicdomain/zero/l.0/) applies to the data made available in this article. unless otherwise stated. http://www.biomedcentral.eom/1471 http://creativecommons.Org/publicdomain/zero/l.0/ Ulrik ef al. BMC Evolutionary Biology 2014, 14:138 http://www.biom edcentral.com /1471-2148/14/138 Page 2 o f 11 of gene reuse is plausibly higher in closely related spe- cies, which are likely to show similar divergence at loci subjected to similar selection pressures [11]. An excellent opportunity to test for genetic parallelism exists in the two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (A rostrata). Both species are morphologically almost indistinguishable, with the number of vertebrae being regarded as the best diagnostic character between species [12]. Divergence time between the two species remains largely unresolved, encompassing between 1.5 and 5.8 million years [13-15]. Remarkably, although mitochondrial DNA Iineages of the two species are reciprocally monophyletic [13], differenti- ation at nuclear loci is surprisingly low (FST = 0.055 [16]; Fs t = 0.018 ]17]; FST = 0.06 [18]; Fsx = 0.09 [19]), suggest- ive of ongoing gene flow. In this sense, it is well estab- lished that the spawning grounds of the two species overlap in the Sargasso Sea and there is also overlap in spawning time [20]. European and American eels are known to hybridize, with hybrids observed almost exclu- sively in Iceland [21-23]. Hence, the sister species status of European and American eel and the low but biologically significant gene flow makes them an adequate system in which to test the occurrence of selection at homologous loci within each species. North Atlantic eels have a catadromous life cycle and after spawning in the Sargasso Sea, larvae are transported by the Gulf Stream and other currents to the shores of North America and Europe/North Africa, respectively. Upon reaching the continental shelf, larvae metamorphose into glass eels, which complete the migration into riverine, estuarine and coastal feeding habitats and grow up as yellow eels. After a highly variable feeding stage, yellow eels metamorphose into partially mature silver eels that migrate back to the Sargasso undertaking a journey of about 2,000 km for the American eel and 5,000-6,000 km for the European eel. Upon arriving in the Sargasso Sea, eels reproduce and die [24]. During the continental phase, eels occupy a broad range of habitats from the Caribbean to Greenland in the western Atlantic (American eel) and from Morocco to Iceland in the eastern Atlantic (European eel). The presence of eels in extremely hete- rogenous environments in terms of temperature (i.e. from subtropical to subarctic), salinity (i.e. from fresh- water to marine), substrate, depth or productivity along their geographic distribution makes them ideal species in which to study the consequences of spatially varying selective pressures that often result in local adaptation of ecologically important traits [1,25,26]. Beginning with Levene [27], who introduced the first theoretical model for examining the impact of diversifying selection in space, a number of studies have shown that balancing selection due to spatial heterogeneity is an important mechanism responsible for the maintenance of genetic polymorphism (reviewed in [28]). Genetic variation in a spatially heterogenous environment may be maintained even when dispersal results in complete mixing of the gene pool [1]. However, under such a panmixia scenario, in which offspring are distributed to environments at ran- dom independently of the environment experienced by the parents, local selection cannot to lead to local adapta- tion [29]. In the case of eels, owing to panmixia in both European [19,30] and American eel [31] and random Iar- val dispersal across habitats, heritable trans-generational local adaptation is not possible although single-generation footprints of selection can still be detected. In this sense, significant geographic clines at allozyme Ioci have been detected in both European [32] and American eel [33]. In the most comprehensive study to date, Gagnaire et al. [26] found evidence for spatially varying selection at 13 coding genes in American eel showing significant correlations between allele frequencies and environmental variables (latitude, longitude and temperature) across the entire species range. In this study, we tested for single-generation signatures of spatial varying selection in European eel and compared the results to those obtained by Gagnaire et al. [26]. We genotyped glass eels from 8 sampling locations across the geographic distribution of the species, using the same set of SNPs analyzed by Gagnaire et al. [26] in American eel. We used two main analytical approaches, one that identi- fies outliers as those markers with greater difierentiation among all SNPs and a second based on determining positive associations between allele frequencies and en- vironmental factors. Following the positive associations observed by Gagnaire et al. [26] in American eel, vari- ables used in our study were degrees North latitude, de- grees East/West longitude and sea-surface temperature at river mouth. We specifically wanted to test whether the same genes were under spatially varying selection in both European and American eel, hence providing evi- dence for parallel patterns of local selection, or whether the response involved a different set of genes. Considering their sister species status and the existence of gene flow between species, together with the similar environmental conditions they encounter [34], we hypothesize that the two North Atlantic eel species show parallel patterns of selection at the same loci. Results Genetic diversity values for all genotyped individuals at 80 SNPs are summarized in Table 1. 17 out of 80 loci were monomorphic and 63 were polymorphic in European eel, although frequency of the most common allele was >0.95 at 27 loci. Diversity indices were higher in American eel (H0 = 0.302; Hc = 0.306; P95 = 0.896; P99 = 0.922) than in European eel (H0 = 0.149; He = 0.157; P95 = 0.429; P99 = http://www.biomedcentral.com/1471-2148/14/138 Ulrik et al. BMC Evolutionary Biology 2014, 14:138 http://www.biomedcentral.eom/1471 -2148/14/138 Page 3 o f 11 Table 1 Details of all genes and loci studied, including observed (H0) and expected (He) heterozygosities at all loci in American (AR) and European eel (AA) Locus Gene AR H 0 H e AA H 0 He 40S_S18_1401 40s ribosomal protein s18 0.389 0.375 0.344 0.312 60S_L10A_21874 60s ribosomal protein L10a 0.250 0.219 0.282 0.306 ACT_A3B_8646 Aainin alpha 3b 0.300 0.255 0.006 0.006 ACTB_21752 Beta-aain 0.474 0.411 0.213 0.244 ACYL_13914 Acyl carrier protein 0.421 0.388 0.320 0.310 ADH_3 Alcohol dehydrogenase class-3 0.263 0.361 0.229 0.351 ADSS_L1_15447 Adenylosuccinate synthetase isozyme 1 0.158 0.229 0.016 0.016 ALD_R Aldose reduaase 1 . 0 0 0 0.500 0.395 0.345 ALDH_2_16634 Aldehyde dehydrogenase 2 0.947 0.499 0.468 0.428 ANK_R_13478 Ankyrin repeat domain-comtaining protein 1 0.250 0.289 0.000 0.000 ANN_A11_16176 Annexin A11 0 . 2 0 0 0.180 0.171 0.172 ANX_2_249 Annexin A2-A 0 . 1 0 0 0.375 0.016 0.034 ARF_4_18099 ADP-ribsylation factor 4 0.444 0.346 0.019 0.019 ATP_BC_259 ATP-bindincasette sut>family A member 1 0.450 0.439 0 . 0 2 2 0 . 0 2 2 BPNT_1_18778 3'(5'),5'-biphosphate nucleotidase 1 0.263 0.411 0.025 0.025 CLIC_5_10148 Chloride intracellular channel 5 0.250 0.219 0.521 0.492 COM7591 Cytochrome oxidase subunit I 0.000 0.000 0 . 0 1 0 0.009 COP_9_18132 266S protease regulatory subunit 7 0.300 0.255 0.035 0.034 CSDE_1_11069 Cold shock domain-containing protein E1 0.316 0.266 0.019 0.019 CSDE_1_19713 Cold shock domain-containing protein E1 0.474 0.411 0.066 0.064 CST_21113 Cystatin precursor 0.421 0.499 0.379 0.393 CYT_BC1_9061 Cytochrome b-c1 complex subunit 2 0 . 2 0 0 0.180 0.000 0.000 EF_1G_4796 Translation eiongation faaor 1 gamma 0.400 0.320 0 . 0 0 0 0.000 EF2_10494 Translation elongation faaor 2 0 . 2 0 0 0.180 0 . 0 0 0 0.000 EIF_3F_341 Translation elongation faaor 3 subunit F 0 .2 1 1 0.332 0.113 0.146 EIF_3J_11587 Translation elongation factor 3 subunit J 0.300 0.375 0.079 0.082 FER_H_20955 Ferritin heavy subunit 0.421 0.432 0.009 0.009 FGB_47 Fibrinogen Beta Chain 0.300 0.255 0.000 0.000 GAPDH_20355 Glyceraldehyde-3-phoshpate dehydrogenase 0 . 2 0 0 0.180 0 . 2 2 2 0.197 GDE1_2508 Glycerophosphochlorine phosphodiesterase 0.389 0.313 0.000 0.000 GOG_B1_15792 Golgin sub-family B member 1 0.150 0.289 0.050 0.049 GPX_4_19607 Glutathione peroxidase 4 0 . 1 0 0 0.095 0.000 0 . 0 0 0 HMG_T_9973 High mobility group-T protein 0.050 0.049 0.025 0.025 HSP_90A_15666 Heat shock protein 90 alpha 0.158 0.229 0.063 0.061 HSP_90B_21100 Heat shock protein 90 beta 0.150 0.139 0.107 0.107 HSPE_ 1 _17854 10 kDa heat shock protein 0.368 0.362 0.009 0.009 IF_RF2_19747 Interferon regulatory faaor 2 0.150 0.139 0.000 0.000 JAM_3_13916 Junaional adhesion molecule 3b 0.053 0.051 0.131 0.165 KRT_13_20618 Keratin 0.350 0.499 0.325 0.317 KRT_A_15738 Keratin alpha-like 0.000 0.000 0 . 0 2 2 0 . 0 2 2 LBL_L2_20921 No hit 0.000 0.000 0.000 0 . 0 0 0 LDH_B_9441 Laaase dehydrogenase B 0.600 0.455 0.025 0.025 http://www.biomedcentral.eom/1471 Ulrik et al. BMC Evolutionary Biology 2014,14:138 http://www.biomedcentral.eom/1471 -2148/14/138 Page 4 o f 11 Table 1 Details of all genes and loci studied, induding observed (H0) and expected (He) heterozygosities at all loci in American (AR) and European eel (AA) (Continued) MDHJ393 Malate dehydrogenase 0.263 0.450 0.298 0.493 MYH_14857 Superfast myosin heavy chain 0.300 0.255 0.563 0.496 NADH_4_21742 NADH dehydrogenase subunit 4 0 . 0 0 0 0.0180 0 . 0 0 0 0 . 0 0 0 NADH_5_17101 NADH dehydrogenase subunit 5 0 . 0 0 0 0.255 0 . 0 0 0 0.019 NADH1_10_21119 NADH dehydrogenase 1 alpha subunit 10 0.300 0.455 0 . 0 0 0 0 . 0 0 0 NCP_2_15547 Nucleolar complex protein 2 0.350 0.289 0.085 0.087 NEX_19953 Nexilin 0.450 0.489 0.476 0.496 NGD_21138 Neuroguidin 0.450 0.469 0.238 0.273 NRAP_1541 Nebulin-related anchoring protein 0.500 0.455 0.031 0.031 PA2G4_2600 Proliferation associated protein 2G4 0.444 0.401 0.442 0.481 PFNJ5113 Profilin-2 0.400 0.375 0 . 0 0 0 0 . 0 0 0 PGDJ8096 6 -phosphogluconate dehydrogenase 0 . 0 0 0 0 . 0 0 0 0.042 0.053 PGI_1 Phosphoglucose isomerase-1 0 .2 1 1 0.188 0.338 0.348 PGI_2 Phosphoglucose isomerase-2 0.368 0.478 0.456 0.498 PGKJJ1454 Phosphoglycerate kinase 1 0.474 0.362 0.090 0.092 PRP_40_16504 Pre-mRNA-processing factor 40 homolog A 0.150 0.219 0.205 0.214 PSA_4_21534 Proteasome subunit alpha type-4 0.350 0.439 0.484 0.498 PSME_1_21196 Proteasome aaivator 0.235 0.458 0.441 0.457 RFC_3_18186 Replication faaor C subunit 3 0.350 0.289 0.416 0.368 RTF_1_21288 RNA polymerase-associated protein RTF1 homolog 0.632 0.432 0.339 0.374 SDH_0 Sorbitol dehydrogenase 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 SLC_25A5_19808 ADP/ATP translocase 2 0.450 0.499 0.006 0.006 SM_22_6449 Transgelin 0.550 0.499 0.074 0.083 SN4_TDR_374 Taphylococcal nuclease domain-containing protein 1 0.526 0.465 0.182 0.191 TENT_02_11046 No hit 0 .1 1 1 0.105 0.318 0.362 TENT_03_12589 Collagen type XXVIII alpha 1 a 0.150 0.219 0.041 0.040 TENT_05_19704 No hit 0.500 0.461 0.013 0.013 TENT_06_16512 Protein Phosphatase regulatory subunit 0.105 0.266 0.510 0.484 TENT_07_21161 No hit 0.700 0.451 0.744 0.477 TNNT_2E_20968 Troponin T2e 0 . 0 0 0 0 . 0 0 0 0.168 0.196 TRIM_35_8416 Tripartite motif-contaning protein 35 0.368 0.450 0.361 0.426 TTN_B_20952 Titin b 0.421 0.332 0.003 0.003 TUB_A_19211 Tubulin alpha 2 0.550 0.489 0 . 0 1 0 0.009 UBI_A52_5049 Ubiquitin A-52 residue ribosomal protein fusion product 1 0.474 0.362 0.058 0.056 UGP_2_2128 UDP-glucose pyrophosphorylase 2 0.316 0.808 0.236 0.771 UGP_A_2307 Glycerol-3-phosphate transporter subunit 0.600 0.334 0.733 0.466 UNA_SINE2_16912 Eel Short interspersed elements 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 ZETAJ5177 Tyr 3-monooxygenase/írp 5-monooxygenase aaivation protein 0.421 0.388 0.246 0.245 0.610), suggestive of a strong ascertainment bias effect due to the fact that SNPs were identified in American eel. Three loci deviated significandy from Hardy-Weinberg ex- pectations after Bonferroni correction: locus UGP_2_2128, showing a deficit of heterozygotes, and loci TENT_0721161 and UGP_A_2307, showing an excess of heterozygotes. However, those loci were not excluded from the analysis as they could reflect selection. Two loci (ALD_R and PSME_1_21196) were geno- typed at all locations except Tiber, so all tests for selec- tion were conducted considering all 8 locations and 78 loci (excluding ALD_R and PSME_1_21196) and on a http://www.biomedcentral.eom/1471 Ulrik e t at. BMC Evolutionary Biology 2014, 1 4 : 1 3 8 http://www.biom edcentral.eom /1471 -214 8 / 1 4 /1 3 8 Page 5 o f 11 restricted data set with 7 locations (excluding Tiber) and 80 loci. Overall genetic differentiation was low (FST = 0.0079). Using STRUCTURE, a scenario with turo clusters (K = 2) corresponding to the two species was the most likely, with no substructuring within species (Figure 1). In the same analysis, a total of 5 individuals from Iceland were identified as admixed individuals with 90% probability intervals that did not overlap with zero. While the SNPs used in this study were not species-diagnostic, results were concordant with the study of Pujolar et al. [23], in which the same individuals were identified as admixed on the basis of 86 species-diagnostic SNPs, encompassing four F1 hybrids and one second generation backcross. Hybrids were only observed in Iceland and were absent in the remaining European locations. All hybrid individ- uals were removed from further analyses. The selection detection workbench LOSITAN identified three outlier loci possibly under diversifying selection using the full data set, GAPDH_20355, MYH_14857 and ALDH_2_16634, with p < 0.05 (Table 2). When using the restricted data set with 7 locations, a further outlier was also identified, ALD_R (p = 0.000). Using the complete data set with 8 locations BAYESCAN identified a single outlier, GAPDH_20355, showing a high FST value of 0.123 relative to the background FST (Table 2). At this locus, the alpha coefficient was positive, suggestive of diversi- fying selection. When using the restricted data set with 7 locations, ALD_R was also identified as outlier in addition to GAPDH_20355, showing a high FST value of 0.091 and a positive alpha coefficient. A generalized linear model between allelic frequencies and explanatory variables using the full data set revealed significant associations with temperature (2 loci), latitude (3 loci) and longitude (5 loci) (Table 3). One locus (GAPDH_20355) showed a significant association with both latitude and longitude. No interactions with explana- tory variables were found at any locus. Locus ALD_R showed a positive association with longitude when using the restricted data set with 7 locations (p = 0.016). On the other hand, one positive association was found using BAYENV, locus GAPDH_20355 and latitude, with a Bayes Factor of 7.450 (Table 3), while no associations were found for the rest of loci (Bayes Factor <3). In addition, a positive association was found between locus ALD_R and longitude, with a Bayes Factor of 3.295, when considering the reduced data set with 7 locations. Overall, we identified a total of 11 candidate loci, 4 from outlier tests plus 7 additional loci from the analysis of association of allelic frequencies with explanatory variables. Discussion Signatures o f local selection in European eel The observation of a small set of SNPs showing signifi- cantly high genetic differentiation in comparison with the background FST and significant associations betv\reen allele ffequencies and environmental variables is consist- ent with the action of spatially varying selection associ- ated with the highly heterogenous habitats that glass eels colonize throughout their geographic range. Our findings fit the general prediction that selective pressures fre- quently vary in space, often resulting in local selection of ecologically adaptive traits [1]. Overall, we found signatures of selection at a total of 11 loci. We found discordances between the two approaches used (Fst outlier tests vs. environmental-association methods), with few SNPs identified as targets of selec- tion by both methods and with a higher number of can- didates identified using a generalized linear model. This is in agreement with recent studies showing that SNPs positively correlated with environmental variables were not FST outliers [35-37]. It has been suggested that SNP- environment associations are more sensitive to detect sub- tle clines in allele frequencies than FST outlier tests and tliat both approaches might be complementary but not concordant when testing for selection [38]. Nevertheless, three loci in our study (GAPDH, ALDH2 and ALD_R) showed higher genetic differentiation than the background FST together with significant associations between allele frequencies and environmental variables. All three are genes with major metabolic functions: GAPDH (Glyceraldehide 3-phosphate dehydrogenase) is part of the glycolysis pathway and catalyzes the American European eel < eel ■> Figure 1 Adm ixture analysis using STRUCTURE. Individuals were assigned assuming the presence of two groups (K = 2). Each vertical line represents one individual, partitioned into segments according to the proportion of European eel (light) and American eel (dark). http://www.biomedcentral.eom/1471 Ulrik e t al. BMC Evolutionary Biology 2014, 14:138 http://www.biom edcentral.com /1471-2148/14/138 Page 6 o f 11 Table 2 Detection of outlier loci using the FST-outlier approach implemented in LOSITAN and BAYESCAN based on the full data set with 8 locations (78 loci) and a reduced data set with 7 locations (80 loci) LOSITAN Locus Gene Het F s t p value 8 populations MYH_14857 Superfast myosin heavy chain 0.490 0.042 0.018 GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase 0.213 0.246 0.000 ALDH_2_16634 Aldehyde dehydrogenase 2 0.428 0.032 0.047 7 populations GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase 0.231 0.256 0.000 ALDH_2_16634 Aldehyde dehydrogenase 2 0.435 0.036 0.012 ALD_R Aldose reductase 0.346 0.156 0.000 BAYESCAN Locus Gene BPP q value alpha F s r 8 populations GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase 1.000 0.000 3.376 0.123 7 populations GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase 1.000 0.000 2.424 0.116 ALD_R Aldose reductase 1.000 0.000 2.150 0.091 Heterozygosity and F^r values are detailed for all outlier loci detected in LOSITAN. Bayesian posterior probabilities (BPP), q values, alpha coefficients and Fjt values are detailed for all outlier loci detected in BAYESCAN. conversion of glyceraldehyde 3-phosphate to D- glycerate 1,3-bisphosphate; ALDH2 (Aldehyde dehydro- genase 2) belongs to the aldehyde dehydrogenase family of enzymes that catalyze acetaldehyde to acetic acid and is the second enzyme of the major oxidative pathway of alco- hol metabolism; ALD_R (Aldose reductase) catalyzes the reduction of glucose to sorbitol, the first step in the polyol pathway of glucose metabolism. Besides these genes, a positive environment correlation was observed for PGI< (Phosphoglycerate kinase), which is a transferase enzyme in glycolysis acting in the first ATP-generating step of the glycolytic pathway. Surprisingly, none of the above genes linked to metabolism showed positive associations with temperature, arguably an environmental variable of key importance influencing enzymatic activities and metabolic pathways [39,40]. In eels, decreased metabolic activities have been observed below certain threshold temperatures in both European [41] and American eel [42], and distinct behaviour patterns such as upstream migration of glass eels have been shown to be temperature-related [43]. Since it could be argued that temperature at other time in- tervals might be more relevant than the 30 day-interval used in our study, we re-conducted a generaiized linear model between allelic frequencies at GAPDH, ALDH2 and ALD_R with temperature using other time intervals (10 days, 3 months, 6 months, 12 months). No significant associations were found at any of the locus, which sug- gests that other agents of selection than temperature could underlie the significant associations found. In the case of aldose reductase, this is an enzyme induced by hyperosmolarity stress [4-4]. Spatially varying selection in European eel regarding osmoregulation seems plausible, since eels occupy highly variable habitats across Europe in terms of salinity, including both fresh and salt-water (i.e. marine and brackish) habitats [45]. Besides genes involved in metabolic functions, several genes involved in defense response showed a positive environment correlation, including TRIM35 (Tripartite motif-containing protein 35), CST (Cystatin precursor), PSA4 (Proteasome subunit alpha-4) and UBIA52 (Ubiqui- tin A52), all involved in catalytic activity. Interestingly, TRIM35 is a gene implicated in processes associated with innate immunity [46]. Together with other TRIM family genes, TRIM35 is located on a region of significantly ele- vated genetic diversity (LG XIII) in the threespine sticlde- back, which suggests that the polymorphism increase on LG XIII has been likely driven by selection on innate immunity genes [7]. While allele frequencies at TRIM35 were positively correlated with temperature, allele fre- quencies at CST, UBIA52 and PSA4 were associated with geographic coordinates. As in the case of metabolism, it is possible that other explanatory variables (e.g. productivity, oxygen level, salinity, pollution and parasite load) may play a role in defense response rather than temperature or geographic coordinates. No apparent parallel patterns of selection in North Atlantic eels The contrasting pattern of spatially varying selection ob- served in European eel (this study) and American eel http://www.biomedcentral.com/1471-2148/14/138 Ulrik et al. BMC. Evolutionary Biology 2014,14:138 http://www.biomedcentral.eom/1471 -2148/14/138 Page 7 o f 11 Table 3 Statistical associations between allele frequencies and a set of three expianatory variables (TEMP, temperature; LAT, latitude; LON, longitude) assessed using generalized linear models (GLM) and BAYENV based on the full data set with 8 locations (78 loci) and a reduced data set with 7 locations (80 loci) GLM Locus Gene p value 8 populations TRIM_35_8416 Tripartite m otif-contain ing protein 35 TEMP (r = 0.78; p = 0.023) NEX_19953 Nexilin LAT (r = 0.80; p = 0.018) GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase LAT (r = 0.72; p = 0.045) + LON (r = 0.74; p = 0.042) KRT_13_20618 Keratin TEMP (r = 0.81; p = 0.015) UBI_A52_5049 Ubiquitin A-52 LON (r = 0.72; p = 0.044) P G K J J 1 4 5 4 Phosphoglycerate kinase LON (r = 0.76; p = 0.031) PSA_4_21534 Proteasome subunit alpha type-4 LAT (r = 0.80; p = 0.018) ALDH_2_16634 Aldehyde dehydrogenase 2 LON (r = 0.72; p = 0.044) CST_21113 Cystatin precursor LON (r = 0.72 p = 0.043) 7 populations TRIM_35_8416 Tripartite m otif-contain ing protein 35 TEMP (r = 0.77; p = 0.042) NEX_19953 Nexilin LAT (r = 0.76; p = 0.045) GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase LON (r = 0.73; p = 0.046) KRT_13_20618 Keratin TEMP (r = 0.82; p = 0.023) PSA_4_21534 Proteasome subunit alpha type-4 LAT (r = 0.76; p = 0.047) ALD_R Aldose reductase VOOÖIICLíN00ÖIIzo BAYENV Locus Gene BF 8 populations GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase LAT(BF = 7.450) 7 populations GAPDH_20355 Glyceraldehyde-3-phosphate dehydrogenase LAT(BF = 4.501) ALD_R Aldose reductase LON (BF = 3.295) Correlation coefficients and p-values are detailed for all loci showing significant associations using GLM. Bayes Factors (BF) are presented for all positive associations in BAYENV. [26] using the same panel of candidate SNPs suggests no common genetic-by-environment associations between North Atlantic eels. Using generalized linear modeis, Gagnaire et al. [26] found significant associations with environmental variables at 8 loci within glass eels (ACP, ANX2, GPX4, HSP90A, MDH, NRAP, PRP40 and UGP2), none of which are common with the 10 loci that showed significant associations in our study using the same statis- tical approach (ALDH, ALD_R, CST, GAPDH, I<RT, NEX, PGK, PSA4, TRIM35, UBLA.52) and also conducted on glass eels. However, two loci (TRIM35 and CST) showed some evidence of selection in both species. In American eel, TRIM35 showed the highest FSt value detected betu'een localities (FST = 0.174) although no correlation with envir- onmental variables was detected at this locus. CST showed signatures of selection within cohorts of juveniles but not within glass eels [26]. While most loci under selection in Gagnaire et al. [26] represented metabolic genes associated with temperature, those genes with a major role in metabolism in our study (GAPDH, ALD_R, ALDH, PGI<) did not show a positive association with temperature despite the similar temperature ranges encountered by both spe- cies (European eel: 4.2-15.1°C, American eel: 3.4-19.8° C). However, the different signatures of selection between species could be due to distinct selective pressures associated with the much longer larval mi- gration for European eel than for American eel, with estimates ranging from 7 months to 2 years for Euro- pean eel depending on the assumptions and methods used, whereas estimates for American eel range be- tween 6 and 12 months [47]. The one extra year that possibly European eel larvae spend in the open sea could impose a different set of selective agents rela- tive to American eel. http://www.biomedcentral.eom/1471 Ulrik et al. BMC Evolutionary Biology 2014, 14:138 http://www.biomedcentral.eom/1471 -2148/14/138 Page 8 o f 11 In contrast with our findings, the recent survey of Conte et al. [5] on published literature of repeated phenotypic evolution in natural populations concluded that the prob- ability of gene reuse was high (on average 55%). However, the survey was based on candidate gene studies, which might have biased upward the reuse estimates. The lack of parallel selection patterns in North Atlantic eels is un- anticipated owing to the sister species status of European and American eel and the permeable barrier to gene flow between species. A recent study using a RAD-sequencing approach to identify diagnostic markers between the two species found a small proportion of fíxed SNPs (<0.5%), while most of the SNPs showed low non-significant differ- entiation that suggest that most of the genome is homoge- nized by gene flow [23]. One possible explanation to the lack of parallel selection is that complex phenotypic traits affected by local selection might have a highly polygenic basis, hence influenced by several genes, each with a smail contribution to the ultimate function [48,49]. Parallel selection is more likely to occur when the adaptive response is controlled by a single gene, i.e. the Eda gene and armor plate reduction [6,50] and the Kit ligand Kitlg gene and pigmentation [51] in three- spine sticklebacks or the melonacortin-1 receptor M clr and colour pattern in beach mice [52]. More complex traits are likely to involve a higher number of genes, thus reducing the likelihood of selection acting on the same genes in multiple species or locations, as it has been argued in the case of osmoregulation in threespine sticklebacks [7,8]. Similarly, partial parallel patterns of genetic differentiation have been observed between two whitefish sympatric species pairs (a normal benthic and a dwarf limnetic) across lakes, suggestive of polygenic adaptation [53-55]. Condusions The distinct signatures of selection between North American eels could be attributable to differences in larval migration between species. Alternatively, the fact that many genes of small effect likely shape adaptive pathways (i.e. metabolism, growth, osmoregulation, pathogen resist- ance) could explain the private signatures of spatially vary- ing selection with no shared genetic-by-environment associations between European and American eel. As an alternative to candidate loci approaches, high-density genome-wide scans using next-generation sequencing and genotyping-by-sequencing approaches [7,56] might be more adequate. A recent study using RAD (Restric- tion site Associated DNA) sequencing generated a SNP resource for European eel consisting of 82,4-25 loci and over 375,000 SNPs [57] that provides a valuable tool for future studies on parallel selection in both North Atlantic eels on a genome-wide scale. Methods Ethical statement No experiments were conducted on the animals and ani- mal manipulation was limited to sacrificing fish, using the least painful method to obtain tissue samples for DNA ex- traction. In all cases, in order to minimize the suffering of the animals used in the study, fish were deeply anaesthe- tized with MS-222 (3-amonobenzoic acid ethyl ester) or 2-phenoxyethanol 1% and then painlessly sacrificed. All procedures were conducted by technical staff, who had all the necessary fishing and animal ethics permits (piease see in the Additional file 1: Appendix 1). Sampling A total of 321 European eel (Anguilla anguilla) individuals were collected at 8 locations across the geographical distri- bution of the species, from Iceland to the Mediterranean Sea (Table 4; Figure 2). AU individuals were glass eels caught by electrofishing (Iceland) and fyke nets (remaining localities). Individuals from Iceland were collected at four separate sampling sites in southwestern Iceland, but pooled to increase sample size. Additionally, 20 American eel (Anguilla rostrata) individuals collected at Riviére Blanche (Québec, Canada), Mira River (Nova Scotia, Canada), Wye River (MD, US), Medomak River (ME, US) and Boston Harbor (MA, US) were used for com- parison. Genomic DNA was extracted using standard phenol-chloroform extraction. SNP genotyping We examined the panel of 100 coding-gene SNPs devel- oped by Gagnaire et al. [26] in American eel. 20 out of the 100 primer sets did not give good amplification products in European eel and were excluded. All indi- viduals were genotyped at 80 coding-gene SNPs: 47 SNPs that were detected as outliers between samples from Florida and Québec using RNA-sequencing data (including 4 SNPs identified within allozyme-coding genes showing clinal variation in Williams et al. [33]) and 33 SNPs that were not outliers (Table 2). SNP genotyping was conducted using the Kbioscience Competitive AUele- Specific PCR genotyping system (KASPar) (Kbioscience, Hoddeston, UI<). Data analysis AUele frequencies, measures of genetic diversity including polymorphism at the 95% (P95) and 99% level (P99), ob- served (H0) and expected (He) heterozygosities and devia- tions from Hardy-Weinberg equilibrium were calculated using GENEPOP [58]. In all cases, significance levels were corrected for multiple comparisons using the sequential Bonferroni technique [59]. Overall genetic differentiation (Fsx) was calculated in GENEPOP. Population structure was further investigated http://www.biomedcentral.eom/1471 Ulrik et al. BMC Evolutionary Biology 2014, 14:138 http://www.biomedcentral.eom/1471 -2148/14/138 Page 9 o f 11 Table 4 Sampling details induding n u m b er of individuals per sampling location (N), latitude, longitude and sea-surface temperature at river mouth averaged across the 30 days preceding the sampling date Country Location N Latitude Longitude Date Tem p (°C) Spain Valencia 44 39°46' N 0°24' W 15 January 2010 15.05 Italy Tiber 39 41°73' N 12°23' E 30 December 2007 14.17 South France Canet 40 42°70' N 3*15' E 23 January 2008 13.24 West France Gironde 40 44°86’ N 0°42' W 16 April 2008 11.26 Ireland Burrishoole 39 53°90’ N 9°58' W 14 March 2005 9.57 Northern Ireland Lough Erne 39 54°46' N 7°77' W 1 July 2008 13.85 Sweden Ringhals 40 57°21‘ N 12°27' E 15 March 2008 4.19 lceland 40 May - June 2001 8.45 Stokkseyri 10 63*81' N 21°04'W Vifilsstadvatn 10 64°07' N 21°87’ W Seljar 10 64°56' N 22*31 'W Vogslækur 10 64°69' N 22°33' W using STRUCTURE v.2.3.4 [60], which also allowed us to test the presence of hybrids in the data set. We assumed an admixture model, uncorrelated allele frequencies and we did not use population priors. Given that two panmic- tic species were analyzed, we assumed k= 2 and con- ducted 10 replicates to check the consistency of results. A burn-in length of 100,000 steps followed by one million additional iterations was performed. We used two different approaches to test for evidence of local selection. First, we seai'ched for elevated popula- tion differentiation using Fsx-based outlier analyses. We used the selection detection workbench LOSITAN [61], which uses a coalescent-based simulation approach to identify outliers based on the distributions of heterozygos- ity and FST [62]. First, LOSITAN was run using all SNPs to estimate the mean neutral FST as recommended by Antao et al. [61]. After the fírst run, the mean neutral Fsx was re-computed by removing those SNPs outside the confidence interval in order to obtain a better approxima- tion of the mean neutral Fsx. This mean was then used to conduct a second and final run of LOSITAN using all SNPs. The analysis was performed on the whole data set divived according to sampling location. An estimate of p value was obtained for each SNP. We used a threshold of 0.95 and a false discovery rate of 0.1 to minimize the num- ber of false positives. Outlier SNPs were also detected using BAYESCAN [63], a Bayesian method based on a logistic regression model that separates locus-specific effects of selection from population-specific effects of demography. Outlier analysis was conducted on the whole data set divided according to sampling location. BAYESCAN runs were implemented using default values for all parameters, including a total of 100,000 iterations after an initial lc e la n d R in g h a ls R lv ié re B la n ch o Lough E rne # # B u r r lsh o o lo # M odom ak r i v e r ^ ^ M ira r lv o r B o s to n h a r b o r ^ G lro n d e # Cane t • ^ T ib o r Wye r iv e r ^ - V a le n c ia # 0 500 1 ooo (Otometors Figure 2 Sampling locations of European eel (circles) and American eei (stars) individuals used for comparison. http://www.biomedcentral.eom/1471 Ulrik et al. BMC Evolutionary Biology 2014, 14:138 http://www.biom edcentral.com /1471-2148/14/138 Page 10 of 11 burn-in of 50,000 steps. Posterior probabilities, q values and alpha coefficients (positive values indicate diversify- ing selection, negative values are indicative of balancing selection) were calculated. A q-value of 10% was used for significance. As an alternative to FSx'Outlier tests, our second ap- proach for identifying targets of local selection was to test for significant statistical associations between al- lelic frequencies and environmental variables following Gagnaire et al. [26], using a generalized linear model in r. Environmental variables used included degrees North latitude, degrees East/West longitude, and sea-surface temperature at river mouth averaged across the 30 days preceding the sampling date. Sea-surface temperature data were retrieved from the IRI (International Research Institute for Climate and Society) Climate Data Library (http://iridl.Ideo.columbia.edu/) database “NOAA NCDC OISST version2 AVHRR SST: Daily Sea Surface Tem- perature”. We also searched for SNP-environment associa- tions using BAYENV [38], which tests for covariance between candidate SNP allele frequencies and environ- ment variables that exceed the expected covariances under genetic drift. First, SNP frequencies at all loci were used to describe how allele frequencies covary across populations, hence avoiding population-specific effects of demography (even though a panmixia scenario is most likely to apply for European eel). After the covariance matrbc was esti- mated, the program determined the Bayes factors for the environmental variables of interest. Bayes Factors >3 were considered indicative of an allele frequency correlation with an environmental variable. Availability of supporting data The data set supporting the results of this aiticle is available from Dryad: http://datadryad.Org/resource/doi:10.5061/ dryad.jn800/l. Additional file Competing interests The authors dedare no competing interest. Authors' contributions MMH and LB conceived and designed the project. MGU and JMP conducted population genetics analyses with help from MMH, TDA, ALF and MWJ. MGU and JMP wrote the manuscript with contributions from MMH, LB, PAP, ALF, MWJ, TDA, JF, PKB and BJ. All authors read and approved the final version of the manuscript. Acknowledgements We thank Eieonora Ciccotti, Russell Poole, Javier Lobón-Cervia. Eric Feunteun, Francoise Daverat and Hákan Wickstrom for providing samples, Annie Brandstrup for technical assistance, Virqinia Senepani for help in preparing the figures and Mads F. Schou for help in statistical analysis. We acknowledge funding from the Danish Council for Independent Reasearch, Natural Sciences (grant 09-072120 to MMH). Author details 'Department o f Bioscience, Aarhus University, Ny Munkegade 114, Bldg. 1540, DK-8000 Aarhus C, Denmark. JNational Institute of Aquatic Resources, Technical University o f Denmark, Vejlsovej 39, DK-8600 Silkeborg, Denmark. 3Department o f Biomedicine-Human Genetics, Aarhus University, DK-8000 Aarhus C, Denmark. 4ISEM (Institut des Sciences de l'Evolution Montpellier), Université Montpellier II, 34095 Montpellier, France. sBiopol, Marine Biology and Biotechnology Center, Einbúastígur 2, IS545 Skagastrond, lceland. 6IBIS (Institut de Biologie Intégrative et des Systémes), Université Laval, G1V 0A6 Québec, Canada. Received: 27 March 2014 Accepted: 16 June 2014 Published: 20 June 2014 References 1. Kawecki TJ, Ebert D: Conceptual issues in local adaptation. Ecol Lett 2004, 7:1225-1241. 2. Stapley J, Reqer J, Feulner PGD, Smadja C, Galindo J, Ekblom R, Bennison C, 8all AD, Beckerman AP, Slate J: Adaptation qenomics: the next qeneration. Trends Eccl Evol 2010, 12:705-712. 3. Wood TE, Burke JM, Reiseberg LH: Parallel genotypic adaptation: when evolution repeats itself. Genetica 2005,123:157-170. 4. Elmer KR, Mever A: Adaptation in the aqe of ecoloqical qenomics: insiqhts from parallelism and converqence. Trends Eco! Evol 2011, 26:298-306. 5. Conte GL, Arneqard ME, Peichel CL, Schluter D: The probability o f qenetic parallelism and converqence in natural populations. Proc R Soc Lond 6 2012, 279:5039-5047. 6. Colosimo PF, Hosemann KE, Balabhadra W, Villarreal G, Dickson M, Giimwood J. Schmutz J. Myers RM, Schluter D. Kinqsley DM: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 2005. 307:1928-1933. 7. Hohenlohe PA, Bassham S. Etter PD, Stiffler N, Johnson EA, Cresko WA: Population qenomics of parallel adaptation in threespine stickleback usinq sequenced RAD taqs. PloS Genet 2010, 6:ei000S62. 8. DeFaveri J, Shikano T, Shimada Y, Goto A. Merilá J: Global analysis of qenes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus). Evolution 2011, 65:1800-1807. 9. Jones FC, Chan YF, Schmutz J, Grimwood J, Brady SD, Southwick AM, Absher DM, Myers RM, Reimchen T, Deaqle BE, Schluter D, Kinqslet DM: A qenome-wide SNP qenotypinq array reveals patterns of qlobal and repeated species-pair diverqence in sticklebacks. Curr Bioi 2012, 22:83-90. 10. Jones FC, Grabherr MG, Chan YF. Russell P. Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle 5, Schmutz J, Grimwood J, Dickson MC. Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhanq H, Pollen AA. Howes T, Amemiya C: The qenomic basis o f adaptive evolution in threespine sticklebacks. Nature 2012, 484:55-61. 11. Renault S, Owens GL, Rieseberg LH: Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers. Mol Ecol 2014, 23:311-324. 12. Boétius J: Atlantic Anguilla: a presentation of old and new data of total number of vertebrae with special reference to the occurrence of Anquilla rostrata in Europe. Dona 1980, 1:93-112. 13. Avise JC, Helfman GS. Saunders NC, Hales LS: Mitochondrial DNA differentiation in North Atlantic eels: population qenetic consequences of an unusual life history pattem. Proc Nati Acad Sci USA) 986,83:4350—4354. 14. Minequishi V, Aoyama J, Inoue JG, Miya M. Nishida M, Tsukamoto K Molecular phyloqeny and evolution of the freshwater eels qenus Anquilla based on the whole mitochondrial qenome sequences. Mol Phyloqenet Evol 2005, 34:134-146. 15. Jacobsen MW, Puiolar JM, Gilbert TP, Mayar JVM, Bernatchez L, Als TD, Hansen M,Vi: Speciation and demoqraphic history of Atlantic eels (.Anquilla anquilla and A. rostrata) revealed by mitoqenome sequencinq. Heredity 2014. in press. 16. Mank JE, Avise JC: Microsatellite variation and differentiation in North Atlantic eels. J Hered 2003, 94:30-34. 17. Wirth T, Bernatchez L: Decline of Atlantic eels: a fatal synerqy? Proc R Soc LondB 2003. 270:681-688. 18. Gaqnaire PA, Albert V, Jónsson B, Bernatchez L: Natural selection influences AFLP intraspecific variability and introqression patterns in Atlantic eels. Mol Ecol 2009,18:1678-1691. Additional file 1: Appendix 1. Supplementary ethical statement. http://www.biomedcentral.com/1471-2148/14/138 http://iridl.Ideo.columbia.edu/ http://datadryad.Org/resource/doi:10.5061/ Ulrik et al. BMC Evolutionary Biology 2014, 14:138 http://www.biomedcentral.eom/1471 -2148/14/138 Page 11 of 11 19. Als TD. Hansen MM, Maes GE, Casconquay M, Rigmann L, Aerestrup K, Munk P, Sparholt T, Hanel R, Bernatcnez L: All roads lead to home: panmixia of European eel in the Sarqasso Sea. Ivloi Ecol 2011, 20:1333-1346. 20. McCleave JD, Kleckner RC, Castonquay M: Reproductive sympatry of American and European eels and implications for miqration and taxonomy. Am Fish Soc Symp 1987, 1:286-297. 21. Avise JC. Nelson WS, Arnold J, Koenn RK, Williams GC, Thorsteinsson V: The evolutionary qenetic status of lcelandic eels. Evclution 1 990, 44:1254-1262. 22. Albert V, Jónsson B, Bernatchez L: Natural hybrids in Atlantic eels (AnquiHa anquilla, A. rostrata): evidence for successful reproduttion and fluctuatinq abundance in space and time. Mol Ecol 2006, 15:1903-1916. 23. Pujolar JM, Jacobsen MW, Ais TD, Frvdenberq J, Maqnussen E, Jónsson B, Jianq X, Chenq L, Bekkevold D, Maes GE, Bernatchez L, Hansen MM: Assessinq patterns of hybridization between North Atlantic eels usinq diaqnostic sinqle-nucleotide polymorphisms. Heredity 2014. in oress. 24. Van den Thillart G, Rankin JC, Dufour S: Spawning migration o f the European eel: reproduction index, a useful tool for conservation management. Dordecht, The Netherlands: Springer; 2009. 25. Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB: Extend and scale o f local adaptation in salmonid fishes: review and meta-analysis. Heredity 2011,106:404-420. 26. Gaqnaire PA, Normandeau E, Cðté C, Hansen MM, Bernatchez L: The qenetic consequences of spatially varyinq selection in the panmictic American eel (Anquilla rostrata). Geneiics 2012,190:725-736. 27. Levene H: Genetic equilibrium when more than one ecoloqical niche is available.Am Nat 1953, 87:331-333. 28. Hedrick PW: Genetic polymorphism in heteroqeneous environments: the aqe of qenomics. Annu Rev Ecol Evol Syst 2006, 37:67-93. 29. Yeaman S, Otto SP: Establishment and maintenance of adaptive qenetic diverqence under miqration, selection and drift. Evolution 2011, 65:2123-2129. 30. Dannewitz J, Maes GE, Johansson L, Wickström H, Volckaert FAM, Jarvi T: Panmixia in the European eel: a matter o f time. Proc R Soc Lond B 2005, 272:1129-1137. 31. Cóté C, Gagnaire PA, Bourret V, Verrault G, Castonguay M, Bernatchez L: Population genetics o f the American eel (Anguilla rostrata): Fsr = 0 and North Atlantic Oscillation effects on demographic fluctuations of a panmictic species. Mol Ecol 2013, 22:1763-1776. 32. Maes GE, Volckaert FAM: Clinal qenetic variation and isolation by distance in the European eel Anquilla anquilla. Biol J Linn Soc 2002, 77:509-522. 33. Williams GC, Koehn RK, Mitton JB: Genetic differentiation without isolation in the American eel, Anquilla rostrata. Evolution 1973, 27:192-204. 34. Schmidt PS, Serrao SA, Pearson GA, Riqinos C, Rawson PD, Hilbish TJ, Brawley SH, Trussell GC, Carrinqton E, Wethey DS. Grahame JW, Bonhomme F, Rand DM: Ecoloqical qenetics in the North Atlantic: environmental qradients and adaptation at specific loci. Ecology 2008, 89:S91-S107. 35. Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, Gebremedhin A. Sukernik R, Utermann G, Pritchard J. Coop G, Di Rienzo A Colloquium paper: human adaptations to diet, subsistence, and ecoreqion are due to subtle shifts in allele frequency. Proc Natl Acad Sci U S A 2010,107:8924-8930. 36. Ma XF, Hall D, Onqe KR, Jansson S, Inqvarsson PK: Genetic differentiation, clinal variation and phenotypic associations with qrowth cessation across the Populus tremula photoperiodic pathway. Genetics 2010, 186:1033-1044. 37. Keller SR, Levsen N, Qlson MS, Tiffin P: Local adaptation in the flowerinq-time qene network of balsam poplar, Populus balsamifera. Mol 8iol Evoi 2012, 29:3143-3152. 38. Coop G, Witonsky D, Di Rienzo A, Pritchard JK: Usinq environmental correlations to identify loci underlyinq local adaptation. Genetics 2010, 185:411-1423. 39. Somero GN: Adaptation of enzymes to temperature: searchinq for basic "strategies". Comp Biochem Physiol 8 Biochem Mol Biol 2004,139:321-333. 40. Lim ST, Kav RM, Bailev GS: Lactate dehydroqenase isozymes in salmonid fish: evidence for unique and rapid funaional diverqence of duplicated H-4 lactate dehydroqenases. J Biol Chem 1975,10:1790-1800. 41. Nyman L: Some effects of temperature on eel (Anquilla) behaviour. P.eo Inst Freshw Res Drottinqholm 1972, 52:90-102. 42. Walsh PJ, Foster GD, Moon TW: The effeas of temperature and metabolism o f the American eel Anguilla rostrata: compensation in the summer and torpor in the winter. Physiol Zool 1983, 56:532-540. 43. Linton ED, Jónsson B. Noakes DLG: Effeas of water temperature on the swimminq and dimbinq behavior of qlass eels Anquilla spp. Environ Biol Fishes 2007, 78:189-192. 44. Henry DN, Delmonte M, Greene DA, Killen PD: Altered aldose reduaase requlation in human retinal-piqment epithelial-cells. J Clin Invest 1993, 92:617-623. 45. Daverat F, Limburq K, Thibaut I, Shiac JC. Dodson JJ, Caron F, Tzenq WN, lizuka Y, Wickström H: Phenotypic plasticity of habitat use by three temperate eel species Anquilla anquilla, A. japonica and A rostrata. Mar Ecoi Proq Ser 2006, 308:231-241. 46. Carthaoena L, Berqamaschi A, Luna JM, David A, Uchil PD, Marqottin- Goquet F, Mothes W, Hazan U, Transy C, Pancino G, Nisole S: Human TRIM qene expression in response to interferons. PLoS One 2009,4:e4894. 47. Bonhommeau S, Blanke B, Tréquier AM, Grima N, Rivot E, Vermard Y, Greiner E, Le Pape O: How fast can the European eel (Anquilla anquilla) larvae cross the Atlantic Ocean? Fish Oceanoqt 2009,18:371-385. 48. Orr HA: The qenetic theory of adaptation: a brief history. Nature Rev Genet 2005. 6:119-127. 49. Wainwriqhi PC. Alfaro ME, Bolnick Dl, Hulsev CD: Many-to-one mappinq of form to funaion: a qeneral principle in orqanismal desiqn? Inteqr Comp Biol 2005, 45:256-262. 50. Raevmaekers JAM, Konijnendiik N. Larmuseau MHD, Hellemans B. De Meester L, Volckaert FAM: A qene with major phenotypic effeas as a tarqet for seleaion versus homoqenizinq qene flow. Mol Ecol 2014, 23:162-181. 51. Miller CT, Beleza S, Pollen AA, Schluter D, Kittles RA, Shriver MD, Kinqsley DM: C/s-requlatory chanqes in Kit liqand expression and parallel evolution of piqmentation in sticklebacks and humans. Cell 2007, 131:1179-1189. 52. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP: A sinqle amino acid mutation contributes to adaptive beach mouse color pattern. Science 2006, 313: i 01-104. 53. Roger SM, Bernatchez L: The qenetic architeaure of ecoloqical speciation and the association with siqnatures of selection in natural lake whitefish (Coreqonus sp.) species pairs. Moí Bioi F.vot 2007, 24:1423-1438. 54. Bernatchez L. Renault S, Whiteley AR. Derome N, Jeukens J, Landry L, Lu G, Nolte AW, 0stbye K, Roqers SM, St-Cyr J: On the oriqin o f species: insiqhts from the ecoloqical qenomics of whitefish. Phil Trans R Soc B 2010, 367:354-363. 55. Gaqnaire PA, Pavey SA, Normandeau E, Bernatchez L: The qenetic architeaure of reproduaive isolation durinq speciation-with-qene-flow in lake whitefish species pairs assesed by RAD sequencinq. Evolution 2013, 67:2483-2497. 56. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML: Genome-wide qenetic marker discovery and qenotypinq usinq next-qeneration sequencinq. Nature Rev Genet 2011, 12:499-510. 57. Pujolar JM, Jacobsen MW, Frydenberg J, Als TD, Larsen PF, Maes GE, Zane L, Jian JB, Cheng L, Hansen MM: A resource of genomewide single- nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Mol Ecol Resour 2013,13:706-714. 58. Raymond M, Rousset F: GENEPOP (version 1.2): a population qenetics software for exaa tests and ecumenicism. J Hered 1995, 86:248-249. 59. Rice WR: Analyzing tables and statistical tests. Evolution 1989,43:223-225. 60. Pritchard JK, Stephens M, Donnellv P: Inference of population struaure usinq multilocus qenotype data. Genetics 2000,155:945-959. 61. Antao T, Lopes A, Lopes RJ. Beja-Pereira A, Luikart G: LOSITAN- a work- bench to detea molecular adaptation based on a Fs routlier method. BMC Bioinformatics 2008, 9:323. 62. Beaumont MA, Nichols RA: Evaluating loci for use in the genetic analysis of population struaure. Proc R Soc Lond B 1996, 263:1619-1626. 63. Foll M. Gaqqiotti O: A qenome-scan method to identify seleaed loci appropriate for both dominant and codominant markers: a Bayesian perspeaive. Genetics 2008,180:977-993. doi:10.1186/1471-2148-14-138 Cite th is article as: Ulrik er a/.: Do North Atlantic eels show parallel patterns o f spatially varyinq selection? 8MC Evolutionary Bioloqy 2014 14:133. http://www.biomedcentral.eom/1471 Pujolar et al. BMC Genomics (2015) 16:600 DOI 10.1186/sl 2864-015-1754-3 ( b m c Genomics R E S E A R C H ART I CLE Open Access Signatures of natural selection between life ^ c“M"k cycle stages separated by metamorphosis in European eel J. M. Pujolar1*, M. W. Jacobsen1, D. Bekkevold2, J. Lobón-Cerviá3, B. Jónsson4, L. Bernatchez5 and M. M. Hansen1 Abstract Background: Species showing com plex life cycles provide excellent opportunities to study the genetic associations between life cycle stages, as selective pressures may differ before and after metamorphosis. The European eel presents a com plex life cycle w ith tw o metamorphoses, a first metamorphosis from larvae in to glass eels (juvenile stage) and a second m etam orphosis in to silver eels (adult stage). We tested the hypothesis tha t d ifferent genes and gene pathways w ill be under selection at d ifferent life stages when com paring the genetic associations between glass eels and silver eels. Results: We used tw o sets o f markers to test for selection: first, we genotyped individuals using a panel o f 80 coding-gene single nucleotide polymorphisms (SNPs) developed in American eel; second, we investigated selection at the genome level using a total o f 153,423 RAD-sequencing generated SNPs widely distributed across the genome. Using the RAD approach, outlier tests identified a total o f 2413 (1.57 %) potentially seleaed SNPs. Functional annotation analysis identified signal transduction pathways as the most over-represented group o f genes, including MAPK/Erk signalling, calcium signalling and GnRH (gonadotropin-releasing hormone) signalling. Many o f the over-represented pathways were related to growth, while others could result from the different conditions that eels inhabit during their life cycle. Concluslons: The observation o f different genes and gene pathways under seleaion when comparing glass eels vs. silver eels supports the adaptive decoupling hypothesis for the benefits o f metamorphosis. Partitioning the life cycle into discrete m orpholog ica l phases may be overall beneficial since it allows the d ifferent life stages to respond independently to the ir unique selection pressures. This m ight translate in to a m ore effective use o f food and niche resources and /o r performance o f phase-specific tasks (e.g. feeding in the case o f glass eels, m igrating and reproducing in the case o f silver eels). Keywords: Adaptative decoupling hypothesis, Complex life cycles, Metamorphosis, RAD sequencing, Selection Background Many animals show complex Iife cycles organized into morphologically distinct phases separated by abrupt metamorphic transitions (metamorphosis), as opposed to single static or continuously changing phases jTJ. Complex life cycles are ubiquitous in nature and have evolved many times independently [1-3]. Life stages are believed to represent alternative adaptations for optimal food and niche exploitation as well as conflicting tasks * Correspondence: jmartin@biology.au.dk ’ Department o f Bioscience, Aarhus University, Aarhus C, Aarhus, Denmark Full list o f author information is available at the end of the article (e.g. feeding, growth, mate-finding, dispersal, reproduction). Since Darwin, evolutionary biologists have been interested in understanding the genetic associations between life cycle stages and to what extent discrete phases are free to evolve independently from one another. Metainorphosis marks drastic morphological, physiological, behavioural and ecological changes in the life cycles of animals [4]. Given the dramatic changes associated with metamor- phosis, selection could differ before and after metamor- phosis, and opposing selection might be more common than complimentary selection [5, 6]. In regard to the bene- fits of metamorphosis, the adaptive decoupling hypothesis [1] predicts that traits separated by metamorphosis should O m 0 2015 Pujolar et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0BioMed Central Intemational License (http-//creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, andreproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.Org/publicdomain/zero/l.0/) applies to the data made available in this artide, unless otherwise stated. mailto:jmartin@biology.au.dk http://creativecommons.Org/publicdomain/zero/l.0/ Pujoiar et al. BMC Genomics (2015) 16:600 Page 2 o f 15 be genetically uncorrelated, allowing distinct phases to re- spond independently to different selective forces, without correlated negative effects on traits of alternative phases. Studies testing the adaptive decoupling hypothesis have found contradictory results and the genetic associations between life cycle stages separated by metamorphosis re- main poorly understood |6j. Our species of interest is the European eel {Anguilla anguilla), a facultative catadromous fish with a particu- larly complex life cycle that includes two metamor- phoses. After spawning in the remote Sargasso Sea, larvae of European eel are transported to the coasts of Europe and North Africa following the Gulf Stream and North Atlantic current. On reaching the continental shelf, eels undergo a first metamorphosis from larvae into glass eels (juvenile stage), which complete their mi- gration into continental feeding habitats as yellow eels. After an extensive feeding/growing period, eels undergo a second metamorphosis into silver eels (adult stage). The so-called “silvering metamorphosis” encompasses morphological (colour, eye size, body length and weight) as well as physiological modifications (e.g. loss of digestive tract), together witli tlie development of gonads. These changes are beforehand preparation for the íuture spaun- ing migration back to the Sargasso Sea, where eels repro- duce and die £7]. The European eel is an ideal species in which to study local selection. First, it presents a large effective popula- tion size (estimated from 100,000 to lxlO 6 individuals; [8]) that renders natural selection the major force deter- mining genetic differences; hence the role of random genetic drift is expected to be negligible. Second, it is present across extremely heterogenous environments in terms of temperature (from subarctic habitats in Iceland, Norway and northwestern Russia to subtropical habitats in North Africa and the Mediterranean Sea), salinity (from fresh water to brackish and marine habitats), sub- strate, depth and productivity along its geographic distri- bution [9]. Despite such a wide distribution range, there is recent conclusive evidence for panmixia in European eel, i.e. the existence of a single randomly mating popu- lation. In the most comprehensive study to date geno- typing over 1000 individuals obtained throughout all the distribution range in Europe at 21 microsatellite loci, /ds et al. [10] showed a very low and nonsignificant genetic diffferentiation across Europe (FST = 0.00024) and a lack of substructuring among larvae collected in the Sargasso Sea (Fst = 0.00076). Moreover, no significant genetic dif- ferentiation was observed when comparing tlie samples obtained in Europe vs. the larvae obtained from the spawning area (FST = -0.00012). Panmixia was also con- firmed at the genomic level in a study using a large dataset of > 450,000 SNPs from 259 RAD-sequenced European eels [11], which showed low levels of genetic differentiation (Fsx = 0.0007). Previous studies based on cohort analysis showed an unpatterned genetic hetero- geneity (genetic patchiness) as samples did not group together according to sampling location or cohort, and consequently no pattern on Isolation-by-Distance or Isolation-by-Time was detected [12, 13]. If European eel larvae showed phylopatry to the parental original freshwater habitats, genetic differences would be ex- pected across Europe; hence, the lack of genetic struc- turing found suggest no larval homing and random larval migratory routes [10, 11]. One consequence of panmixia and random dispersal of larvae across habitats is that long-term local adaptation is not possible in eels, despite the high potential for selective responses due to high mortalities in both early and late life stages [14]. Any signature of spatially varying selection in a given generation is expected to be lost in the subsequent gen- eration, preventing heritable trans-generational local adaptation [15]. However, single-generation signatures of local selection are still detectable [11, 15]. Studies of adaptive evolution in European eel have fo- cused on the detection of signatures of local selection in glass eels. Using a panel of 100 coding-gene single nu- cleotide polymorphisms (SNPs), Ulrik et al. [16] found signatures of selection at 11 loci in European eel, which constituted genes with a role in metabolism as well as defense response. As an alternative to candidate gene approaches, Pujolar et al. [11] tested for footprints of se- lection in glass eels at the genome level using 50,354 SNPs generated by RAD sequencing. A total of 754 potentially locally selected SNPs were identified. Candi- date genes for local selection constituted a wide array of functions, including calcium signalling, neuroactive ligand-receptor interaction and circadian rhythm. The power and efficiency of next generation sequen- cing (NGS) technologies are enabling research use of genomic data to address ecological and evolutionary questions at a genome-wide scale for model and non- model species [17, 18]. The insights that are obtained through NGS methods, as well as high throughput geno- typing methods in general, have led to unprecedented progress in many areas, from bridging ecological and evolutionary concepts to identifying the molecular basis of local selection and adaptation [17, 19-24]. The aim of our study is to test for selection acting upon different life cycle stages separated by metamorphosis in European eel, in particular between glass eels (juvenile stage) and silver eels (adult stage). First, we used a candidate gene approach and genotyped individuals from three sampling locations (Iceland, Ireland and Spain) using a panel of 100 coding-gene SNPs. Second, we performed RAD- sequencing of individuals from two sampling locations (Ireland and Spain), which allowed us to test for signa- tures of local selection at the genome level using a total Pujolar ef al. BMC Genomics (2015) 16:600 Page 3 o f 15 of 153,4-23 SNPs widely distributed across the genome. Following the shifts in selection exerted by the dramatic physiological, morphological and ecological changes that accompany metamorphosis, our prediction is that differ- ent genes and gene pathways will be under selection at different life stages, and those will appear as outlier loci (higher genetic differentiation relative to the back- ground) when comparing glass eels vs. silver eels. Ultimately, the identification of genes showing marked differences when comparing life stages separated by metamorphosis can provide insights into how European eel can cope with the incredible variety of conditions and environments encountered throughout its complex life cycle. It can also provide general insights into adap- tive genomic evolution in natural populations of marine fishes. Results SNP g e n o typ in g Details of all polymorphic loci, including frequency of the most common allele across all sampling locations in our study in silver eels and glass eels are presented in Table 1. A total of 61 out of 80 SNPs were polymorphic, although at 19 loci minor allele frequency (MAF) was < 0.05 in all samples. Genetic diversity values are summa- rized in Table 2. Genetic diversity measures were very similar across samples and no significant differences were found across sampling locations in silver eels, i.e. He (Spain: 0.227; Ireland: 0.233; Iceland: 0.224; p = 0.96); AR (Spain: 1.60; Ireland: 1.62; Iceland: 1.62; p = 0.99). Moreover, no differences were found in genetic diversity measures when silver eels were compared to glass eels (p > 0.05). Three loci deviated significantly from HWE at all locations (UGP2, heterozygote deficit; TENT7and UGPA, heterozygote excess) but were not excluded from the analysis, since departures from HWE might be due to selection. Genetic differentiation across silver eel samples was low and not significant (FST = 0.0018; p = 0.330). A similar low genetic differentiation was found when considering all sil- ver eel and glass eel samples (FST = 0.0026; p = 0.079) or when comparing pooled silver eels vs. pooled glass eels (Fst = 0.0021; p = 0.807). Low Fsx values were also ob- tained when compared silver eels vs. glass eels in all sam- ples: Spain (FST = 0.0036; p = 0.851), Ireland (FST = 0.0016; p = 0.943) or Iceland (FST = 0.0065; p = 0.976). Prior to the selection analysis, we investigated the presence of hybrids in the silver eel data set using STRUCTURE. Two individuals from Iceland (VADA-1 and VADA-2) were identified as hybrids showing a 50 % admixture proportion, and were consequently removed from the analysis (data not shown). Results from outlier tests are summarized in Table 3. Using LOSITAN, a total of 3 outliers were identified when comparing all samples in our study (3 silver eels, 3 glass eels): GAPDH, ALD_R and CLIC5. When compar- ing the 3 silver eel samples, two outliers were identified: CLIC5 and LDHB. When comparing silver eels vs. glass eels in all samples separately, different outlier loci were identified at each location: CLIC5 when comparing silver eels and glass eels from Spain; CST and CSDEl when comparing silver eels and glass eels from Ireland; and GAPDH when comparing silver eels and glass eels from Iceland. GAPDH was also detected as outlier when comparing pooled silver eels vs. pooled glass eels. When using BAYESCAN, fewer outliers were identified in comparison with LOSITAN, all showing high FST values: GAPDH (Fst = 0.27) and ALD_R (FST = 0.12) when con- sidering all samples and GAPDH (FST = 0.33) when com- paring silver eeis and glass eels from Iceland. RAD sequencing After sequencing of the RAD libraries, average number of reads (90 bp) per individual was 12.2 million for silver eels and 9.6 million for glass eels. After trimming to 75 bp and quality filtered, the average number of high quality reads retained was 10.7 million (86.8 %) for silver eels and 7.9 million (82.2 %) for glass eels. A similar per- centage of reads were uniquely aligned to the European eel draft genome (69.3-70.0 %), while 25.6-26.3 % of se- quences did not align and 4.5 % were discarded due to multiple alignments. Aligned reads were then assembled into a total of 348,342 loci using Stacks (Table 4). After discarding 27.12 % of loci due to insufficient coverage, 253,864 loci were used to construct a catalog of loci of SNPs for all individuals. At this point, a more strict filtering was ap- plied and we eliminated 846 loci due to extremely high coverage (>57.3 reads, which is twice the standard devi- ation from the mean number of reads), 144 loci at which all individuals were either all heterozygotes or all homo- zygotes, and 55,075 loci due to the presence of more tlran 2 alleles in a single individual, possibly reflecting paralogs or sequencing error. After a final filtering step selecting only loci genotyped in >66.7 % of individuals in all sampling locations, a total of 77,337 RAD loci were retained. Using Populations in Stacks, a total of 558,022 SNPs were discovered, including 153,423 SNPs with a minor allele frequency > 0.05. Measures of genetic diversity at 77,337 loci at all sam- pling locations are summarized in Table 5. The Valencia silver eel sample showed similar heterozygosities (H0 = 0.048; He = 0.052) and nucleotide diversity (Pi = 0.053) compared to the Valencia glass eel sample (H0 = 0.047; He = 0.051; Pi = 0.052) and the Burrishoole glass eel sample (H0 = 0.047; He = 0.051; Pi = 0.052). The Burrishoole silver eel sample showed slightly lower diversity (H0 = 0.040; Hc = 0.042; Pi = 0.045), presumably due to lower sample size. Pujolar er al. BMC Genomics (2015) 16:600 P a g e 4 o f1 5 Table 1 Details of all polymorphic loci, including frequency of the most common allele across all silver eel (SE) and glass eel (GE) samples Locus Gene Ireland lceland Spain SE GE SE GE SE GE 40S_S18_1401 40s ribosomal protein s l8 0.829 0.846 0.828 0.807 0.838 0.750 60S_L10A_21874 60s ribosomal protein L10a 0.846 0.782 0.776 0.839 0.775 0.779 ACT_A3B_8646 Actinin alpha 3b 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 ACTB_21752 Beta-actin 0.788 0.808 0.906 0.862 0.863 0 . 8 8 6 ACYLJ3914 Acyl carrier protein 0.750 0.776 0.758 0.823 0.738 0.826 ADH_3 Alcohol dehydrogenase class-3 0.737 0.859 0.733 0.690 0.795 0.761 ADSS_L1_15447 Adenylosuccinate synthetase isozyme 1 1 . 0 0 0 0.987 1 . 0 0 0 0.984 1 . 0 0 0 1 . 0 0 0 ALD_R Aldose reduaase 0.759 0.838 — 0.537 0.859 0.936 ALDH_2_16634 Aldehyde dehydrogenase 2 0.638 0.763 0.600 0.550 0 . 6 8 8 0.682 ANK_R_13478 Ankyrin repeat domain-comtaining protein 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 ANN_A11_16176 Annexin A11 0.897 0.923 0.807 0.919 0.900 0.852 ANX_2_249 Annexin A2-A 0.987 0.949 1 . 0 0 0 0.983 0.975 1 . 0 0 0 ARF_4_18099 ADP-ribsylation factor 4 0.987 1 . 0 0 0 0.969 0.983 0.988 0.977 ATP_BC_259 ATP-bindincasette sub-family A member 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 0.988 0.989 BPNT_1_18778 3'(5'),5'-biphosphate nucleotidase 1 0.971 1 . 0 0 0 0.985 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 CLIC_5_10148 Chloride intracellular channel 5 0.568 0.487 0.521 0.492 0.521 0.492 COL17591 Cytochrome oxidase subunit I 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 COP_9_18132 266S protease regulatory subunit 7 0.950 0.962 0.968 0.968 0.988 0.966 CSDE_1_11069 Cold shock domain-containing protein E1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 CSDE_1_19713 Cold shock domain-containing protein E1 0.950 1 . 0 0 0 0.968 0.983 0.963 0.977 CST_21113 Cystatin precursor 0.782 0.597 0.726 0.661 0.775 0.750 CYT_BC1_9061 Cytochrome b-cl complex subunit 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 EF_1G_4796 Translation elongation factor 1 gamma 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 .0 0 0 1 . 0 0 0 EF2_10494 Translation elongation factor 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 EIF_3F_341 Translation elongation factor 3 subunit F 0.872 0.892 0.967 0.967 0.910 0.932 EIF_3J_11587 Translation elongation faaor 3 subunit J 0.963 0.974 0.940 0.968 0.950 0.930 FER_H_20955 Ferritin heavy subunit 0.988 1 . 0 0 0 1 . 0 0 0 0.983 1 . 0 0 0 1 . 0 0 0 FGB_47 Fibrinogen Beta Chain 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 GAPDH_20355 Glyceraldehyde-3-phoshpate dehydrogenase 0.962 0.962 0.969 0.589 0.974 1 . 0 0 0 GDE1_2508 Glycerophosphochlorine phosphodiesterase 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 GOG_B1_15792 Golgin sub-family B member 1 0.987 0.987 0.970 0.968 1 . 0 0 0 0.966 GPX_4_19607 Glutathione peroxidase 4 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 HMG_T_9973 High mobility group-T protein 0.988 0.988 1 . 0 0 0 0.984 0.988 0.966 HSP_90A_15666 Heat shock protein 90 alpha 0.988 0.949 0.984 0.968 0.988 0.977 HSP_90B_21100 Heat shock protein 90 beta 0.895 0.949 0.966 0.984 1 . 0 0 0 1 . 0 0 0 HSPE_1_17854 10 kDa heat shock protein 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 0.984 1 . 0 0 0 1 . 0 0 0 IF_RF2_19747 Interferon regulatory factor 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 JAM_3_13916 Junctional adhesion molecule 3b 0.938 0.885 0.984 0.952 0.950 0.893 KRT_13_20618 Keratin 0.808 0.795 0.821 0.783 0.800 0.796 KRT_A_15738 Keratin alpha-like 0.975 1 . 0 0 0 0.952 0.984 0.960 0.988 LBL_L2_20921 No hit 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 LDH_B_9441 Laaase dehydrogenase B 1 . 0 0 0 1 . 0 0 0 0.952 0.950 1 . 0 0 0 1 . 0 0 0 Pujolar ef al. BMC Genomics (2015) 16:600 Page 5 o f 15 Table 1 Detaíls of all polymorphic loci, íncluding frequency of the most common aiíele across all silver eel (SE) and glass eeí (GE) samples (Continued) MDHJ393 Maiate dehydrogenase 0.449 0.592 0.567 0.603 0.615 0.476 MYH_14857 Superfast myosin heavy chain 0,514 0.473 0.500 0.516 0.425 0.489 MADH_4_21742 NADH dehydrogenase subunit 4 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 NADH_5_17101 NADH dehydrogenase subunit 5 0,974 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 0,977 NADH1 J0_21119 NADH dehydrogenase 1 alpha subunit 1 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 , 0 0 0 1 . 0 0 0 NCP„2_15547 Nudeoíar compíex protein 2 0.974 0.934 1 . 0 0 0 0.967 0,962 0.932 NEX_19953 Nexiíin 0.592 0.608 0.485 0.567 0.577 0.523 NGD_21138 Neuroguidin 0.795 0.842 0.906 0.758 0.825 0.852 NRAP_1541 Nebuiin-related anchoring protein 1 . 0 0 0 0.987 0.984 1 . 0 0 0 0.988 0.989 PA2G4_2600 Proliferation associated protein 2G4 0.663 0,645 0.652 0.550 0.575 0.580 PFNL15113 Profilin-2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 PGD_18096 ð-phosphogluconate dehydrogenase 0.987 0.961 0.969 0.967 0.988 0.966 PGIJ Phosphoglucose isomerase-1 0.800 0.797 0.742 0.750 0.675 0.807 PGI_2 Phosphoglucose isomerase-2 0.552 0.566 0553 0.500 0.625 0.556 PGK_1_11454 Phosphogiycerate kinase 1 0.947 0.961 0.909 0.903 0.975 0.939 PRP_40_16504 Pre-mRNA-processing factor 40 homolog A 0.829 0.842 0.833 0.903 0.846 0.845 PSA_4_21534 Proteasome subunit alpha type-4 0.513 0.434 0.550 0.550 0.590 0.432 P5ME_1_21196 Proteasome aaivator 0.719 0.583 - 0,621 0.625 0.667 RFC_3_18186 Replication factor C subunit 3 0.763 0.776 0.773 0.717 0.800 0.784 RTF_1_21288 RNA pofymerase-associated protein RTF1 0.756 0.724 0.900 0.758 0.846 0.750 SDH_0 Sorbitoí dehydrogenase 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 5LC„25A5_19808 ADP/ATP translocase 2 1 . 0 0 0 1 . 0 0 0 0.967 0.984 1 , 0 0 0 1 . 0 0 0 5M_22_6449 Transgelin 0,963 0.934 0.946 0.952 0.950 0.955 SN4_TDR_374 Taphyiococcal nuclease domain-contaíning protein 0.962 0.910 0.919 0,862 0 . 8 8 8 0.909 TENT_02_11046 No hlt 0.744 0.711 0.739 0.774 0.713 0.784 TENT_03_12589 Coilagen type XXVii! alpha 1 a 0.949 0.987 1 . 0 0 0 0.968 0.988 0.966 TENT_05_19704 No hit 1 . 0 0 0 0.987 0.968 0.983 1 , 0 0 0 1 . 0 0 0 TENT_06_16512 Protein Phosphatase regulatory subunit 0.603 0.581 0.600 0.533 0.575 0.625 T£NT_07_21161 No hit 0.419 0.368 0.348 0.397 0.350 0.286 TNNT_2E_20968 Troponin T2e 0.949 0.885 0.913 0.875 0.838 0.895 TR1M_35_8416 Tripartite motif-contaning protein 35 0.692 0.658 0.750 0.629 0.641 0.698 TTN_B_20952 Titin b 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 TU B_A_19211 Tubulin aípha 2 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 UBI„A52_5049 Ubiquitin A-52 ribosomal protein fusion product 1 0.987 0.974 0.967 0.917 1 . 0 0 0 0.989 UGP„2_2128 UDP-gíucose pyrophosphorylase 2 0.671 0.541 0.531 0.690 0.663 0.546 UGP_A_2307 Glyceroi-3-phosphate transporter subunlt 0.671 0.603 0.600 0.613 0.600 0.636 UNA_SINE2_16912 Eel Short interspersed elements 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 ZETAJ5177 Tyr 3-monooxygenase 0.739 0.865 0.810 0.783 0.756 0.852 Prior to the analysis of local selection, the presence of hybrids in the data set was assessed in STRUCTURE using a subset of diagnostic SNPs between North Atlantic eeis and prevíously analyzed RAD-sequenced American eeís for comparison. A scenario with K = 2 groups correspond- ing to the two North Atlantic eel species was suggested. Within European eel, all RAD-sequenced silver eels were identified as pure European eel, with no hybrids in the data set. In the RAD data set, outlíer tests were first conducted comparíng silver eels (N = 31) and glass eels (N = 31) from Valencia using 153,423 SNPs, A total of 2413 SNPs Pujolar et al. BMC Genomics (2015) 16:600 Page 6 o f 15 Table 2 Summary of genetic diversity indices at 80 SNPs inciuding observed (H0) and expected heterozygosities (He), polymorphism at the 95 % and 99 % level, mean (MNA) and total number of alleles (TNA) and allelic richness (AR) in all silver eel (SE) and glass eel (GE) samples N H0 He P95 P99 MNA TNA AR Spain-SE 40 0.232 0.227 0.625 0.844 1.84 118 1.60 Spain-GE 44 0.224 0.228 0.641 0.859 1 . 8 6 119 1.63 Ireland-SE 40 0.226 0.233 0.641 0.891 1.89 1 2 1 1.62 Ireland-GE 39 0.236 0.233 0.656 0.844 1.84 118 1.62 lceland-SE 33 0 . 2 2 2 0.224 0.581 0.855 1 . 8 6 119 1.62 lceland-GE 40 0.272 0.249 0.625 0.938 1.94 124 1 . 6 6 Table 3 Candidate genes under selection at 80 SNPs in LOSITAN and BAYESCAN. SE = Silver eels; GE = Glass eels Samples LOSITAN BAYESCAN All samples (SE + GE) ALD_R ALD-R (He = 0.34;Fsr = 0.12; (BPP = 1.00; q = 0.000; p = 0 .0 0 1 ) alpha = 2 .1) GAPDH GAPDH (He = 0.17; Fsr = 0.27; (BPP = 1.00; q = 0.000; p = 0 .0 0 1 ) CLIC_5_10148 (He = 0.50; Fsr = 0.05; p = 0.009) alpha = 2 .6 ) Silver eels (SE) CLIC_5_10148 (He = 0.51;Fsr = 0.09; p = 0.003) LDH_B_9441 (He = 0.03; Fsr = 0.03; p = 0.047) SE(pooled) vs. GAPDH GE(pooled) (He = 0.14; Fsr = 0.05; p = 0 .0 1 0 ) Spain (SE vs. GE) CLIC_5_10148 (He = 0.51; Fjr = 0.08; p = 0.018) Ireland (SE vs. GE) CST_21113 (He = 0.44; Fsr = 0.07; p = 0.023) CSDE_1_19713 (He = 0.05; Fsr = 0.04; p = 0.049) lceland (SE vs. GE) GAPDH GAPDH (He = 0.41; Fst = 0.33; (BPP = 1.00; q = 0.000; p = 0 .0 0 1 ) alpha = 2.4) putatively under selection were identified by LOSITAN and 1472 SNPs by BAYESCAN. Since the LOSITAN outliers encompassed those outliers identified by BAYES CAN, the rest of the analysis was conducted only for the LOSITAN outliers. Out of the 2413 candidate SNPs, a hit with a gene was obtained for 1089 (45.13 %) of the SNPs, while the remaining 1324 SNPs (54.87 %) were located in noncod- ing regions of the genome. Among hits, 966 were located in introns and 123 in exons, including 48 in complete coding sequences (CDS). Hits represented a total of 1018 unique genes, of which 835 (82.02 %) genes were successfully annotated using BLASTX. Subsequently, the KEGG pathway approach for higher-order functional annotation was implemented in DAVID. Using zebrafish as reference genome, a total of 616 zebrafish genes hom- ologous to European eel were mapped to KEGG pathways. Enriched KEGG pathways using a standard setting of gene count = 2 are summarized in Table 6. The path- ways with the highest number of genes were MAPK/ Erk signalling, calcium signalling, focal adhesion, cell adhesion and GnRH signalling. A list of all annotated genes is provided in Additional file 1: Table Sl. We also tested for outliers between silver eels and glass eels from Burrishoole, although adult sample size was low (N = 10), as a way to confirm the results above. A total of 2228 putative SNPs under selection were identified by LOSITAN and 1888 SNPs by BAYESCAN, the latter being all included in the list of LOSITAN outliers. Among all outlier SNPs, a hit with a gene was obtained for 949 of the SNPs, 838 corresponding to introns and 111 to exons (including 42 in CDS). In total, 770 (81.13 %) of the hits were successfully annotated using BLASTX. Subsequently, a total of 557 zebrafish genes homologous to European eel were mapped to KEGG pathways in DAVID. The path- way with the highest number of genes was endocytosis (15 genes), while other highly-represented pathways included regulatory and signalling pathways (Table 7). Im- portantly, despite the limited number of RAD-sequenced adults from Burrishoole, over-represented patliways were similar to the ones found when comparing silver eels and glass eels from Valencia. Shared over-represented path- ways included signalling (i.e. MAPK/Erk, GnRH, cal- cium or insulin) pathways and cell and focal adhesion. A list of all annotated genes is provided in Additional file 2: Table S2. Finally, average FST values between silver eels and glass eels from Valencia calculated using a 50-kb sliding window were plotted for the 30 largest scaffolds. FST was low throughout the scaffolds, with just a few narrow peaks. No regions of the scaffolds with pronounced divergence peaks were observed, consistent with pan- mixia removing any effect of diversifying selection from each new generation. Similar results were obtained when Pujolar e t al. BMC Genomics (2015) 16:600 Page 7 o f 15 Table 4 Statistics describing the distribution of dífferent properties of RAD sequences after each step of filtering (FASTX-Toolkit), alignment to the eel draft genome (BOWTIE) and assemblage into loci (STACKS) in silver eels (SE) and glass eels (GE) FASTX Group Raw reads Filtered reads % Eliminated Mean Q Q1 Med Q3 % A % C % G % T SE 12234656 10692256 13.2 38.7 38 39.7 40 28.7 22.0 20.4 28.7 GE 9593701 7899505 17.8 38.7 38 39.4 40.2 29.5 20.7 20.4 29.4 BOWTIE Group Reads Aligned % Aligned Non-aligned % Non-aligned Discarded % Discarded SE 10692256 7433827 69.3 2782716 26.3 475668 4.5 GE 7899505 5527660 70.0 2018833 26.0 353043 4.5 STACKS Group Reads Stacks Loci Loci used % Loci used Loci discarded % Loci discarded SE 7433827 547017 348342 253864 73.9 94482 27.1 GE 5527660 526821 335343 217326 64.5 118016 35.5 using alternative (100-kb and 200-kb) sliding windows. Figure 1 shows an example of the plots obtained for the tlnree largest scaffolds (1, 3 and 21) in tlte European eel draft genome. A total of 4, 5 and 6 peaks representing outlier SNPs with higher FST relative to the background were observed in scaffolds 1, 3 and 21, respectively. The average distance between outlier SNPs was around 300,000 bp in scaffolds 1 and 3 and around 220,000 bp in scaffold 21. The closest distance between outlier SNPs was 9000 bp in scaffold 1, 19,000 bp in scaffold 21 but around 125,000 bp in scaffold 3. Discussion Evidence fo r selection acting upon d iffe ren t life stages in European eel We examined the patterns of genomic diversity across life cycle stages in European eel, using a combined ap- proach of candidate coding-gene SNPs and a large-scale genomic analysis of 153,423 SNPs generated by RAD se- quencing. We compared two life cycle stages separated by metamorphosis, glass eels (juvenile stage) and silver eels (adult stage), and identifíed signatures of directional selection. All available information indicates that eel mortality in nature is very high and only a small fraction Table 5 Summary of genetic diversity indices at 77,337 RAD-loci including observed (H0) and expected heterozygosities (He) and nucleotide diversity (Pi) considering only variant positions and considering all positions in all silver eel (SE) and glass eel (GE) samples N Variant positions All positions H0 He Pi H0 He Pi Spain-SE 31 0.0479 0.0523 0.0532 0.0046 0.0050 0.0051 Spain-GE 31 0.0465 0.0508 0.0518 0.0044 0.0048 0.0049 Ireland-SE 1 0 0.0401 0.0420 0.0448 0.0039 0.0041 0.0043 Ireland-GE 29 0.0469 0.0505 0.0515 0.0045 0.0048 0.0049 of the glass eels entering European coasts reach the sil- ver eel stage and migrate back to the Sargasso Sea [25]. Bonhommeau et al. [26] estimated a glass eel survival rate of 10 %, while Áström and Dekker [14] estimated a natural mortality rate of M = 0.14 per year and a fishery mortality rate of F = 0.54 per year. Hence, the observa- tion of outlier loci showing high genetic differentiation when comparing glass eels vs. silver eels is consistent with the action of natural selection acting upon eels. FST-based outlier tests are based on the detection of loci that show significantly high differentiation with signifi- cance determined by simulations assuming specific population structure models [271 and are being exten- sively used at present in studies aiming at detecting signatures of selection on a genome scale [28-31], al- though results should be interpreted with caution (see Bierne et al. [32] for a critique of outlier tests). Using the SNP panel developed by Gagnaire et al. [15] in American eel, a total of four loci showed higher genetic differentiation tlaan the background FST when comparing glass eel and silver eel samples. GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) is a gene with a major metabolic function and catalyzes the con- version of glyceraldehyde 3-phosphate to D-glycerate 1,3-biphosphate in the glycolysis pathway. In this sense, GAPDH has been linked to growth differences in gene expression studies in fishes [33]. CST (Cystatin precur- sor) is a gene involved in catalytic activity that takes part in defense response. CLIC5 (Chloride intracellular chan- nel 5) is a gene involved in chloride ion transport, which is important for pH regulation, volume homeostasis, organic solute transport, cell migration, cell proliferation and differentiation. CSDEl (Cold shock domain-containing protein El) is a RNA-binding protein involved in regula- tion of transcription. However, all outliers were location- specific (GAPDH in Iceland, CLIC5 in Spain and CST and CSDE in Ireland) and none was common across locations. Pujolar et al. BMC Gerom ics (2015) 16:600 Page 8 o f 15 Table 6 Over-represented KEGG pathways when comparing glass eels and silver eels from Valencia (Spain), including gene count Term Count dre04010:MAPKÆrk signalling pathway 1 0 dre04510:Focal adhesion 9 dre04020:Calcium signalling pathway 8 dre04514:Cell adhesion molecules (CAMs) 7 dre04912:GnRH signalling pathway 7 dre04512:ECM-receptor interaction 6 dre04270:Vascular smooth muscle contraction 6 dre045B0:Tight junction 6 dre00230:Purine metabolism 6 dre04080:Neuroactive ligand-receptor interaction 6 dre04070:Phosphatidylinositol signalling system 5 dre04914:Progesterone-mediated oocyte maturation 5 dre04910:lnsulin signalling pathway 5 dre00564:Glycerophospholipid metabolism 4 dre00562:lnositol phosphate metabolism 4 dre04370:VEGF signalling pathway 4 dre04540:Gap junction 4 dre04210:Apoptosis 4 dre04916:Melanogenesis 4 dre04810:Regulation of actin cytoskeleton 4 dre00534:Heparan sulfate biosynthesis 3 dre00480:Glutathione metabolism 3 dre04650:Natural killer cell mediated cytotoxicity 3 dre04620:Toll-like receptor signalling pathway 3 dre04012:ErbB signalling pathway 3 dre00240:Pyrimidine metabolism 3 dre04350:TGF-beta signalling pathway 3 dre04114:Oocyte meiosis 3 dre04120:Ubiquitin mediated proteolysis 3 dre04144:Endocytosis 3 dre00590:Arachidonic acid metabolism 2 dre00450:5elenoamino acid metabolism 2 dre00250:Alanine, aspartate and glutamate metabolism 2 dre00030:Pentose phosphate pathway 2 dre00270:Cysteine and methionine metabolism 2 dre04621:NOD-like receptor signalling pathway 2 dre00310:lysine degradation 2 dre00330:Arginine and proline metabolism 2 dre04150:mTOR signalling pathway 2 dre04622:RIG-l-like receptor signalling pathway 2 dre04920:Adipocytokine signalling pathway 2 Table 6 Over-represented KEGG pathways when comparing glass eels and silver eels from Valencia (Spain), including gene count (Continued) dre00010:Glycolysis / Gluconeogenesis 2 dre04260:Cardiac muscle contraction 2 dre04520:Adherens junction 2 dre04630:Jak-STAT signalling pathway 2 dre04142:Lysosome 2 dre03040:Spliceosome 2 This suggests that if the outliers detected indeed do repre- sent selection, then they do not result from a universal se- lection agent affecting eels in all places but rather location- specific factors affecting eels locally. A much larger number of candidate genes putatively under selection were identified after screening a total of 153,423 RAD-generated SNPs across the genome: 2413 when comparing glass and silver eels from Spain and 2228 in the case of Ireland. Functional annotation ana- lysis using DAVID identified signal transduction path- ways as the most over-represented. Signal transduction involves tlie binding of an extracellular signalling mol- ecule (ligand) to a specific cell-surface receptor. The activation of the receptor leads to an altered response inside the cell. Examples of cellular responses to extra- cellular stimulation that require signal transduction include changes in metabolism and gene expression. Fol- lowing are some major pathways identified in our study: - MAPK/Erk signalling: a complex key signalling path- way that is involved in the regulation of normal cell pro- liferation, sui*vival, growth and differentiation [34]; the pathway includes mitogen-activated protein kinases that ultimately activate transcription factors and alter gene transcription. - GnRH signalling: secretion of gonadotropin-releasing hormone from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of FSH (follicle-stimulating hormone) and LH (luteinizing hormone); together, FSH and LH regulate many aspects of gonadal function in both males and females, including normal growth, sexual development and reproductive function [35]. - Calcium signalling: calcium ions serve a number of important functions and regulate processes as diverse as fertilization, development, learning and memory, mito- chondrial function, muscle contraction and secretion; calcium ions are also recognized as very important in ion exchange and osmoregulation [36]. - Insulin-like growth factor signalling: this pathway plays a central role in the neuroendocrine regulation of animal growth and development. In fish, additional func- tions include osmoregulatory acclimation, reproductive development and tissue regeneration. Insulin-Iilce growth Pujolar ef al. BMC Genomics (2015) 16:600 Page 9 o f 15 Table 7 Over-represented KEGG pathways when comparing glass eels and silver eels from Burrishole (Ireland), including gene count Term Count dre04144:Endocytosis 15 dre04514:Cell adhesion molecules (CAMs) 8 dre04510:Focal adhesion 8 dre04010:MAPK/Erk signalling pathway 8 dre04270:Vascular smooth muscle contraction 7 dre04912:GnRH signalling pathway 7 dre04020:Calcium signalling pathway 7 dre04080:Neuroactive ligand-receptor interaction 7 dre04060:Cytokine-cytokine receptor interaction 6 dre04142:Lysosome 6 dre04310:Wnt signalling pathway 6 dre04810:Regulation of aain cytoskeleton 6 dre04512:ECM-receptor interaction 5 dre04630Jak-STAT signalling pathway 5 dre04916:Melanogenesis 5 dre03040:Spliceosome 5 dre04120:Ubiquitin mediated proteolysis 5 dre04530:Tight junction 5 dre00051:Fruaose and mannose metabolism 4 dre04540:Gap junaion 4 dre04012:ErbB signalling pathway 4 dre04910:lnsulin signalling pathway 4 dre04110:Cell cycle 4 dre00512:0-Glycan biosynthesis 3 dre00520:Amino sugar and nucleotide sugar metabolism 3 dre00564:Glycerophospholipid metabolism 3 dre04920:Adipocytokine signalling pathway 3 dre04070:Phosphatidylinositol signalling system 3 dre04520:Adherens junaion 3 dre00290:Valine, leucine and isoleucine biosynthesis 2 dre00531:Glycosaminoglycan degradation 2 dre00532:Chondroitin sulfate biosynthesis 2 dre00534:Heparan sulfate biosynthesis 2 dre00640:Propanoate metabolism 2 dre00620:Pyruvate metabolism 2 dre00270:Cysteine and methionine metabolism 2 dre04130:SNARE interaaions in vesicular transport 2 dre00970:Aminoacyl-tRNA biosynthesis 2 dre04622:RIG-l-iike receptor signalling pathway 2 dre04330:Notch signalling pathway 2 dre04340:Hedgehog signalling pathway 2 dre03320:PPAR signalling pathway 2 Table 7 Over-represented KEGG pathways when comparing glass eels and silver eels from Burrishole (Ireland), including gene count (Continued) dre00562:lnositol phosphate metabolism 2 dreOOOI 0:Glycolysis / Gluconeogenesis 2 dre04650:Natural killer cell mediated cytotoxicity 2 dre04620:Toll-like receptor signalling pathway 2 dre04914:Progesteronemediated oocyte maturation 2 factor signalling is mediated by two ligands, insulin-like growth factor 1 (IGF-1) and factor 2 (IGF-2), both of which were identified as outliers. The production of IGF-1 is stimulated by growth hormone and is positively correlated with growth as shown in coho salmon [37] or sea bream [38]. - Focal adhesion: Related to signalling pathways, focal adhesion was also over-represented in our analysis. Focal adhesions are large protein assembles through which both mechanical force and regulatory signals are trans- mitted and have central roles in cell migration and mor- phogenesis as well as regulating cell proliferation and differentiation [39]. Other over-represented pathways were related to me- tabolism (i.e. purine metabolism, glycerophospholipid metabolism) and detoxification of xenobiotics (i.e. gluta- thione metabolism). The latter included cytochrome CYP2J6, a member of the cytochrome P450 superfamily of enzymes that catalyze many reactions involved in drug metabolism. Overall, when we consider the functions of the genes, it seems biologically plausible that the genes identified as outliers are indeed under selection. Many of the over- represented pathways were related to growth, while others could result from the different conditions and habitats that eels inhabit throughout their life cycle. In this sense, examination of otoiith data suggests a high plasticity of habitat use by eels [9], with one or several movements between fresh and brackish waters through- out the lifetime of an individual. When only a single habitat switch event was detected, it occurred between 3 and 5 years of age, which could explain the differences found in our study at osmoregulation genes between glass eels and silver eels. When comparing across methods, a much larger num- ber of genes putatively under selection were identified using tlie RAD genome scan approach. This is expected, since we screened only 80 SNPs with the American eel SNP panel, while we interrogated over 150,000 SNPs with the RAD approach. However, when considering percentage rather than total number of markers under selection, results were similar. For instance, in the case of Valencia we found 1.57 % of SNPs putatively under selection using the RAD approach (2413 out of 153,423 Pujolar e t al. BMC Genomics (2015) 16:600 Page 10 of 15 -0 .0 0 5 . 1,000 1 ,5 0 0 2,000 0 .0 1 5 Scaffold 21 Scaffold 1 -0 .0 0 5 . 0 .0 1 5 ' —i-------------------------- 1---------------------------1------------------------ r~ 5 0 0 1 ,0 0 0 1 ,5 0 0 2 ,0 0 0 Scaffold 3 0.000 - 0 .0 0 5 . ( 0 5 0 0 1 ,0 0 0 1 ,5 0 0 2 ,0 0 0 b p ( x l 0 0 0 ) Fig. 1 Plots o f average FSi- calculated using a 50-kb sliding w indow for the three largest scaffolds (I, 3 and 21) in the European eel genom e SNPs screened), with a similar percentage (1.25 %, 1 out- lier out of 80) found using the American eel SNP array. In the case of Burrishoole, candidate SNPs under selec- tion were 1.45 % (2228 out of 153,423) using the RAD approach and 2.5 % (2 out of 80) using the American eel SNP array. Finally, it should be noted that outliers were not shared across methods, which is explained by the different nature of the markers. All SNPs included in the array were Iocated in coding-genes, while the SNPs discovered using the RAD approach were mostly lo- cated in non-coding genes, since RAD tags are restric- tion site generated markers randomly distributed across the genome. S up port fo r th e ad ap tive decou plin g hypothesis The observation in our study of a large number of out- lier loci showing higher Fsx values relative to the back- ground when comparing glass eels and silver eels fits the prediction that in the case of animals with complex life cycles, different genes and gene pathways will be under selection at different life stages. This is in accordance with the adaptive decoupling hypothesis for the benefits of metamorphosis [1], which predicts no correlation be- tween traits separated by metamorphosis, thereby each life stage can respond independently to its unique select- ive pressures. Moran (T[ hypothesized that the genetic decoupling of pre- and post-metamorphosis life stages explains the origin and persistence of complex life cycles, as alterna- tive phases can be regarded as adaptations for a more effective exploitation of resources and adaptations to perform phase-specific tasks. In the case of eels, the sil- vering metamorphosis, which represents the passage from juvenile to adult, is accompanied by drastic modi- fications at the physiological, morphological and eco- logical level that could explain the shifts in selection acting across life cycle stages. Changes occur both ex- ternally (increase in eye size, change in colour from yel- low-ish to silver, increase in body size and weight) and internally (degeneration of the digestive track, changes of visual pigments, development of gonads). While the ju- venile stage is perfectly adapted for feeding, adults are not able to feed anymore following metamorphosis, relying solely on fat reserves to reach the Sargasso Sea. However, Pujolar et al. BMC Genomics (2015) 16:600 Page 11 of 15 the adult stage is best adapted for migration, mating and reproducing. If selection vvere complementary between life cycle stages separated by metamorphosis, the same genes and pathways would be expected to be under selection be- fore and after metamorphosis and no outlier loci show- ing high diíferentiation would be expected. By contrast, in our study we found up to 2413 outlier loci, suggestive of opposing selection betxv'een life cycle stages, as pre- dicted by the adaptive decoupling hypothesis. Alternatively, results in our study could reflect changes in genetic frequencies over time rather than a selection effect. One possibility we cannot rule out is a temporal effect, since juveniles and adults in our sampling were not from the same cohort. Following the same cohort in time would be ideal to test our hypothesis of opposing selection during different life stages separated by meta- morphosis, however this is virtually impossible in eels. Age at maturity (at which the silvering metamorphosis occurs) is highly variable in eels, ranging from 6 to 20 years or more _[7]. This means tliat individuals ffom the same cohort will become silver eels at different times and that adult eel samples for genetic studies are mostly made up of a mix of different cohorts. Nevertheless, the observation of a parallel pattern of genetic differentiation in Valencia and Burrishoole when comparing glass eels and silver eels, with many over-represented genes and pathways being shared by the two locations, lends sup- port to a selection effect. G enom ic d is trib u tio n o f cand idate genes under selection Genomic regions displaying elevated differentiation relative to the rest of the genome (genomic islands of divergence) have been described in many species, as exemplified in the case of sticldebacks [28, 29]. In marine fishes, genomic islands of divergence might be unexpected because of their extremely high effective population sizes (Ne). Due to the effects of Ne on the level of linkage disequilibrium, a fast decay of linkage disequilibrium should be generally ex- pected (reviewed in [40]), which in turn might preclude hitchhiking and ultimately the observation of genomic islands of divergence. That might be the case of eels. In our study comparing glass eels and silver eels, outlier SNPs showing liigh gen- etic differentiation consistent with selection did not group into clusters but were generally spread across the genome. Similarly, no apparent genomic islands of divergence were found when investigating the genomic distribution of out- lier SNPs between European and American eel [41]. In contrast to the pattern observed in European eel, genomic clustering of some highly divergent SNPs was ob- served in Atlantic herring [30], a species with a very large efiective population size. Elevated genomic differentiation across large genomic blocks (up to 15 Mb) was also reported in Atíantic cod [31, 42], which suggests that gen- omic islands of divergence can occur in marine fishes. However, it is likely that the different pattern observed in eels (no clustering of genes) vs. Atlantic herring and Atlantic cod (clustering of genes) might be due to the dif- ferent impact of evolutionary forces acting upon the panmictic European eel and other species that are genetic- ally sub-structured. Therefore, unlike in eels, significant linkage disequilibrium might occur in Atlantic herring and Atlantic cod, thus allowing hitchhiking to accumulate, which ultimately results in the clustering of genes with lo- calized elevated differentiation relative to the background. Finally, it should be noted that by using an FST-outlier approach, the number of loci under selection might be underestimated. While standard tests of selection (i.e. outlier tests) are powerful tools to detect “hard selective sweeps”, in which a new advantageous mutation arises and spreads quickly to fixation due to natural selection [43], other scenarios might be more difficult to detect. Those include soft sweeps, in which an allele already present in the population (i.e. standing variation) be- comes selectively favoured or when multiple independ- ent mutations at a single locus are all favoured [44], and polygenic adaptation, in which simultaneous selection occurs on variants at many loci [22, 45]. Both scenarios lead to shifts in allele frequencies rather than fixation, thus tend to be more difficult to detect than hard sweeps using standard tests of selection [23, 45, 46]. Considering the high historical effective population size estimated for the European eel (from 100,000 to lxlO 6 individuals) and associated high genetic variability [8], soft sweeps might be more common than hard sweeps and hence our study might have uncovered only a fraction of the genes under selection across life stages in European eel. Condusions Our data supports the adaptive decoupling hypothesis for the benefits of metamorphosis in European eel since genes and gene pathways under selection were different in pre- and post-silvering metamorphosis. The differ- ences found between juveniles and adults suggests that partitioning the life cycle into discrete stages may be more effective than a single stage in the case of eels. This way,each life stage can perform specific tasks more effectively, i.e. feeding in glass eels, reproducing in silver eels. Methods Ethical s ta tem en t No experiments were conducted on the animals and ani- mal manipulation was limited to sacrificing fish, using the least painful method to obtain tissue samples for DNA extraction. In all cases, in order to minimize the suffering of the animals used in the study, fish were Pujolar er al. BMC Genomics (2015) 16:600 Page 12 of 15 deeply anaesthetized with MS-222 (3-amonobenzoic acid ethyl ester) or 2-phenoxyethanol 1 % and then painlessly sacrificed. All procedures were conducted by technical staff, who had all the necessary fishing and animal ethics permits. In Iceland, sampling was approved by Holar University College Ethical Committee and conducted according to guidelines and laws on animal welfare in Iceland. In Ireland, all sampling was carried out under authorisation (Sec. 4) of the Fisheries Act 1959-2003 by permission of the Department of Agriculture, Food and Marine. In Spain, samples were obtained from profes- sional fishermen with sampling and ethical treatment of animals approved by the Consejeria de Medio Ambiente of the Comunidad Autonoma de Valencia. Sampling A total of 113 silver eels (aduit stage) were collected at three locations across tlie geographical distribution of the species: (i) Valencia (Spain) in the Mediterranean Sea; (ii) Burrishoole (Ireland), in the North Atlantic Ocean; and (iii) four separate sampling sites in southwestern Iceland that were pooled to increase sample size (Table 8). All silver eels were caught using fyke nets. Silver eels were compared to previously analyzed glass eels collected in the same locations [11, 16]. We also used previously ana- lyzed American eels for comparison [8, 16]. Genomic DNA was extracted using standard phenol-chloroform extraction. SNP genotyping A panel of 100 coding-gene single nucleotide polymor- phisms (SNPs) developed by Gagnaire et al. [15] in American eel was applied to all 113 silver eels in our study (40 from Spain, 40 from Ireland and 33 fforn Iceland). In a preliminary analysis, 20 out of the 100 pri- mer sets did not give good amplification products in European eel and were excluded. Subsequently, all indi- viduals were genotyped at 80 SNPs [16], using the Kbioscience Competitive Allele-Specific PCR genotyping system (KASPar) (Kbioscience, Hoddeston, UK). Within-sample genetic diversity was assessed by ob- served and expected heterozygosities, polymorphism and mean and total number of alleles using GENEPOP [47] and standardized allelic richness using FSTAT [48]. Dif- ferences in genetic diversity among samples were tested by one-way ANOVA using STATISTICA (StatSoft Inc). Deviations from Hardy-Weinberg equilibrium and differ- ences in allele frequencies among samples were calcu- lated using GENEPOP. Significance levels for multiple comparisons were corrected using Bonferroni [49]. Prior to the test for selection, we tested the presence of hybrid individuals in the dataset using STRUCTURE [50]. We included a set of 20 American eels for reference and conducted the analysis assuming a I< = 2 scenario given that two panmictic species were analyzed. We assumed an admixture model, uncorrelated allele frequencies and we did not use population priors. A burn-in length of 100,000 steps followed by one million additional iterations was performed. RAD sequencing A subset of 41 silver eels (31 from Spain and 10 ffom Ireland) were RAD-sequenced [51, 52] at BGI (Beijing Genomics Institute, Hong Kong). In short, genomic DNA for each individual was digested with restriction enzyme EcoRI, ligated to a modified Illumina P1 adapter containing Table 8 Sampling details including sampling date and locations and number of individuals genotyped using the American eel SNP chip and number of individuals RAD sequended in all glass eel and silver eel samples Country Location Coordinates Sampling date N-chip N- RAD 1) Glass eels Spain Valencia 39° 46' N / 0° 24' W 2 0 1 0 44 31 Ireland Burrishoole 53° 90' N / 9° 58' W 2005 39 29 lceland Stokkseyri 63° 81' N / 21° 04' W 2 0 0 1 1 0 - Vifilsstadvatn 64° 07' N / 21° 87’ W 2 0 0 1 1 0 - Seljar 64° 56' N / 22° 31' W 2 0 0 1 1 0 - Vogslækur 64° 69' N / 22° 33' W 2 0 0 1 1 0 - 2) Silver eels Spain Valencia 39° 46' N / 0° 24' W 2 0 1 0 40 31 Ireland Burrishoole 53° 90' N / 9° 58' W 2 0 1 0 40 1 0 lceland Vatnsdalsá 65° 49' N / 20° 34' W 2 0 0 0 9 - Grafarvogur 64° 15' N / 21° 81'W 2003 1 0 - Vifilsstadvatn 64° 07' N / 21° 87'W 2 0 0 2 9 - Grindavik 63° 83' N / 22° 42' W 2003 5 - Pujolar e t al. BMC Genomics (2015) 16:600 Page 13 of 15 individual-spedfic barcodes and sheared to an average size of 500 bp. Sheared DNA was separated by electrophoresis on a 2 % agarose gel and fragments in the 350-500 bp size range were selected. After treating dsDNA ends with end blunting enzymes and adding 3’-adenine overhangs, a modified Illumina P2 adapter was ligated. The final step consisted in enriching the libraries by PCR amplification. The libraries for the 41 silver eels were constructed to- gether with those for 259 glass eels reported in Pujolar et al. [llj , using the same methodology and conditions. RADs for each individual were sequenced (10 individuals per se- quencing lane) on an Iilumina Genome Analizer II. The analysis of the RAD data was conducted simultan- eously for the 41 silver eels plus 60 glass eels (31 from Valencia and 29 from Burrishoole) that were first ana- lyzed in Pujolar et al. [11] but were re-analyzed together with the silver eels. This way, the same software and pa- rameters were used for filtering, alignment to the eel genome and SNP discovery, i.e. using the same version of Stacks (version 1.09). Gene annotation and functional annotation analysis were also conducted simultaneously for silver eels and glass eels. The 90 bp-long RAD sequences obtained from the Illumina runs were sorted according to barcode and quality filtered using the FASTX-Toolkit [53]. Criterion for quality filtering was that all nucleotides positions must have a minimum Phred score of 10, otherwise the read was discarded. Final read length was trimmed to 75 nucleotides in order to minimize sequencing errors usu- ally found at the tails of the sequences [8]. Quality-filtered reads were then aligned to the European eel draft genome (www.eelgenome.com) using the un- gapped aligner BOWTIE [54]. A maximum of two mis- matches between reads and genome were allowed. In order to avoid paralogs, reads with alternative (two or more) alignments to the genome were excluded. Assembly of RAD sequences into loci and SNP identi- fication were performed using the ref.map.pl pipeline in Stacks version 1.09 [55]. First, pstacks was used to align exactly-matching sequences into stacks that were subse- quently merged to form putative loci. At each locus, nu- cleotide positions were examined and SNPs were called using a maximum likelihood framework. A minimum stack depth of 10 was used. Second, cstacks was used to build a catalog of all existing loci and alleles after mer- ging loci from multiple individuals. Third, sstacks was used to match all individuals against the catalog. Finally, the program Populations in Stacks was used to process all SNP data across individuals. The minimum percent- age of individuals in a population required to process a locus was set to 66.67 %. Prior to the SNP analysis, loci in the catalog were fur- ther filtered in order to remove paralogs and otherwise spurious loci according to the following three criteria: exclude loci with extremely higher coverage as it might indicate the presence of more than one locus (threshold used was twice the standard deviation from the mean number of reads); exclude tri-allelic loci since the pres- ence of more than two alleles might result from sequen- cing errors; exclude loci containing SNPs with observed heterozygosity (H0) of 1 (all individuals genotyped were heterozygotes) or 0 (all individuals homozygotes), sug- gestive of the presence of more than one locus. Measures of genome-wide genetic diversity, including observed and expected heterozygosities and nucleotide di- versity were calculated in Stacks. Differences in genetic di- versity among samples were tested by one-way ANOVA using STATISTICA. Deviations from Hardy-Weinberg equilibrium and genetic differentiation were calculated in GENEPOP. We also tested for hybrids using a subset of species- specific diagnostic SNPs (FSt = 1) between European and American eel [56]. The analysis in STRUCTURE in- cluded RAD sequenced individuals in this study together with a sample of 30 RAD-sequenced American eels for comparison. STRUCTURE was run following the param- eters described above. Identifica tion o f candidate SNPs under selection Candidate SNPs for being under directional selection were identified using two different outlier tests. First, we used the selection detection workbench LOSITAN [57], which uses a coalescent-based simulation approach to identify outliers based on the distributions of heterozy- gosity and FST [58]. A neutral mean FST was enforced by removing potentially non-neutral loci after calculating an initial mean FST, as recommended by Antao et al. [57]. We used a very strict threshold of 0.995 and a 10 % false discovery rate to minimize thte number of false positives. Second, outlier SNPs were also detected using BAYESCAN [59], a Bayesian method based on a logistic regression model that separates locus-specific effects of selection from population-specific effects of demog- raphy. BAYESCAN runs were implemented using default values for all parameters, including a total of 100,000 iterations after an initial burn-in of 50,000 steps. Poster- ior probabilities, q values and alpha coefficients were calculated. A q-value of 10 % was used for significance. C andidate gene an no ta tion Genomic position of the candidate SNPs for local selec- tion were established on the basis of the gene predictions for the European eel genome (http://\\rww.zfgenomics.org/ sub/eel) using a custom-made script [11]. SNPs were con- sidered to be located in a gene when included in CDS (complete coding sequences), exonic and intronic regions. Functional annotation of those genes was obtained using Blast2Go [60], which conducts BLAST similarity searches http://www.eelgenome.com http:////rww.zfgenomics.org/ Pujolar et al. BMC Genomics (2015) 16:600 Page 14 of 15 and maps GO (Gene Ontology) terms to the homologous sequences found. Only ontologies with E-value < 1E-6, annotation cut-off > 55 and a GO Weight > 5 were consid- ered for annotation. Additionally, functional interpretation of the set of candidate genes was obtained using the DAVID (Database for Annotation, Visualization and Inte- grated Discovery) web-server v6.7 [61]. We conducted the analysis in DAVID to establish whether several genes were associated with the same function or pathway and there- fore facilitate interpretation of our results, regardless of statistical significance. The zebrafish [Danio rerio) genome was used as reference for annotation. Prior to the analysis in DAVID, a local BLAST was conducted for significant matches directly against zebrafish Ensembl proteins using BLASTX. Zebrafish Ensembl Gene IDs were obtained from the corresponding Ensembl protein entries using the Biomart data mining tool [62]. Gene functional analysis in DAVID was conducted defming the zebraíish lDs corre- sponding to those genes including a locally selected SNP as ‘Gene list’ and the zebrafish IDs corresponding to all genes as 'Background’. Standard settings of gene count = 2 and ease = 0.1 were used. Finally, patterns of differentiation across genome re- gions were characterized to test whether genes putatively under selection were grouped into clusters (genomic islands of differentiation) or more scattered across the genome. We estimated levels of genetic differentiation between glass eels and silver eels in Valencia by calculat- ing average FST for 50-kb genomic sliding windows. Alternative sliding windows (100 and 200-kb) were also tested. Windows were restricted to the 30 largest scaf- folds (903,936 - 2,025,234 bp) from the European eel draft genome. A vailab ility o f su pp orting data The data set supporting the results of this article is available from Dryad: http://datadryad.org/resource/ doi:10.5061/dryad.kclql. All sequencing files (.fastq) can be found on the NCBI's Sequence Read Archive under accession number SAMN03786011. Competing interests Tha authors declare that they have no competing interests. Authors' contributions MMH and LB conceived and aesigned the projea. JMP conducted population genetics analyses with help from MMH and MWJ. JMP wrote the manuscript with contributions from MMIH, LB, MWJ, DB, BJ and JLC. All authors read and approved the final version o f the manuscripc Acknowledgements We thank Russel Poole for providing samples and Annie Brandstrup for technical assistance. We acknowledge funding from the Danish Council for Independent Reasearch, Natural Sciences (grant 09-072120 to MMH). Author details 'Department o f Bioscience, Aarhus University, Aarhus C, Aarhus, Denmark. 2National institute o f Aquatic Resources, Technical University o f Denmark, Silkeborg, Denmark. 3National Museum o f Natural Sciences (CSIC), Madrid, Spain. 4Biopol, Marine Biology and Biotechnology Center, Skagastrond, lceland. sIBIS (Institut de Biologie Intégrative et des Systémes), Université Laval, Québec, Canada. Received: 16 December 2014 Accepted: 6 July 2015 Pub lished online: 13 A u g u st2 0 1 5 References 1. Moran NA. Adaptation anci constraint in the complex life q'des of animals. Annu Rev Ecol Syst. 1994,-25:573-000. 2. Wald G. Metamorphosis: an overview. in: Gilbert Ll, Frieden E, editors. Metamorphosis: a Problem in Developmental Bioloqy. New York Plenum; 1981. 3. Heyland A, Moro; LL. Siqnallinq mechanisms underlyinq metamorphic transitions in animals. Inteqr Comp Biol. 2006,46:743-59. 4. Werner EE. Size, scalinq and the evolution of complex life cycles. In: Ebenman 3, Persson L editors. Sice-struaured Populations. Berlin: Sprinqer; 1983. 5. Schluter D, Price TD, Rowe L Confliqinq seleaion pressures and iife-history trade-offs. Proc R Soc Lond B. 1991:246:11-7. 6. Aquirre JD, Blows M.W, Marshall DJ. The qenetic covariance between life cyde staqes separated by metsmorphosis. Proc R Soc Lond B. 2014,-281:1788. 7. Van den Thillart G, Rankin JC. Dufour S. Spawninq miqration of the Eurooean eel: reproduaion index, a useful tool for conservation manaqement. Dordecht, The Netherlands: Sprinqer; 2009. 8. Pujolar JM, Jacobsen MW, Frydenberg J, Als TD, Larsen PF, Maes GE, et al. A resource of genome-wide single-nucleotide polymorphisms by RAD tag sequencing in the critically endangered European eel. Mol Ecol Resour. 2013;13:706-14. 9. Daverat F, Limburg KE, Thibaut I, Shiao JC. Dodson JJ, Caion F, et al. Phenotypic plasticity of habitat use by three temperate eel species Anguilla anguiila, Ajaponica and A. rostrata. Mar Ecol Progr Ser. 2006;308:231-41. 10. Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aerestrup K, et al. All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol. 2011;20:1333-46. 11. Puiolar JM, Jacobsen MW, Als TD, Frydenberg J. Munch K, Jónsson B, et al. Genome-wide siqnatures of within-qeneration local seleaion in the panmictic European eel. Mol Ecol. 2014;23:2514-28. 12. Pujolar JM, Maes GE, Volckaert FAM. Genetic and morphometric heteroaeneity amonq recruits of the European eel, AnpuiHa anauilla. Sull Mar Sci. 2007;81:297-308. 13. Pujolar JM, Bevacqua D, Andrello M, Capoccioni F, Ciccotti E, De Leo GA, ei al. Genetic patchiness in European eel adults evidenced by molecular qenetics anc population dvnamics modellinq. M.ol Phyloqenet Evol. 2011;58:198-205. 14. Áström M, Dekker W. When will the eel recover? A full life cycle model. ICES J Mar Sci. 2007;64:1491-8. 15. Gaqnaire PA, Normandeau E, Cöté C, Hansen MM, Bernatchez L. The genetic consequences of spatially varyinq selection in the panmigic American eel (AnguHla rosirata). Genetics. 2012:190:725-35. 16. Ulrik MG, Pujolar JM, Ferchaud AL, Jacobsen MW, Als TD, Gagnaire PA, et al. Do North Atlantic eels shov; parallel patterns of spatially varying selection? BMC Evol Biol. 20I4;14:138. 17. Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation qenetics. Nature Rev Genet. 2010;11:697-709. 18. Narum SR, Buerkle CA, Davey JW, Miller MR. Hohenlohe PA Genotypinq-by- sequencinq in ecoloqical and conservation qenomics. Mol Ecol. 2013;22:2841-7. 19. Staplev J, Reqer J, Feulner PGD, Smadia C, Galindo J, Ekblom R. et al. Adaptation qenomics: the next qeneration. Trends Ecol Evol. 2010:25:705-12. Additional files Additional file 1: Table S1. List all annotated genes detected as outliers when comparing silver eels and glass eels from Valencia (Spain) using the RAD approach. Additional file 2: Table S2. List all annotated genes deteaed as outliers when comparing silver eels and glass eels from Burrishoole (Ireland) using the RAD approach, http://datadryad.org/resource/ Pujolar et al. BMC Genomics (2015) 16:600 Page 15 of 15 20. Fraser DJ, Weir LK, Bematchez L, Hansen MM, Tayior EB. Extend and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity. 2011;106:404-20. 21. Rad'wan J, 3abik W. The qenomics of adaptation. Proc R Soc Lond B. 2012;279:5024-8. 22. Bourrei V, Dionne M, Kent MP, Lien S, 3ernatchez L. I.andscape qenomics in Atlantic salmon (Salmo salar)-. searchinq for qene-environment interactions drivinq local adaptation. Evolution. 2013;67:3469-87. 23. Messor PW, Petrov DA. Population qenomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol. 2013:28:659-69. 24. Poelstra JW, Viiav N, Bossu CM, Lantz H, Ryll B, Muller I, et al. The qenomic landscape underlyinq phenotypic inteqrity in the face of oene flovv in crows. Science. 2014;344:1410-4. 25. ICES. Report o f the Joint EIFAAC/ICES Working Group on Eels (WGEEL), 5-9 September 2011, Lisbon, Portugal. ICES CM 2011/ACOM: 18. Copenhagen, Denmark: International Council for the Exploration of the Seas; 2011. 26. Bonhommeau S, Blanke B, Tréquier AM, Grima N, Rivot E, Vermand Y, et al. How fast can the European eel (Anquilla anpuilla) larvae cross the Atlantic Ocean? Fisn Oceanoqr. 2009;18:371-85. 27. Hansen MM, Olivieri I. Waller DM, Nielsen EE. Monitorinq adaptive qenetic responses to environmental chanqe. Mol Ecol. 2012:21:1311-29. 28. Hohenlohe PA, Basshan S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population qenomics of parallel adaptation in threespine stickleback usina sequenced RAD taqs. PLoS Genetics. 2010;6:e 1000862. 29. Jones FC, Grabherr MG, Chan YF, Russell P, Maucelli E, Johnson J, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55-61. 30. Lamichhaney S, Martinez Barrio A, Rafati N, Sundström G, Rubin CJ. Gilbert ER, et al. Population-scale sequencinq reveals qenetic differentiation due to local adaptation in Atlantic herrinq. Proc Natl Acad Sci USA. 2012:109:1-6. 31. Hemmer-Hansen J, Nielsen EE, Therkildsen NO, Taylor Ml, Ogden R, Geffen AJ, et al. A genomic island linked to ecotype divergence in Atlantic cod. Mol Ecol. 2013;22:2653-67. 32. Bierne N, Roze D, Welch JJ. Pervasive selection or is tt...? Why are FST outliers sometimes so frequent? Mol Ecol. 2013;22:2061-4. 33. Kocmarek AL, Ferquson MM, Danzmann RG. Differential qene expression in small and larqe rainbow trout derived from two seasonal spawninq qroups. BMC Genomics. 2014:15:57. 34. Roberts PJ, Der CJ. Tarqetinq the Raf-MEK-ERK mitoqen-aaivated protein kinase cascade for the treatment of cancer. Oncoqene. 2007;26:3291-310. 35. Schwartz NB, McCormack CE. Reproduction: qonadal function and its requlation. Annu Rev Physiol. 1972;34:425-72. 36. Bootman MD. Calcium signalling. Cold Spring Harb Perspect Biol. 2012,43011171. 37. Duan CM. Plisetskaya EM. Dickhoff WW. Expression of insulin-like qrowth factor-l in normally and abnormally developinq coho salmon [Oncorhvnchus kisitch). Endocrinoloqv. 1995;136:446-52. 38. Minqarro M. Veqa-Rubin de Celis S, Astola A. Pendon C, Valdivia MM, Perez-Sanchez J. Endocrine mediators of seasonal qrowth in qilthead sea bream (Sparus auraw): the qrowth hormone and somatolactin paradiqm. Gen Comp Endocr. 2002:128:102. 39. Geiqer B. Bershadsky A, Pankov R. Yamada KM. Transmembrane extracellular matrix-cvtoskeleton crosstalk. Nat Rev Mol Cell Biol. 2001;2:793-305. 40. Hemmer-Hansen J, Therkildsen NO. Pujolar JM. Population qenomics of marine fishes: next qeneration prospeas and challenqes. Biol Bull. 2014;227:117-32. 41. Jacobsen MW, Pujolar JM, Bernatchez L, Munch K. Jian J, Niu Y, et al. Genomic footprints of speciation iri Atlantic eels AnquiHo anquiHa and A. rostrata. Mol Ecol. 2014;23:4785-98. 42. Bradbury IR. Hubert S, Hiqqins B. Bowman S, Borza T, Paterson IG, et al. Genomic islands of diverqence and their consequences for the resolution of soatial structure in an exploited marine fish. Evol Appl. 2013:6:450-61. 43. Maynard Smith J. Haiqh J. The hitch-hiki.nq effect of a favourable qene. Genet Res. 1974;23:23-35. 44. Hermisson J, Penninqs PS. Soft sweeps: molecular population cenetics of adaotation from standinq qenetic variation. Genetics. 2005:169:2335-52. 45. Pritchard JK, Pickrell JK. Coop G. The qenetics of human adaptation: harc sweeps. sort sweeps and polyqenic adaptation. Curr Biol. 2010:20:R208-15. 46. Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C. Gebremedhin A. et al. Human adaptations to diet, subsistence and ecoreqion are due to subtle shifts in allelefrequency. Proc Natl Acad Sci USA. 2010;107:8924-30. 47. Raymond M, Rousset F. GENEPOP (version 1.2): a population qenetics software for exact tests and ecumenicism. j Hereti. 1995;86:248-9. 48. Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices. 2002. hnp//wvvw2.unil.ch/opgen/softwares/fstat.htm. 49. Rice WR. Analyzinq tables and statistical tests. Evolution. 1989;43:223-5. 50. Pritchard JK, Stephens M, Donelly P. Inference of population structure usinq multilocus qenoty'pe data. Genetics. 2000;155:945-59. 51. Baird NA, Etter PD. Atwood TS. Currev MC, Lewis ZA. Selker EY. et al. Raoid SNP discovery and qenetic mappinq usinq sequenced RAD markers. PLoS One. 2008;3:e3376. 52. Davev JW, Hohenlohe PA. Etter PD. Boone JQ, Catchen JM, Blaxter ML Genome-wide qenetic marker discovery and qenotypinq usinq next-qeneration sequencino. Nature Rev Genet. 2011;12:499-510. 53. Pearson WR. YJooó T. Z:nanq Z. Miller W. Companson of DNA sequences with protein sequences. Genomics. 1997;46:24-36. 54. Lanqmead B, Trapnell C, Pop M, Salzberq SL. Ultrafast and memory-effident aliqnment of snort DNA sequences to the hurnan oenoine. Genome Biol. 2009;10:R25. 55. Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population qenomics. Mol Ecol. 2013;22:3124-40. 56. Puiolar JM. Jacobsen MW, Als TD, Frydenbero J. Maqnussen E, Jónsson B, et al. Assessinq patterns of hybridization between North Atlantic eels usinq diaqnostic sinqle nudeotide polymorphisms. Heredity. 2014;112:627-37. 57. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G. LOSITAN- a workbench to detea molecular adaptation based on a Fs routlier method. BMC Bioinformatics. 2008:9:323. 58. Beaumont MA, Nichols RA. Evaluating loci for use in the genetic analysis of population struaure. Proc R Soc Lond B. 1996;263:1619-26. 59. Foll M, Gaqqiotti O. A qenome-scan method to identify seleaed loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977-93. 60. Götz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High throughput functional annotation and data mining with the Blast2Go suite. Nud Acids Res. 2008;36:3420-35. 61. Huanq DW, Sherman BT Lempicki RA. Systematic and inteqrative analysis of larqe cene lists usinq DAVID Bioinformatics Resources. Nat Protoc. 2009;4:44-57. 62. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Carvahlo-Silva D, et al. Ensembl 2014. Nucleic Acids Res. 2014;42:D749-55. S u b m it y o u r n e x t m a n u scrip t to B io M e d C en tra l an d ta k e fu ll a d v a n ta g e of: • Convenient online submission • Thorough peer review • No space constraints or co lor figure charges • Immediate publication on acceptance • índusion in PubMed, CAS, Scopus and Googíe Scholar • Research which is freeiy available fo r redistribution Submit your manuscript at www.biomedcentral.com/submit B io M e d Central http://www.biomedcentral.com/submit JOINT EIFAAC/ICES/GFCM WGEEL REPORT 2014 ICES A d viso ry Committee ICES CM 201 4/ACOM:l 8 Ref. ACOM, WGRECORDS, SSGEF, FAO, EIFAAC & GFCM Report of the Joint EIFAAC/ICES/GFCM Working Group on Eel 3-7 November 2014 Rome, Italy ICES Intemational Council for the Exploration of the Sea CIEM Conseil Internationai pour l’Exploration de la Mer International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer H. C. A ndersens Boulevard 44-46 DK-1553 C openhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 w w w .ices.dk info@ices.dk R ecom m ended format for purposes of citation: ICES. 2014. Report of the Joint EIFAAC/ICES/GFCM W orking Group on Eel, 3 -7 N o- vem ber 2014, Rome, Italy. ICES CM 2014/ACOM:18. 203 pp. For perm ission to reproduce material from this publication, p lease apply to the Gen- eral Secretary. The docum ent is a report o f an Expert Group under the auspices of the Intem ational Council for the Exploration of the Sea and does not necessarily represent the v iew s of the Council. © 2014 Intem ational Council for the Exploration of the Sea http://www.ices.dk mailto:info@ices.dk Jo in t E IF A A C /IC E S /C F C M WCEEL REPORT 2 0 1 4 C o n te n ts Executive su m m ary................................................................................................................................5 1 In trodu ction ..................................................................................................................................... 8 1.1 M ain task s...............................................................................................................................8 1.2 P artidpants............................................................................................................................ 9 1.3 The European eel: life history and production ......................................................... 9 1.4 A nthropogenic im pacts on the s to ck ............................................................................9 1.5 The m anagem ent framework of e e l ............................................................................10 1.5.1 EU and M ember State w aters........................................................................10 1.5.2 Non-EU states......................................................................................................11 1.5.3 Other intem ational legislative drivers.......................................................11 1.6 A ssessm ents to m eet m anagem ent n e e d s ................................................................ 12 1.7 C onclusion ............................................................................................................................13 2 ToR a): A ssess the latest trends in recruitm ent, stock and fish eries, in c lu d in g effort, and other anthropogenic factors in dicative o f the status o f the stock, and report on the state o f the in tem ation a l stock and its m ortality ................................................................................................................................... 14 2.1 Recruitment tren d s............................................................................................................14 2.1.1 Tim e-series available........................................................................................14 2.1.2 Sim ple geom etric m ean s................................................................................. 16 2.1.3 GLM based tren d ...............................................................................................19 2.1.4 Are there significant changes in trend?.................................................... 21 2.2 Tim e-series of yellow and silver eel abundance.....................................................36 2.3 Comm ercial fishery landings trends...........................................................................36 2.4 Recreational and non-com m ercial fish eries............................................................. 39 2.5 M isreporting of data, and illegal fisheries................................................................ 40 2.6 N on-fishery anthropogenic m ortalities.....................................................................40 2.7 Eel stocking.......................................................................................................................... 41 2.7.1 Trends in stocking.............................................................................................41 2.8 Aquaculture production of European ee l..................................................................46 2.9 Environm ental drivers.....................................................................................................47 2.10 Tables ....................................................................................................................................48 3 ToR e) Further d evelop the stock-recruitm ent relation sh ip and associated reference points, u sin g the latest availab le d a ta .....................................60 3.1 Introduction......................................................................................................................... 60 3.2 Reference points used or im plicated in previous ICES A d v ice .........................60 3.3 Objectives and targets/lim its of the Eel R egu lation .............................................. 61 3.4 M ultiple criteria..................................................................................................................62 Jo in t E IF A A C /IC E S /G FC M WGEEL REPORT 2 0 1 4 3.4.1 Knock-on effects of spaw ning stock d ep letion .......................................62 3.4.2 Sensitivity to extem al or random perturbations................................... 63 3.4.3 Speed of recovery...............................................................................................63 3.5 General stock-recruit relation, short-lived species protocol..............................64 3.6 The age com position of the silver eel run escaping to the o cea n .....................64 3.7 A ssessm ent m eth od s........................................................................................................ 65 3.7.1 Trend-based assessm en t.................................................................................65 3.7.2 Eel specific reference points based on stock recruitment relationship ..........................................................................................................68 3.7.3 Quantitative assessm ent applying generic reference p oints 74 3.8 A provisional harvest control rule for ee l................................................................. 78 3.9 Future developm ent priorities......................................................................................80 3.10 Tables ....................................................................................................................................81 4 ToR c) O verview of availab le data and gaps for stock a ssessm en t........................83 4.1 Introduction......................................................................................................................... 83 4.2 Consideration of data required.....................................................................................83 4.2.1 Stock assessm ent................................................................................................83 4.2.2 Data needs for stock-recruitm ent relationship.......................................85 4.3 Data quality issu es.............................................................................................................87 4.4 Data available vs gap s......................................................................................................88 4.5 Prioritization for future work (based on identified gap s)...................................88 4.6 Recom m endation from this chapter............................................................................89 5 ToR d) Identification o f su itable too ls (m odels, reference p o in ts etc.) in both data rich and data poor s itu a tio n s............................................................................ 90 5.1 Introduction......................................................................................................................... 90 5.2 M ethods available to assess silver eel production and escap em en t 90 5.2.1 M ethods based on catching or counting silver eels...............................90 5.2.2 M ethods based on yellow eel p rox ies........................................................92 5.2.3 M odel-based approaches to estim ate potential and actual silver eel escapem ent........................................................................................94 5.2.4 U se of other m ethods and extrapolations to calculate or estim ate biom ass reference p o in ts.............................................................102 6 ToR b) R eview the life-h istory traits and m ortality factors b y ecoregion .......................................................................................................................................................... 103 6.1 Introduction....................................................................................................................... 103 6.2 Life-history traits relevant to eel assessm en t.........................................................104 6.3 ICES ecoregion vs other geographic sca les ............................................................ 106 7 ToR f (i)) Explore the standardization of m ethods for data collection , an alysis and a ssessm en t........................................................................................................107 7.1 Introduction....................................................................................................................... 107 7.2 Available inform ation in eel p rodudng countries...............................................107 J o in t E IF A A C /IC E S /G FC M WGEEL REPORT 201 4 7.3 Startdardized approach................................................................................................. 109 7.4 R ecom m endations.......................................................................................................... 115 7.5 Tables....................................................................................................................................115 8 ToR f (ii)) ... and w ork w ith ICES DataCentre to d evelop a database appropriate to eel a long ICES standards (and w id er geography)........................125 8.1 Introduction....................................................................................................................... 125 8.2 WGEEL Stock A ssessm ent database........................................................................ 125 8.3 Existing databases............................................................................................................126 8.3.1 Recruitment Index database......................................................................... 126 8.3.2 EU-POSE Project-DBEEL database.............................................................127 8.3.3 Intem ational Eel Quality D atab ase............................................................128 8.3.4 Data Collection Fram ew ork ......................................................................... 128 8.4 Pros and cons for ICES DataCentre hosting an eel database............................ 129 8.5 Work Plan for developing a w orking group d atab ase...................................... 129 8.6 C onclu sion ......................................................................................................................... 130 9 ToR g) Provide guidance on m anagem ent m easures that can be applied to both EU and non-EU w aters........................................................................................... 132 9.1 Introduction....................................................................................................................... 132 9.2 A nalysis o f M anagem ent M easures reported ....................................................... 133 9.2.1 A quaculture........................................................................................................134 9.2.2 Fisheries................................................................................................................134 9.2.3 Hydroelectric turbines, pum ps and obstacles..........................................135 9.2.4 Habitat im provem ent......................................................................................137 9.2.5 Stocking................................................................................................................138 9.2.6 Other m anagem ent op tion s.......................................................................... 139 9.3 Post-evaluation................................................................................................................. 141 9.4 C on clu sion s....................................................................................................................... 142 9.5 R ecom m endations...........................................................................................................142 A nnex 1: Reference l i s t .................................................................................................... 143 A nnex 2: Participants lis t ................................................................................................. 149 A n n ex3: M eetin g agen d a................................................................................................155 A nn ex 4: WGEEL responses to the generic ToRs for R egion al and Sp ecies W orking G roups.......................................................................................................157 A n n ex5: Research n e e d s .................................................................................................164 A nnex 6: Forward Focus o f the WGEEL.................................................................... 166 A nnex 7: Formal recom m endations of WGEEL 2014........................................... 169 A nnex 8: WGEEL responses to the T echnical R ev iew Group m inu tes, 2013 ............................................................................................................................. 171 Jo in t E IF A A C /IC E S /G FC M WGEEL REPORT 2 0 1 4 A n n ex9: G lossary ..............................................................................................................196 A nn ex 10: Country Reports 2013-2014: Eel stock, físh eries and habitat reported b y cou n try .................................................................................................................201 Executive su m mary Jo in t E IF A A C /IC E S /C F C M WCEEL REPORT 2 0 1 4 The Joint EIFAAC/ICES/GFCM W orking Group on Eel [WGEEL] m et at FAO HQ, Rome, Italy from 3 -7 Novem ber 2014. The group w as chaired by A lan Walker (UK) and there w ere 44 participants representing 20 countries, the General Fisheries Com- m ission of the Mediterranean (GFCM) and the EU's DG MARE. Information w as also provided by correspondence from Estonia and Finland for use by the W orking Group. WGEEL m et to consider questions posed by ICES (in relation to the M oU betw een the EU and ICES), EIFAAC and GFCM and also generic questions for regional and species W orking Groups posed by ICES. The terms of reference w ere addressed by review ing w orking docum ents prepared ahead of the m eeting as w ell as the developm ent of doc- um ents and text for the report during the m eeting. The w ork is sum m arised in the fo llow in g points: The WGEEL glass eel recruitment index has increased in the last three years, to 3.7% of the 1960-1979 reference level in the 'North Sea' series, and to 12.2% in the 'Else- where' series. The 'recruiting yellow eel' index has risen to 36% of the same reference period, from a low of 7% in 2013. The reference period for glass eel indices starts at 1960 because there is only one dataset m eeting the index requirem ents before this year. The reference period for 'recruiting y ellow eel' is set as the sam e years to be consistent w ith the glass eel indices. Statistical analyses of recruitment indices using segm ented regression A N O V A and Bayesian approaches detected a significant breakpoint (an upturn) in both North Sea and Elsewhere indices in 2011-2012. It w as not possible to determine whether this up- turn can be considered a trend shift, as this short positive trend could be the result of the tim e-series auto-correlation. H ow ever, if these positive trends are confirm ed and continue in the future w ithout anv changes, the recruitment indices w ou ld be expected to exceed the reference level around 2030 in "North Sea" and 2045 in "Elsewhere" in- dices. Better understanding of the functioning of the population is required to make these analyses more robust. There is no statistical evidence of an u ptum in the recruit- ing yellow eel time-series. F ollow ing the 2012 reporting of the assessed area, the levels of silver eel escapem ent biom ass w ere as follows: escaping silver eel (Bcurrem 12 000 t), present potential escape- m ent in the absence of anthropogenic mortality (Bbest 49 000 t), and 'pristine' potential escapem ent w ith no anthropogenic m ortality (Bo 194 000 t). This indicates that current (2012) silver eel escapem ent biom ass from the assessed area w as at 6% of the 'pristine' state, or equal to 25% of the present potential if no anthropogenic im pacts existed. The total landings from commercial fisheries in 2013, provided in Country Reports, w ere 2470 t of eel. The current state of know ledge on level of underreporting, m is- reporting and illegal fisheries is insufficient to include these in the assessm ent. Catch and landings data for recreational fisheries are not consistently reported in the Country Reports: inconsistencies in environm ents, fishing gears, life stages sam pled. Therefore, it w as not possible to assess the m ost recent total landings and catches of recreational and non-com m ercial fisheries. A bout 39 m illion glass eels and 15 m illion yellow eels w ere stocked in 2013. Aquacul- ture production has s low ly decreased to about 5000 t in 2013. N o n ew data on the im- pacts of non-fishing anthropogenic factors w ere available to WGEEL 2014: EU Member States w ill provide updates next year w ithin their 2015 Eel M anagem ent Plan Progress Reports to the EU Com m ission. Jo in t E IFA A C /IC E S /G FC M WCEEL REPORT 2 0 1 4 The w orking group review ed the life-history trait (LHT) inform ation available in the Country Reports that w ould be required to conduct an eel stock assessm ent based on m ethods proposed for "Data-limited stocks" (DLS) by WKLIFE. Data w ere lim ited but large variations in LHTs w ere found, both for regional populations as a w hole and for the sex (male, fem ale) and eel stage (glass, yellow , silver) categories, leading the work- ing group to tentatively conclude that DLS approaches based on LHT m ay not be suit- able for eels. Furthermore, the w orking group noted that the presently adopted national and 'w hole stock' spatial scales of eel assessm ent were m ore relevant than the standard ICES Ecoregions. The data requirem ents for intem ational stock assessm ent, the data available and the gaps in those data w ere review ed by the working group. Reported comm ercial land- ings from countries that have not im plem ented Eel M anagem ent Plans (because they are not subject to the EC Eel Regulation) accounted for about 27 to 39% of the total reported eel catch in som e years. Therefore, the addition of data from countries not covered by the stock assessm ent so far is urgently required, but so too are im prove- m ents in the spatial coverage and quality of data for the EU countries im plem enting and reporting on EMPs. The GFCM is working w ith the Mediterranean cm mtries to provide their required data, w ith the support of the w orking group. The w orking group review ed the application of approaches used to estim ate local or national silver eel escapem ent, categorised as m ethods based on catching and counting silver eels versus m ethods based on yellow eel proxies, w ith the latter including short descriptions of 'eel m odels' sum m arising m odel approach and processes, data require- m ents and m odel outputs. This review is intended as a starting point for those w ish ing to im plem ent n ew local and national eel stock assessm ents. The w orking group further developed the m ethods proposed to conduct the intem a- tional, w hole-stock assessm ent, noting that the Eel Regulation's lim it for the escape- m ent b iom ass o f (maturing) silver eels at 40% of the natural escapem ent (in the absence of any anthropogenic impacts) is equivalent to the ICES Biim . Given that the estim ate of present silver eel escapem ent biom ass from reporting EU coim tries is 6% of Bo, far be- low the 40% lim it set by the EU Eel Regulation, the w orking group focussed attention on the shape of the line of the m odified Precautionary Diagram below Bum (i.e. 40%). The R eview Group for ICES-WGEEL (2013) suggested the application of criteria for short-lived stocks (ICES 2013a), im plying total anthropogenic m ortality (L A ) = 0 for Bcmrent <40% of Bo. The working group considered that because the spaw ning escape- m ent com prises m any year classes and annual perturbations in recruitment, produc- tion or spaw ning stock w ere buffered by up to 40+ year classes alive in any one year, the eel w as 'long lived' in relation to ICES harvest control m les. Therefore, in the ab- sence of indication on the required rate of stock recovery (the Eel Regulation terms it "in the long term"), and pending an im provem ent of the analysis of stock-and-recm it data, the w orking group proposed the basis of the harvest control rule for quantitative assessm ents (category 1), i.e. a proportional reduction in LAiim below Bum d ow n to LAum = 0 at Bcurrent = 0. The w orking group noted, however, that the unusual form of the ten- tative stock-recm itm ent relationship m ight suggest that the mortality rate w ou ld have to reach zero at a spaw ning-stock biom ass > 0, but the shape of the line is m ore im- portant for setting advice in the im m ediate future than the point at w hich it intersects the x-axis. A standardized assessm ent approach applied across the entire eel-producing countries w ou ld provide a m eans to address gaps in data reporting, and to exam ine the compa- rability of national estim ates that are presently based on different data and analyses. Jo in t E IF A A C /IC E S /G FC M WCEEL REPORT 201 4 The w orking group review ed and tabulated the eel- and anthropogenic-data available from eel-producing countries. The m ost com m on data available are yellow eel densi- ties. H ow ever, these are not available from lakes, large/deep/w ide river sections and transitional waters, and since these habitats can represent the majority of the w etted area in an EMU, this w ill require n ew m ethods to convert catch per unit effort data to density data. The w orking group proposed a coordinated research program to develop this standardised / cross-calibrating assessm ent m ethod. The w orking group recom m ended the creation of a digitised data reporting database, to make the preparation of assessm ents m ore effident, to provide a readily accessible historical archive, and to facilitate national reporting to all international fora (e.g. ICES, EU, CITES, DCF). The long-term objective of such standardization is to facilitate the creation of an intem ational database of eel stock parameters updated annually. The w orking group catalogued the existing eel databases (recm itm ent, POSE, eel quality) and d eveloped a structured plan for storing data w ithin the ICES Data Portal. The w orking group catalogued the variety of m anagem ent m easures that are being im plem ented w ithin the national and local Eel M anagem ent Plans. These actions were categorised as those relating to commercial fisheries; recreational fisheries; hydro- pow er and obstacles; habitat im provem ent; stocking; and, others. This catalogue is in- tended as a starting reference for those w ish ing to im plem ent n ew programs of m anagem ent m easures. Jo in t E IF A A C /IC E S /G FC M WGEEL REPORT 2 0 1 4 1 Introduction 1.1 Main tasks The Joint EIFAAC/ICES/GFCM W orking Group on Eel [WGEEL] (chaired by: Alan Walker, UK) m et at FAO HQ in Rome, Italy betw een 3 -7 N ovem ber 2014 to consider (a) terms of reference (ToR) set by ICES, EIFAAC and GFCM in response to the request for A dvice from the EU (through the M oU betw een the EU and ICES), EIFAAC and GFCM, and (b) relevant points in the Generic ToRs for Regional and Species W orking Groups. The m eeting w as preceded by a Task Leaders coordination m eeting on Sunday 2 N o- vem ber and the full m eeting w as opened at 09:00 am on M onday 3 N ovem ber (the m eeting agenda is provided in Annex 7). The terms of reference w ere met. The report chapters are linked to ToR according to the follow ing structure: The report chapters are linked to ToR (as indicated in the table below ) but the order that they are presented in the report is slightly different from the order of the ToR. The m ain b ody of the report is structured in three parts: description of the data and trends used in the present assessm ent of stock status (Chapter 2); developm ent of the assess- m ent m ethod (Chapters 3 to 8); and, m anagem ent options (Chapter 9). ToR a) Assess the latest trends in recruitment, stock and fisheries, including effort, and other anthropogenic factors indicative of the status of the stock, and report on the state of the intemational stock and its mortality Chapter 2 ToRb) Review the life-history traits and mortality factors by ecoregion Chapter 6 ToRc) Overview of available data and gaps for stock assessment Chapter 4 ToR d) Identification of suitable tools (models, reference points etc) in both data rich and data poor situations Chapter 5 ToRe) Further develop the stock-recruitment relationship and assodated reference points, using the latest available data Chapter 3 ToRf) Explore the standardization of methods for data collection, analysis and assessment, and work with ICES DataCentre to develop a database appropriate to eel along ICES standards (and wider geography) Chapter 7&8 ToRg) Provide guidance on management measures that can be applied to both EU and non-EU waters Chapter 9 ToTh) Address the generic EG ToR from ACOM Annex 3 The responses to the recom m endations of the R eview Group of the 2013 (the Technical M inutes, Annex 9 of the 2013 report) are provided in Annex 7. In response to the ToR, the W orking Group considered 18 Country Report W orking D ocum ents subm itted by participants (Annex 10); other references cited in the Report are g iven in A nnex 1. A dditional information w as supplied by correspondence, by those W orking Group mem bers unable to attend the m eeting. A glossary of terms and list o f acronym s used w ithin this docum ent is provided in Annex 9. Jo in t E IF A A C /IC E S /G FC M WGEEL REPORT 201 4 1.2 Participants Forty-four experts attended the m eeting, representing 20 countries, the EU DG MARE and the Secretariat of the General Fisheries C om m ission of the M editerranean (GFCM). A full address list for the m eeting participants is provided in Annex 2. Albania, M on- tenegro, Tunisia and Turkey were represented at the w orking group for the first time. 1.3 The European eel: life history and production The European eel (Anguilla anguilla) is distributed across the majority of coastal coirn- tries in Europe and North Africa, w ith its southem lim it in Mauritania (30°N) and its northern lim it situated in the Barents Sea (72°N) and spanning all of the M editerranean basin. C om m ission D ecision 2008/292/EC of 4 April 2008 established that the Black Sea and the river system s connected to it did not constitute a natural eel habitat for European eel for the purposes of the Regulation establishing m easures for the recovery of the stock of European eel (EC 1100/2007: European Council, 2007). European eel life history is com plex and atypical am ong aquatic species, being a long- lived sem elparous and w id ely dispersed stock. The shared single stock is genetically panm ictic and data indicate the spaw ning area is in the southw estern part of the Sar- gasso Sea and therefore outside Com m unity Waters. The n ew ly hatched leptocephalus larvae drift w ith the ocean currents to the continental shelf of Europe and North Africa w here they m etam orphose into glass eels and enter continental waters. The growth stage, know n as yellow eel, m ay take place in marine, brackish (transitional), or fresh- waters. This stage m ay last typically from tw o to 25 years (and could exceed 50 years) prior to m etam orphosis to the silver eel stage and maturation. Age-at-m aturity varies according to temperature (latitude and longitude), ecosystem characteristics, and den- sity-dependent processes. The European eel life cycle is shorter for populations in the southern part of their range com pared to the north. Silver eels then migrate to the Sar- gasso Sea where they spaw n and die after spawning, an act not yet w itnessed in the w ild . The am ount of glass eel arriving in continental waters declined dramatically in the early 1980s, w ith tim e-series indices (see below for further detail) reaching m inim a in 2011 of less than 1% in the continental North Sea and less than 5% elsew here in Europe com pared to the m eans for 1960-1979 levels (ICES, 2011a). The reasons for this decline are uncertain but m ay include overexploitation, pollution, non-native parasites and other diseases, migratory barriers and other habitat loss, m ortality during passage through turbines or pum ps, and/or oceanic-factors affecting migrations. These factors w ill have been m ore or less important on local production throughout the range of the eel, and therefore m anagem ent has to take into account the diversity of conditions and im pacts in Com m unity Waters, in the planning and execution of m easures to ensure the protection and sustainable use of the population of European eel. The recruitment indices have increased in the m ost recent three years, but on ly so far to about 4 and 12% of the m ean levels of the 1960-1979 reference period. 1.4 Anthropogenic impacts on the stock Anthropogenic m ortality m ay be inflicted on eel by fisheries (including w here catches supply aquaculture for consum ption), hydropow er turbines and pum ps, pollution and indirectly by other forms of habitat m odification and obstacles to migration. Fisheries exploit the phase recruiting to continental waters (glass eel), the immature grow th phase (yellow eel) and the m aturing phase (silver eel). Fisheries are prosecuted Jo in t E IF A A C /IC E S /G FC M WCEEL REPORT 2 0 1 4 by registered and non-registered vessels, or fisheries not linked to vessels, such as fixed traps, fixed net gears, m obile (bank-based) net gears, and rod and line. The exploited life stage and the gear types em ployed vary betw een local habitat, river, country and intem ational regions. 1.5 The management framework of eel 1.5.1 EU and Member State waters G iven that the European eel is a panm ictic stock w ith w idespread distribution, the stock, fisheries and other anthropogenic impacts, w ithin EU and M ember State waters, are currently m anaged in accordance w ith the European Eel Regulation EC N o 1100/2007, "establishing measures for the recovery o f the stock o f European eel" (European Council, 2007). This regulation sets a framework for the protection and sustainable use of the stock of European eel of the species Anguilla anguilla in Com m unity Waters, in coastal lagoons, in estuaries, and in rivers and com m unicating inland waters of M em- ber States that flow into the seas in ICES Areas III, IV, VI, VII, VIII, IX or into the Med- iterranean Sea. The Regulation sets the national m anagem ent objectives for Eel M anagem ent Plans (EMPs) (Article 2.4) to "reduce anthropogenic mortalities so as to perm it w ith high probability the escapem ent to the sea of at least 40% of the silver eel biom ass relative to the best estim ate of escapem ent that w ould have existed if no anthropogenic influ- ences had im pacted the stock. The EMP shall be prepared w ith the purpose of achiev- ing this objective in the long term." Each EMP constitutes a m anagem ent plan adopted at national level w ithin the framework of a Com m unity conservation m easure as re- ferred to in Article 24(l)(v) of Council Regulation (EC) N o 1198/2006 of 27 July 2006 on the European Fisheries Fund, thereby m eaning that the im plem entation of m anage- m ent m easures for an EMP qualifies, in principal, for funding support from the EFF. The Regulation sets reporting requirem ents (Article 9) such that M ember States m ust report on the m onitoring, effectiveness and outcom es of EMPs, including the propor- tion of silver eel b iom ass that escapes to the sea to spawn, or leaves the national terri- tory, relative to the target level of escapement; the level of fishing effort that catches eel each year; the level of mortality factors outside the fishery; and the am ount of eel less than 12 cm in length caught and the proportions utilized for different purposes. These reporting requirem ents w ere further developed by the Com m ission in 2011/2012 and published as guidance for the production of the 2012 reports. This guidance adds the requirem ent to report fishing catches (as w ell as effort), and provides explanations of the various biom ass, m ortality rates and stocking metrics, as follows: • Silver eel production (biomass): • Bo The am ount of silver eel biom ass that w ou ld have existed if no anthropogenic influences had im pacted the stock; • Bcurrent The am ount of silver eel biom ass that currently escapes to the sea to spawn; • Bbest The am ount of silver eel biom ass that w ou ld have existed if no anthropogenic influences had im pacted the current stock, included re-stocking practices, hence only natural m ortality operating on stock. • A nthropogenic mortality (impacts): • ZF The fishing mortality rate, sum m ed over the age-groups in the stock, and the reduction effected; J o in t E IF A A C /IC E S /G FC M WGEEL REPORT 201 4 • EH The anthropogenic mortality rate outside the fishery, sum m ed over the age-groups in the stock, and the reduction effected (e.g. turbines, parasites, viruses, contaminants, predators, etc); • EA The sum of anthropogenic m ortalities, i.e. L A = EF + EH. It refers to mortalities sum m ed over the age-groups in the stock. • Stocking requirements: • R(s) The am ount of eel (<20 cm) restocked into national waters annually. The source of these eel should also be reported, at least to orig- inating M ember State, to ensure full accounting of catch vs stocked (i.e. avoid 'double banking'). N ote that R(s) for stocking is a n ew sym bol devised by the W orkshop to differentiate from "R" w hich is usually con- sidered to represent Recruitment of eel to continental waters. In July 2012, Member States first reported on the actions taken, the reduction in anthro- p ogenic m ortalities achieved, and the state of their stock relative to their targets. In M ay 2013, ICES evaluated these progress reports in terms of the technical im plem en- tation of actions (ICES 2013a). In October 2014, the EU Com m ission reported to the European Parliament and the Council w ith a statistical and scientific evaluation of the outcom e of the im plem entation of the Eel M anagem ent Plans. In 2015 and 2018, EU M em ber States w ill again report on progress w ith im plem enting their EMPs. 1.5.2 Non-EU states The Eel R egulation 1100/2007 only applies to EC Member States but the eel distribution extends m uch further than this. The w hole-stock (intem ational) assessm ent (see Sec- tion 1.5) requires data and information from both EU and non-EU countries producing eels. Som e non-EU countries provide such data to the WGEEL and m ore countries are being supported to achieve this through efforts of the General Fisheries Com m ission of the M editerranean (GFCM). The GFCM is currently undertaking a series of case studies to develop regional m ulti- annual m anagem ent plans for shared stocks. Priority fisheries include the case of Eu- ropean eel w hich is shared by all countries in the region. A technical docum ent w as produced in 2014, w ith the assistance of national focal points on eel, w hich gathers the state of the art in terms of data availability, m anagem ent m easures in force, fishery description, biological parameters and stock status (where available). GFCM Member countries have requested the GFCM Secretariat to produce guidelines to im prove the assessm ent and m anagem ent of this important fishery. The participation of GFCM in the Joint EIFAAC/ICES/GFCM WGEEL has contributed to strengthen collaboration w ith ICES and EIFAAC experts w hose availability and w illingness to cooperate is very m uch appreciated. The next m eeting of the GFCM Scientific A dvisory Com m ittee (SAC) in March 2015 w ill discuss and eventually approve the plan of action outlined during the 2014 WGEEL m eeting. The inclusion of this action plan for eel in the work program of SAC for the next year w ill allow the search for supporting funds, if possible w ith the assistance of EU. 1.5.3 Other international legislative drivers The European eel w as listed in A ppendix II of the Convention on International Trade in Endangered Species (CITES) in 2007, although it did not com e into force until March 2009. Since then, any intem ational trade in this species needs to be accom panied by a Jo in t E IF A A C /IC E S /G FC M WCEEL REPORT 2 0 1 4 permit. A ll trade into and out of the EU is banned, but trade from non-EU range States to non-EU countries is still permitted. The International U nion for the Conservation of Nature (IUCN) has assessed the Eu- ropean eel as 'critically endangered' on its Red List, in 2009 and again in 2014 although recognising th a t" if the recently observed increase in recruitment continues, m anage- m ent actions relating to anthropogenic threats prove effective, and/or there are positive effects of natural influences on the various life stages of this species, a listing of Endan- gered w ou ld be achievable" and therefore "strongly recom m end an update of the sta- tus in five years". M ost recently, the European eel has been added to A ppendix II of the Convention on M igratory Species (CMS), w hereby Parties (covering alm ost the entire distribution of European eel) to the Convention call for cooperative conservation actions to be devel- oped am ong Range States. 1.6 Assessments to meet management needs The EC obtains recurring scientific advice from ICES on the state of the eel stock and the m anagem ent of the fisheries and other anthropogenic factors that impact it, as spec- ified in the M em orandum of Understanding betw een EU and ICES. In support of this advice, ICES is asked to provide the EU w ith estim ates of catches, fishing mortality, recruitm ent and spaw ning stock, relevant reference points for m anagement, and infor- m ation about the level of confidence in parameters underlying the scientific advice and the origins and causes of the main uncertainties in the inform ation available (e.g. data quality, data availability, gaps in m ethodology and know ledge). The EU is required to arrange - through M ember States or directly - for any data collected both through the Data Collection Framework (DCF) and legally disposable for scientific purposes to be available to ICES. ICES requests inform ation from national representatives to the joint EI- FAAC/ICES/GFCM W orking Group on Eel (WGEEL) on the status of national eel pro- duction each year, and ICES provides assessm ents at regional and w hole-stock levels. C om plexities of the eel life history across the continental range of production, and lim - ited k now ledge and data of production and impacts for large parts o f this distribution, m ake it very difficult to apply a classical fisheries stock assessm ent based on the prin- ciples of a stock-recruitm ent relationship (but see below ) and the assum ption that mor- tality due to fishing far outw eighs other anthropogenic and natural mortalities. Therefore, the ICES advice has, to date, been based on a tim e-series of recruitment in- dices from fishery-dependent and -independent sources, com paring index levels in re- cent years w ith those of a historic reference period and expressing the former as a proportion of the latter. Looking to the future, the regular provision by EU M ember States of estim ates of es- capem ent biom ass and rates of mortality associated w ith anthropogenic im pacts as part of the process of EMP Review, and similar but voluntary reporting by non-EU coim tries producing eels, provides a m eans of international eel assessm ent. The status of eel production in EMUs is assessed by national or sub-national fishery/en- vironm ent m anagem ent agencies to m eet the terms of the national EMPs. The setting for data collection varies considerably betw een countries, depending on the m anage- m ent actions taken, the presence or absence of various anthropogenic im pacts, but also on the type of assessm ent procedure applied. A dditionally, the assessm ent fram ework varies from area to area, even w ithin a single country. Accordingly, a range o f m ethods J o in t E IF A A C /IC E S /C FC M WGEEL REPORT 2 0 1 4 m ay be em ployed to establish silver eel escapem ent lim its (40% of Bo) and m anagem ent targets for individual rivers, EMUs and nations, and for assessing com pliance of cur- rent escapem ent (Bcun-ent) w ith these lim its/targets. These m ethods require data on var- iou s com binations of catch, recruitment indices, length/age structure, recruitment, abundance (as biom ass and/or density), length/age structure, m aturity ogives, to esti- m ate silver eel biom ass, and fishing and other anthropogenic m ortality rates. The ICES Study Group on Intemational Post-Evaluation of Eel (SGIPEE) (ICES 201 Ob, 201 lb ) and WGEEL (ICES 2010a, 201 lb ) derived a framework for post hoc sum m ing up of EMU / national 'stock indicators' of silver eel escapem ent biom ass and anthropo- genic m ortality rates. This approach w as first applied by WGEEL in 2013 based on the national stock indicators reported by EU Member States in 2012 in their first EMP Pro- gress Reports. H ow ever, not all countries w ith EMPs reported. The approach w ill be applied again in 2015, after the Member States provide their second EMP progress re- ports, and hopefu lly w ith the addition of data from non-EU countries as w ell to in- crease the spatial coverage of data for this assessm ent approach. The w orking group is also developing the application of the 'traditional' Stock-Recm it- m ent (S-R) relationship and associated reference points, as the S-R relationship re- m ains a key function for the study of population dynam ics in the perspective of m anagem ent advice. The ultim ate objective is a m ethod to derive biological reference points adapted specifically to the European eel. The actual spaw ning-stock biom ass (in the Sargasso Sea) has never been quantified, so the best available proxy tim e-series is the quantity of silver eel that leaves continental w aters to m igrate to the spaw ning grounds; hereafter termed the 'escapem ent bio- m ass'. A s escapem ent biom ass has only been reported by EU M em ber States once, in 2012, and not yet reported by non-EU states, WGEEL has attem pted to derive historic tim e-series of stock-w ide escapem ent from landing statistics. In the absence of stock- w id e quantification of recruitment, the working group has applied an index of glass eel recruitment to continental waters, lagged by tw o years to account for the presum ed transit tim e of eel Tarvae' betw een spaw ning area and continental waters. The classical Ricker and Beverton and H olt approaches to describe S-R relationships do not provide a good fit to these eel 'data'. The working group continues to explore w ays to describe these data, m ost recently using data-driven General A dditive M odel (GAM) approach, and fit eel-specific reference points. 1.7 Conclusion This report of the joint EIFAAC/ICES/GFCM W orking Group on Eel is a further step in an ongoing process of docum enting the stock of the European eel, and associated fish- eries and other anthropogenic impacts, and developing m ethodology for giv ing scien- tific advice on m anagem ent to effect a recovery in the intem ational, panm ictic stock. The M oU betw een the EU and ICES requires an assessm ent of the status of the eel stock every year. A s recruitment and landings data are reported to the w orking group every year, these form the basis of the annual assessm ent. N ew national b iom ass and anthro- pogenic mortality stock indicators are scheduled to be available in 2015,2018 and every six years thereafter. Jo in t E IF A A C /IC E S /C FC M WCEEL REPORT 2 0 1 4 2 ToR a): Assess the latest trends in recruitment, stock and f isher- ies, including effort, and other anthropogenic factors indicative of the status of the stock, and report on the state o f the inter- national stock and its mortality The purpose of this chapter is to provide the information for the intem ational stock assessm ent in support of the ICES Advice. Sections 2.1 and 2.2 provide updates on trends in recruitment indices, and yellow and silver eel abundance information, re- spectively. Section 2.1 includes an exam ination of m ethods to test for significant changes in these trends. Sections 2.3, 2.4 and 2.5 provide inform ation on commercial landings, recreational fisheries, and first attempts by the working group to sum m arise inform ation on m isreporting of catches and estim ates of illegal catches. Section 2.6 up- dates inform ation on eel stocking and 2.7 on eel aquaculture. The chapter concludes w ith a first attempt to collate information on the potential environm ental drivers on the stock, fo llow ed by the tables for the chapter. 2.1 Recruitment trends 2.1.1 Time-series available The recruitment tim e-series data are derived from fishery-dependent sources (i.e. catch records) and also from fishery-independent surveys across m uch of the geographic range of European eel (Figure 2.1). The stages are categorized as glass eel, yotm g sm all eel and larger yellow eel recruiting to continental habitats. The WGEEL is currently also building up data from yellow eel series, but these are related to standing stock. The yellow eel series used there all com e from trapping ladders. J o in t E IF A A C /IC E S /G FC M WGEEL REPORT 2 0 1 4 . i í Im sa _ • Gota ♦ ♦. Dala ♦ Mota B ann E m e Maig • SeHM Feal ShaA • R ing Visk • Morr G u d e ^ a r t ^ ♦ • ♦ T, . R onn Vida KavI Lauw - # E m s Katw • •^Rhl j S te l* SeE A Yser*M eus F re Bres VU Loi GiT C*SevN N alo G iSc GiCP • • & Figure 2.1. Location of the eel recruitment monitoring sites in Europe, circle = glass eel (white), glass eel and young ye llow eels (blue), yellow diamond = yellow eel series. The lines show the different Eel M anagem ent Units in Europe. The glass eel recruitment series have also been classified according to tw o areas: N orth Sea and Elsewhere Europe, as it cannot be ruled out that the recruitment to the tw o areas have different trends (ICES, 2010b). The Baltic area does not contain any pure glass eel series. The yellow eel recruitment series are either com prised of a m ixture of glass eel and you ng yellow eel, or as in the Baltic, of young yellow eel only. The WGEEL has collated information on recruitment in 52 time-series. The series code, nam e, com m ents about the data collection m ethod, the intem ational region, whether they are part of the North Sea or Elsewhere series, the country, EMU, river, location, sam pling type, data units, life stages sam pled, first and last year of data, w hether they are active in the year of assessm ent, and whether or not there are m issing data in the series, are all fully described in electronic Table E2.1 available on the w orking group w eb page. Som e series date back as far as 1920 (glass eel, Loire, France) and even to the beginrdng of 20th century (yellow eel, Gota A lv, Sweden). The status o f the series can be described as follow ing: • 38 tim e-series w ere updated to 2014 (29 for glass eel or glass + yellow , and nine for yellow eel (Table 2.1). • three series (one for glass eel and tw o for yellow eel) have been updated to 2013 only (Table 2.2). • Som e of the series have been stopped, as the consequence of a lack of recruits in the case of the fishery-based surveys (Ems in Germany, 2001; Vidaa in Jo in t E IF A A C /IC E S /G FC M WCEEL REPORT 2 0 1 4 Denmark, 1990), as a consequence of a lack of financial support (the Tiber in Italy, 2006), or from 2008 to 2011, as a consequence of the introduction of a n ew quota system and incom plete geographical reporting for the five fish- ery based French series (Table 2.3). The num ber of available series has declined from a peak of 33 series in 2008 for the glass eel, and glass eel and young yellow eel series. The m axim um num ber of yellow eel series increased to 12 in 2009 (Figure 2.2). Before 1960, the num ber of glass eel or glass eel + yellow eel series, w hich w ill be used to build the WGEEL recruitment index for glass eel, is quite small, w ith six series before 1959 (Figure 2.2). Those are D en Oever (scientific survey), the Loire (total catch), the Ems (mixture of catch and trap and transport), the Gironde (total catch), the Albufera de Valencia in the Mediterranean, and the Adour, w hich dates as far back as 1928, and is based on cpue. For the latter how ever, on ly the years 1928 to 1931 are available and the series on ly resum es in 1966. year Figure 2.2. Trend in num ber of series giving a report any specific year, data split per life stage. 2 .1.2 Simple geometric means The calculation of the geom etric m ean of all series show that the recruitment is increas- ing in 2014 from a m inim um in 2009 (Figures 2.3 and 2.4). Figure 2.3, although con- sistent w ith the trend provided by WGEEL since 2002, m ight be biased by the loss of m ost Bay of Biscay series from 2008 to 2012. The scaling is perform ed on the 1979-1994 average of each series, and seven series w ithout data during that period are excluded J o in t E IF A A C /IC E S /G FC M WCEEL REPORT 2 0 1 4 from the analysis1. This scaling is sim ply to standardise the series so that they can all be presented on the sam e y-axis, and this period of years is not presented as a reference tim e period. 1000%- <D cu> § T-I or̂ - O J T3O rö 100% - !0%- 1%- Figure 2.3. Tim e-series o f glass eel and yellow eel recruitment in European rivers w ith dataseries having data for the 1979-1994 period (45 sites). Each series has been scaled to its 1979-1994 average, for illustrative purposes. Note the logarithmic scale on the y-axis. The m ean values and their boot- strap confidence interval (95%) are represented as black dots and bars. Geometric means are pre- sented in red. The shaded values correspond to pre-1960 where the num ber of glass eel dataseries available is low er and w ill not be ind uded in the calculation of the reference period. W hen looking at the separate trends for both glass eel and yellow eel series, as intro- duced by the WGEEL in 2006 (ICES, 2006), the increase seem s m ostly due to glass eel series w hich sh ow a positive trend from 2011 w hile yellow eel series show a w ider variation, and a large surge in 2014, that remains to be confirm ed. N ote that no lag w as added to the yellow eel series but that the age of yellow eels m ight range from one to several years old (Figure 2.4). Follow ing the recom m endation of RGEEL (ICES, 2013b: M inutes of the Technical Re- view ), in 2014 the sam e figure is built from all series available, and a n ew scaling based on the 2000-2010 (included) w as performed. This leaves out tw o series: Vida and YFSl. The scale from this graph show s an increase from the current level (1) to around a 100 1 'the series left out are : Bres, Fre, Inag, Klit, Maig, Nors, Sle. Jo in t E IF A A C /IC E S /G FC M WGEEL REPORT 2 0 1 4 tim es that value in the 1970s, and m ore than 100 tim es that level before the 1970s for the longest series (Figure 2.5). 1950 1975 2000 year Figure 2.4. T im e-series of glass eel and yellow eel recruitment in Europe w ith 45 series out of 52 available to the working group. Each series has been scaled to its 1979-1994 average. The mean values of com bined ye llow and glass eel series and their bootstrap confidence interval (95%) are represented as black dots and bars2. The brown line represents the m ean value for ye llow eel, the blue line represents the mean value for glass eel series. The range of the series is indicated by a grey shade. The tim e period 1900-1950 that w ill not be used to calculate the reference is shaded in w hite. N ote that individual series from Figure 4.3 were rem oved for clarity. Note also the logarith- mic scale on the y-axis. 2 This is the sam e as in Figure 4.3. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 1000 100 Figure 2.5. Time-series of glass eel and yellow eel recruitment in Europe. Same graph as Figure 4.4 but the series have been scaled to their 2000-2009 average (blue box). Two series3 have been ex- cluded from the initial number (52) that did not have data in the period 2000-2009. The mean values of combined yellow and glass eel series and their bootstrap confidence interval (95%) are repre- sented as black dots and bars. The brown line represents the mean value for yellow eel, the blue line represents the mean value for glass eel series. The range of the series is indicated by a grey shade. Note the logarithmic scale on the y-axis. 2 .1 .3 GLM based trend The WGEEL recruitment index is a reconstructed prediction using a simple GLM (Gen- eralised Linear Model): glass eel ~ year: area + site, where glass eel is individual glass eel series, site is the site monitored for recruitment and area is either the North Sea or Elsewhere Europe. The GLM uses a gamma distribution and a log link. The dataseries comprising only glass eel, or a mixture of glass eel and what is mostly young of the year eel are grouped and later labelled glass eel series. In the case of yellow eel series, only one estimate is provided: yellow eel ~ year + site. The trend is reconstructed using the predictions from 1960 for 40 glass eel series and for 12 yellow eel series. This analysis rebuilds all the series by extrapolating the missing values. The series are then averaged. Some zero values have been excluded from the GLM analysis: 12 for the glass eel model and one for the yellow eel model (see Table E2-1V 3 Vidaa and Y FSl. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 The reference period for pre-1980 recruitment level is 1960-1979, as four series availa- ble from 1950 to 1960 are excluded because they were based on total catch of commer- cial glass eel, which are known to have been affected by changes in fishing practises, and the progressive shift from hand nets to push net fisheries from 1940 to 1960 (Briand et al, 2008: see paragraph 24.1.1). After 1960, the number of available series increases rapidly (Figure 2.2). Though no such biases are known for the yellow series recruitment series, the same reference period has been chosen, to provide consistent results. After high levels in the late 1970s, there has been a rapid decrease in the glass eel re- cruitment trends (Figures 2.6 and 2.7; note the logarithmic scales). year Figure 2.6. WGEEL recruitment index: mean of estimated (GLM) glass eel recruitment for the con- tinental North Sea and elsewhere in Europe updated to 2014. The GLM (recruit = area: year + site) was fitted on 40 series comprising either pure glass eel or a mixture of glass eels and yellow eels and scaled to the 1960-1979 average. No series are available for glass eel in the Baltic area. Note the logarithmic scale on the y-axis. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 year Figure 2.7. Mean of estimated (GLM) yellow eel recruitment and smoothed trends for Europe up- dated to 2014. The GLM (recruit ~ year + site) was fitted to 12 yellow eel series and scaled to the 1960-1979 average. Note the logarithmic scale on the y-axis. In conclusion, the WGEEL recruitment index is currently low but increasing for both regional glass eel series: the current level with respect to 1960-1979 averages is 3.7% for the North Sea and 12.2% elsewhere in the distribution area (Tables 2.4 and 2.5). For yellow eel recruitment series, the recruitment has risen to 36% of the 1960-1979 period. 2 .1 .4 Are there s ignificant changes in trend? Given these recent increases in recruitment indices, the w orking group examined three statistical methods to test whether these were significant changes to the trends (i.e. break points, uptums). The objective of the first two methods, CUSUM and segmented regression, w as to identify breakpoints in the whole time-series. The third method, the Bayesian approach, w as used to detect a breakpoint in the last ten years and to simulate future recruitment to explore a trajectory of recruitment recovery 2.1.4.1 CUSUM Trends were calculated using the cumulative sums method (CUSUM (W oodward and Goldsmith 1964; Ibanez et al., 1993). A cumulative sum represents the m nning total of the deviations of the first observation from a mean based on the same interval. In gen- eral, the CUSUM approach to detect change points performs well, has been well-doc- umented and is relatively easy to implement (Breaker, 2007). Breakpoints that m ay not Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 be possible to detect in the original data often become easier to detect when the CUSUM is plotted. For a time-series with data sampled for each year (t), a reference value k is chosen (here w e chose the standardized mean logarithmic of the glass and yellow eel time-series). After subtracting k from each datapoint, the residuals are added successively to calcu- late the cum ulative sums (CSt): t CSt = k) i= 1 The successive values of CSt are plotted versus time (years) to produce the so-called CUSUM chart. The local mean between two breaking points is the slope of the cumu- lative sum curve between the two points, plus the reference value k. Changes in the average level of the process are reflected as changes in the slope of the CUSUM plot. For successive values equal to k, the slope will be horizontal; for successive values low er than k, the slope w ill be negative and proportional; and for successive values higher than k, the slope w ill be positive and proportional. The year of the change in the slope of the CUSUM is the year that a shift occurs. Breakpoints were visually identified on the CUSUM trajectories as abrupt changes (as opposed to a gradual change) in di- rection of slope. CUSUM were first calculated on the whole time period (from 1960 to 2014) to define the main breakpoints (Table 2.6). Since two main periods were defined, CUSUM were then calculated on the second period, from 1980 onwards, to focus on the decline (Table 2.6). A ll of the CUSUM calculated showed smooth trajectories with few breakpoints (Fig- ures 2.8 and 2.9). This was due to the low amplitude in inter-annual fluctuations com- pared to the overall change around the total average of the time-series. Figure 2.8. CUSUM calculated on the original glass eel time-series ('North Sea' and 'Elsewhere Eu- rope'), with CUSUM values plotted against the y-axis and year shown on the x-axis. Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 20 ❖ ♦ 15 & ❖ ♦ ♦ ♦ ♦ ♦ * ♦ ♦ □ □ □ □ ♦ ♦ n n D D D n ♦ d B d d G q □ □ ♦ ♦Incusumnorth ♦ □ □ □ Incusum elsewhere Figure 2.9. CUSUMS calculated on the natural logarithm of glass eel time-series ('North Sea' and 'Elsewhere Europe'), from 1980 to 2014, with CUSUM values plotted against the y-axis and year shown on the x-axis. The blue lines on Figures 2.10 and 2.11 show two distinct periods with breakpoints in 1980 for the 'North Sea' time-series and two years later for the 'Elsewhere Europe' time- series. The slopes of the CUSUM become negative after these breakpoints. W hile the time trend for 'North Sea' time-series only shows one breakpoint, the trend for 'Else- where Europe' time-series displays three breakpoints with a relatively stable period between 1982 and 1990 (Figure 2.11). CUSUM calculated over the later period (starting in 1980) show two breakpoints for the 'North Sea' time-series and one for the 'Else- where Europe' time-series (Figures 2.10 and 2.11). Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 0 -5 -10 -15 -20 -25 -30 -35 -40 >north •e lse w h e re 11 m i m 0 m o l£> u d CD 01 oi cn T—I tH T—i T T T T T T T T ! O l ( N 1/1 co n 0 ) 0 1 0 1 T— I rH c— 1 T T T T T T r T T T T T T T o oo CT1 ! 1 í i I I I l " T iT "T i T i l ! I l " l I' i I' l i ! m i í O l r M l / I C O H T C T I C T I C T l O O O r H t H C T I C T I C T I O O O O O H r l H N i N N f M f ' l Figure 2.10. Step diagram representing the slopes calculated on the logarithm of the different time- series for 'North Sea' and 'Elsewhere Europe' time-series, (see Table 2.6 for details on k), with slope values plotted against the y-axis and year shown on the x-axis. Figure 2.11. Step diagram representing the slopes calculated on the logarithm of the different time- series, for 'North Sea' and 'Elsewhere Europe' time-series, after the decline in recruitment (see Ta- ble 2.6 for details on k), with slope values plotted against the y-axis and year shown on the x-axis. 2.1 .4 .2 Segmented regression The R package ''segmented'' was used to perform the segmented regression (Muggeo, 2003; 2008). This algorithm estimates the positions of a given number of breakpoints, starting from a user-defined initial condition (i.e. breakpoints locations), by iteratively fitting linear segmented models with the following predictor: Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 / ? ! * £ + /?2 O i - V O + (Zi - V0+ = (Z i - V») X I ( Z i > xþ) where /?x is the left slope, zL is the independent variable, /?2 is the difference-in-slope before and after a breakpoint, iþ is the breakpoint and /(•) is the indicator function, equal to one when the argument is true, otherwise it is zero. This m odel is strongly affected by the initial conditions for the breakpoints locations and it is not intended to determine the number of breakpoints in a time-series. There- fore, this algorithm is nested into a double loop: the first to compare the null model (i.e. the linear regression w ith no breakpoints) and different segmented models with j breakpoints (j = 1...4) and the second to compare several initial conditions, sampled random ly from all the combinations of j possible breakpoints locations (here the sub- sample is the 10% of all possible combinations). The Bayesian Information Criteria (BIC) is used to determine the performance of each resulting model. BIC was preferred to the Akaike Information Criteria (AIC) as it has a higher penalty on the number of parameters. The model associated with the lowest value of BIC is selected. This method has been applied to the three time-series: the logarithm of glass eels re- cruiting in the 'North Sea' area (north), the logarithm of glass eels recruiting in the 'Elsewhere Europe' area (elsewhere) and the logarithm of yellow eels (yellow). The results are summarized in Table 2.7 and Figures 2.12 to 2.14. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 a) year b) year Fignre 2.12. Segmented regression performed on the log of glass eel recruitment at the 'North Sea' (a) and on the log of glass eel recruitment 'EIsewhere Europe' time-series (b). Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 The calibration of the segmented regression model on the 'North Sea' time-series se- lected the model with four breakpoints (1981,1984,1996 and 2012) (Figure 2.12a). The 1981, 1984 and 1996 are breakpoints between regressions with negative slope, while the 2012 breakpoint identifies a change in the sign of the slope, from negative to posi- tive (Figure 2.13). The m odel selected in the 'Elsewhere Europe' time-series identified three breakpoints (1972, 1978 and 2011), subdividing the time-series into four different periods with dif- ferent slopes (Figure 2.12b) that change sign at each breakpoint (Figure 2.13). - l I B l f i N N N N i V O O J C X w o i c r i c n s i o i í j i o i a i i í p 0 IM <1 U5 03 01 <?. ( íi cr, cn c". c . er. c ó"> Figure 2.13. Step diagram representing the slopes calculated using the segmented regression model on the two recruitment time-series ('North Sea' and 'Elsewhere Europe'). No breakpoints were identified for the yellow eel time-series and the null model was selected (Figure 2.14). This regression showed a significant (p<0.001) negative slope (/?=-0.049). Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 year Figure 2.14. Segmented regression performed on the log of the yellow eel time-series. The significance of using 2011 as a breakpoint in the recruitment time-series w as tested using the model developed by SGIPEE (ICES, 2011b): R~year + pmax(year, 2011) Where pmax is the maximum between the year and 2011. This model was calibrated on both recruitment time-series. An Analysis of Variance (AN O VA) revealed that the term pmax(.) was significantly different from zero (p<0.001 for both 'North Sea' and 'Elsewhere Europe'). 2.1 .4 .3 Bayesian approach The Bayesian Eel Recruitment Trend (BERT) model is based on exponential trends ( d £ and 2) and auto-correlated perturbations ‘ . This type of perturbation structure sim- ulates whether recruitment above the central trend in a particular year is more often follow ed by recruitment above or below the trend. This is the usual w ay to incorporate environmental fluctuations (e.g. climate, oceanic conditions) which are generally auto- correlated in time. This approach w as adapted from that developed to set up the glass eel quota in France (Beaulaton et al., in press.) The possibility of a single regime shift w as introduced with an indicator random vari- able I to test the credibility of this break point (Kuo and Mallick, 1998). The posterior distribution of ̂ can be interpreted as the probability that a shift in the trend should t be included in the model. The shift occurs at Jt which was chosen between 2003 and 2014, according to categorical distribution. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 The model is writte as: í t f t, V ‘+" for t< X íUf, ' {/? ,,• for e t = P ' e , - \ + r l , iid rjt □ Norm(0,o) I □ Bernoulli(p,) W D dcat(rep(0.1,10)) R t a where ' the recruitment index the year ^, shiJi the year of the regime shift, 1 the slope before the regime shift, + the slope after the regime shift, I the indicator 8 random variable to select or not the regime shift, ' the auto-correlated perturbations, P the auto correlation coefficient and the independent and identically distributed residuals of mean 0 and standard deviation ® . I is drawn from a Bem oulli distribu- Ð t tion of probability 1 . shî is drawn from a categorical distribution w ith a 10 values probability vector of 0.1. The a priori distributions are chosen as least informative. pU d u n if( - 1 ,1 ) <j U d g a m m a (0 .0 1,0 .0 1) ax,a 2 □ d n orm (0 ,0 .0 1) lo g ( i? 0)Q d n o rm (0 ,0 .0 l) + dnorm(0, 1) p j □ d b eta(0 .5 ,0 .5 ) where dunif, dgamma, dnorm and dbata are the density fimctions respectively for uni- form, gamma normal and beta distributions in jags. Bayesian inferences were performed by M arkov Chain Monte Carlo from the R pack- age 'rjags' (Plummer, 2013). The recruitment time-series 'Elsewhere Europe' and 'North Sea' over the period 1980 to 2013 were used to target the analysis on breakpoints in the recent period. The refer- ence recruitment corresponds to the average recruitment during the reference period 1960-1973 (Chapter 2.1). This reference recruitment was used as a proxy for the stock recovery. For the 'Elsewhere Europe' series, the BERT model gives a credibility of 35.1% for a trend shift between 2004 and 2013. The distribution of years with breakpoints is pre- sented in Figure 2.15. Note that the special case w ith P and ŝhP js the equivalent Bayesian approach of the test proposed by SGIPEE (ICES, 2011b). In that case, the credibility of a trend shift in 2011 is 72.3%. This result shows the importance of taking account of autocorrelation in the analysis for such trends. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 For the 'North Sea' serieS/ with the full model, the credibility of a regime shift increased to 73.7% w ith the more likely breakpoint in 2013 (Figure 2.16). co ö .Q Ö <D o CNI Ö O Ö 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 year of trend shift Figure 2.15. Credibility of (equivalent in classical statistics to "the probability to have") a trend shift according to year for the "Elsewhere Europe" time-series. ö oo ö TD <D O Ö 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 year oftrend shift Figure 2.16. Credibility of (equivalent in classical statistics to "the probability to have") a trend shift according to year for the "North Sea" series. Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 2.1 .4 .4 Conclusion on the break points detected A ll methods applied on the complete time-series (1960-2014) detected a breakpoint arotmd 1980, indicating a change in the slope sign from positive to negative, except the segmented regression on the glass eel recruitment in the 'North Sea' for w hich the breakpoint corresponded to an increased negative slope. This result confirms the shift in trend observed in the recruitment series during the 1980s and the consequent decline of the recruitment until the most recent years. The m odels detected several other breakpoints that occurred before 2010. These break- points were not related to a change in the trend but to steeper declines in recruitment. Most m odels (except the CUSUM applied to the glass eel recruitment in the 'Elsewhere Europe' series) detected a breakpoint in 2011-2012 with a change of slope sign. The significance of this breakpoint was confirmed by the A N O V A and by the Bayesian ap- proach, but it was not possible to determine whether this breakpoint can be considered a trend shift yet, as this short positive trend could be the result of the time-series auto- correlation. Moreover, there is no evidence of a trend change in the yellow eel tim e- series. 2.1 .4 .5 Evaluation of recruitment recovery based on trend analysis This objective of this section is to determine whether or not trends in recruitment are m oving towards recovery. It is obvious that a decreasing trend in recruitment is not compatible w ith recovery of the stock. A n increase in recruitment, confirmed by lagged increases of the standing stock and silver eel escapement (when data w ill be available) is a necessary condition to consider a recovery. H ow ever a short-term increase w ill not necessarily certify re- covery. A t least, an increase over a period that corresponds to the average lifespan should be recorded before giving a positive answer to recovery. Since life traits and contributions to spaw ning stock vary geographically, the definition of the average lifespan for eel is not simple and more work is needed. Another w ay to evaluate whether the trend is m oving towards recovery is to calculate how long it w ill take, given the present trend, to reach recruitment reference. In this analysis the recruitment reference is defined as the average recruitment observed dur- ing the period from 1960 to 1979. The projections of the recruitment are presented in Figures 2.17 and 2.18 for 'Elsewhere Europe' and 'North Sea' respectively. Since a trend shift is considered in only 35.1% of the cases for the 'Elsewhere Europe' series, the trend of recruitment is predicted to slightly decrease in the next years and the credibility (akin to statistical 'probability') to be above the reference recruitment does not exceed 35% in the next 30 years (Figure 2.19). For the "North Sea" series, the trend is increasing (Figure 2.18) but w ill only reach the reference recruitment in the long term (Figure 2.20). Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 100 - 80 - £ 60 - 20 - / \ * / I I I I I I___1__1__L_ 1980 1990 2000 2010 2020 2030 season Figure 2.17. Evolution from 1980 to 2014 (point) and projection from 2015 to 2030 (box and whiskers plot) of recruitment for 'Elsewhere Europe' time-series. In the box and whiskers plot, the horizontal segment in bold represents the median, the box represents the inter-quartile range, and the whisk- ers represent the extreme values. 100 - o 0 1980 1990 2000 2010 2020 2030 season Figure 2.18. Evolution from 1980 to 2014 (point) and projection from 2015 to 2030 (box and whiskers plot) of recruitment for the 'North Sea' time-series. In the box and whiskers plot, the horizontal segment in bold represents the median, the box represents the inter-quartile range, and the whisk- ers represent the extreme values. Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 <D >o JD. ro <x> X > o ^ Q) -i > > , <D -c3' o — c - 9 2 T 3 <D 2 2 O 1 . 0 - 1 0.8 - 0.6 - 0.4 - 0.2 - 0 .0 -J ID <£> r- C D O o "t— <M CO <o < D r-- 00 O O -i—CM CO ■̂ro <Ðr— 00 C0 O CM c O <oT—T—T—t—T—CM CM CM CM CM CM CM CM CM CM CO co CO CO CO CO CO co co CO ■sj- ’CT-st 3 ■nTo o o O o O O O O O O O O O O o o o o o o O o o O o O o O o o CM CM CM CM CM CM CM CM CM CM CM CM <MCM <MCM CM CM CM CMCM CMCM CM CM OMCM <M CM CM CM year Figure 2.19. Evolution of the credibility (equivalent in classical statistics to the 'probability') to be above the reference recruitment (1960-1979 average recruitment) for the 'Elsewhere Europe' time- series. > ^o © jo E Oj - t í <D E X) O o £4-J -S' o = cr l o o <d £ o b • - 1.0 n 0.8 - 0.6 - 0.4 - 0.2 - 0.0 m < x r - - - c D G ) O T - c M c o ' q - L r ; C D r - - c o c D O T - c \ j c o ' < T i o < o r - - c o c D O ' = - c \ i c O ' q - t nt — ■ t - ’t— C NCMCMCNCMCNCMCNCMCNJ COcOcOcOCOCOCOCOCOCO' s 3 ' ^ r ,s r ,< r ’T ,sr o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o < M C M C M < M C M C M < M C M C M < M < M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M C M < M C M C M year Figure 2.20. Evolution of the credibility (equivalent in classical statistics to the 'probability7) to be above the reference recruitment (1960-1979 average recruitment) for the 'North Sea' time-series. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 If a trend shift is set between 2004 and 2013 (i.e. assuming that the recent increases in recruitment trend continue in the future), the credibility to exceed the reference recruit- ment w ill be around 50% for 'Elsewhere Europe' in 2021, and for 'North Sea' in 2018, and higher than 95% after 2045 for 'Elsewhere Europe' and after 2029 for 'North Sea' recruitment (Figures 2.21 and 2.22). o ® x> E TO 0) 5 X I o o £-t—> c r o = c 't j <d £ o o »- 1 . 0 - I 0.8 - 0.6 - 0.4 - 0.2 - 0.0 i o < o r ^ c D 0 5 0 T - c N c O ' v r t n < D i - ' - o D a > 0 ' ! - c N c o ' 3 - ! r ; < x > r ‘- o o o > O T - c N c o ' 3 - t o t — - t - t - t - t - C N C N C N C N C N C N C N C N C N C N C O C O c O c O C O c O c D C O C O C O ’,< r ' ^ r ' ^ r ' ^ r ,̂ r ' a - o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N yea r Figure 2.21. Evolution of the credibility (equivalent in classical statistics to the 'probabilityO to be above the reference recruitment (1960-1979 average recruitment) for 'Elsewhere Europe' assuming a trend shift set between 2004 and 2013. Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 35 2 ^ § ® xi E 03 -t± C3 E X3 O o £ o — c: S T3 <D £ 0) b • - 1.0 n 0.8 - 0.6 - 0.4 - 0.2 - 0.0 . □ l O O N C O O O ’r - C N C O ' í l í X D N œ i a j O T - O ' J c O ^ l O C O N C O C D O T - C N c O ' v r i O T - ' t - ' t - ' í - ' r - C N l C M C N C N C N C N C M C N C N C N O O C O C O C O C O C O c O c O C O c O ' s r ' q - ^ r ' q - ’s r ’sro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN year Figure 2.22. Evolution of the credibility (equivalent in classical statistics to the 'probabilityO to be above the reference recruitment (1960-1979 average recruitment) for the 'North Sea' time-series as- suming a trend shift set between 2004 and 2013. In conclusion, the recent increases in recruitment time-series observed over the last three years are not sufficient to be sure that the stock is m oving towards a recovery. If these positive trends are confirmed and continue in the future without anv changes, the recruitment might be expected to exceed the average 1960-1979 level around the year 2030 in 'North Sea' and around the year 2045 in the 'Elsewhere Europe' times- series. However, much im proved understanding of the functioning of the stock is re- quired to make these trend analyses more robust. 2.1 .4 .6 Indicators that might trigger an update assessment The w orking group considered the question posed by the ICES Generic ToRs, to define or propose indicators that could be used to decide when an update assessment is re- quired. First and foremost, the working group reiterated that the '3B and I A ' stock indicators should be estimated on an annual basis, and for each individual EMU, in order to up- date the precautionary diagram approach. It is also essential that the glass eel and yel- low eel data used to build recruitment and standing stock indices are collected annually. Regarding indicators to trigger an update assessment, the w orking group proposed that a regime shift (change of sign in the trend) in recruitment time-series that was detected w ith a high probability in the recent past might be a suitable trigger for an update assessment. It that case, explanations of this regime shift should be explored. Biological processes of the population dynamics and possibly the biological reference points should be re-evaluated in consequence. Specific w ork is clearly required to de- fine more precisely such quantitative indicators for an update assessment. 36 Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 2.2 T im e-series of yellow and silver eel abundance In addition to the glass eel and (young) yellow eel recruitment series, yellow eel and silver eel indices may be used in the future, though data are scarce, and m ay be uncer- tain. Moreover, yellow and silver eel data may be more representative for the local area where they are collected than for the global stock status because of the contrasts in population dynamics and anthropogenic pressures at the distribution area scale. Several Country Reports present information on long-term monitoring of yellow eel abundance in various habitats, and these values have been updated in the WGEEL da- tabase. Descriptions of the time-series are presented in Table 2.8. M ethodologies vary from electrofishing and traps in rivers to beach-seines, fykenets and trawls in larger waterbodies. Information on long-term changes in yellow eel abundance in many cases is the only w ay to assess the status of eel production in the absence of a significant fishery. A de- velopm ent towards standardized methods w as suggested by W KESDCF to be in- cluded in the revisions to the DCF (ICES 2012a). 2.3 Commerclal fishery landings trends A t the present 2014 status, dataseries presented in this report contains information ob- tained from the Country Reports, FAO capture database and by personal communica- tion from WGEEL participants (Table E2-2). A review of the catches and landing reports in the Country Reports showed a great heterogeneity in landings data. Some countries make reference to an official system, w hich then reports either total landings or landings split by Management Unit or Re- gion. Some countries do not have any centralized system. Furthermore, some countries have revised their dataseries, with extrapolations to the whole time-series, during the process of compiling their Eel Management Plan (i.e. Poland, Portugal). Landings data sourced from the FAO database are presented for countries not report- ing to WGEEL. These are the Mediterranean countries: Egypt, Tunisia, Morocco, Tur- key and Albania. The quality of some of the Mediterranean data should be reviewed, as some figures seems to be urtreliable, e.g. 2012 Egypt data show large variations that were of uncertain provenance given that there w as uncertainties about the presence of a catch reporting system. 2.3.1.1 Collection of landings statistics by country (from CRs) Changes in follow ing the descriptions of the landing statistics per country compared to 2013 WGEEL are highlighted in italics. Norway: Provided official landing statistics (Fisheries Directorate) calculated accord- ing to the number of licences. Fishing for eel has been banned in N orw ay since January 1, 2010. Sweden: Data on eel landings in coastal areas are based on sales notes sent to the ap- propriate agency and in recent years also from a logbook system. There is a discrep- ancy between the data derived from the traditional sales notes system and the more recent logbook system. During the most recent years this difference was considerable, e.g. in 2011 sales notes reported 238 tonnes, whereas the logbooks system registered 355 tonnes (all from the marine areas). Landings data from freshwaters come from a Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 system w ith monthly or yearly journals. Fishing for eels in private waters w as not re- ported before 2005. Data from logbooks and joum als are stored at the Swedish A gency for Marine and Water Management. Finland: The statistical data are collected by the FGFRI. Data from professional fishers are collected by logbooks and recreational questionnaires. Data are available for 1976- 1988 and from 2003 onwards. Estonia: The catch statistics are based on logbooks from inland and coastal fisheries. Data are available for 1964 to 1992 (Lake Vörtsjárv) and from 1993 onwards for all ar- eas. Latvia: Eel landings are reported in monthly logbooks detailing date, number and type of gear, and fishing time. Logbooks from coastal and inland fisheries were collected by local Boards of M IW A and transmitted to BIOR for data summarization and storage. Lithuania: Fisheries companies provide information according to their logbooks about catch on a monthly basis to the authority issuing permits: a Regional environmental protection department under the Ministry of Environment of the Republic of Lithuania if a com pany is engaged in inland fisheries (including the Curonian Lagoon), or the Fisheries Service of the Ministry of Agriculture of the Republic of Lithuania if a com- pany is engaged in maritime fisheries. Data on recreational fisheries are collected using questionnaires. Poland: The (approximate) data on inland catches were obtained by surveying selected fisheries facilities, and then extrapolating the results for the entire river basin. The data from the lagoons and coastal waters were drawn from offidal catch statistics (log- books). Germany: Eel landings statistics from coastal fishery are based on logbooks. The obli- gation to deliver the inland catch statistics separate for both stages has only recently been established in most states. Fishers have to deliver the information to the authori- ties at least on a monthly basis. Data are missing for the some states for inland landings in 2013. Denmark: From ls t July 2009, professional fishing operations are based on licences and landings and number and type of gear must be registered with the Danish AgriFish Agency. The professional fishermen in saline areas are given a licence to use a limited number of gears in order to meet the 50% reduction within five years follow ing the EU eel regulation. Netherlands: For Lake IJsselmeer, statistics from the auctions around Lake IJsselmeer are now kept by the Fish Board. For the inland areas outside Lake IJsselmeer, no de- tailed records of catches and landings were available until 2010. In January 2010, the Ministry of Economic Affairs, Agriculture and Innovation introduced an obligatory catch recording system for inland eel fishers. Since 2012, eel fishers are required to also report effort (type of gear and number of gear) within the obligatory catch recording system. Catches and landings in marine waters are registered in EU logbooks. Belgium: There is no commercial fishery for eel in inland waters in Belgium. Commer- cial fisheries for silver eel in coastal waters or the sea are negligible. Ireland: Until 2008, eel landing statistics in Ireland were collected from voluntary dec- larations. From 2005 to 2008 this was im proved by issuing catch declaration forms with the licence. From 2009, commercial fishing of eel has been closed. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 United Kingdom: In England and Wales, the Environment A gency authorizes com- mercial eel fishing. It is a legal requirement that all eel fishers submit a catch retum, giving details of the number of days fished, the location and type of water fished, and the total w eight of eel caught and retained, or a statement that no eel have been caught. Annual eel and glass eel net authorizations and catches are summarized by gear type and Environment Agency region (soon to be RBDs) and reported in their "Salmonid and Freshwater Fisheries Statistics for England and W ales" series (www.environment- agency.gov.uk/research/library/publications/33945.aspx). The yellow and silver eel catches reported to the Environment A gency have historically been reported to the W G as a single catch for England and Wales. Since 2005, catches have been recorded ac- cording to the "nearest w aterbody" and reported separately for yellow and silver eels. In Northem Ireland, overall policy responsibility for the supervision and protection of eel fisheries, and for the establishment and development of those fisheries, rests with the Department of Culture, Arts and Leisure (DCAL). Catch returns from the one re- maining commercial fishery are collated at a single point of collection and marketing, and reported to D CAL. There have been no large-scale commercial fisheries for eel in Scotland for many years, and no catch data are available. Fishing for eel has been effectively banned for a num- ber of years. France: The marine commercial fisheries in Atlantic coastal areas, estuaries and tidal part of rivers in France have been monitored by the "Direction des Péches Maritimes et de TAquaculture" (DPMA) of the Ministry of Agriculture and fisheries through the Centre National de Traitement Statistiques (CNTS, ex-CRTS) from 1993 to 2008, and now by France-Agrimer. This system is evolving and is supposed to include marine commercial fishermen from Mediterranean lagoons. In this system, glass eels are dis- tinguished from sub-adult eel, but yellow and silver eels are only recently separated. The commercial and recreational fishermen in rivers (and in lakes) have been moni- tored since 1999 by the O N EM A (Office National de l'Eau et des M ilieux Aquatiques, ex-CSP) in the frame of the « Suivi National de la Péche aux Engins et aux filets » (SNPE). These two monitoring systems are based on mandatory reports of captures and effort (logbooks) using similar fishing forms collected monthly (or daily for glass eel) with the help of some local data collectors. Information for 2013 is not fully pro- vided. Spain: Data on eel landings in the Country Report are mostly collected from fishers' guild reports and fish markets (auctions). The precision of the information of the catches and landings differs greatly among Spanish Autonom ies (regions). No data available for marine fishery. Portugal: The eel fishery is managed by D G PA (General Directorate of Fisheries and Aquaculture) with responsibility in coastal waters, and AFN (National Forestry Au- thority) w ith responsibility in inland waters. Fisheries managed by D G PA have oblig- atory landing reports, while in inland waters, landing reports are obligatory in some fishing areas but in other areas only if requested by the Authorities. Italy: The management framework for the Data Collection Framework (DCF) is the same as has been set up for the eel management under EC Regulation 1100/2007. In the eleven Regions that preferred to delegate eel management to central govem m ent (Di- rectorate-General for Sea Fishing and Aquaculture of the Ministry of Agricultural, Food and Forestry Policy) where commercial eel fishing has been stopped completely since the year 2009, no data collection is carried out. In the remaining nine regions, Joint EIFAAC/ICES/GFCM WGEEL REPORT 201 4 where eel fisheries are ongoing, eel fishery data are collected with a standard method- ology, as foreseen by the Italian National Plan for the Data Collection Framework. De- tailed data on catches and landings (by life stage, by type of fishing gear, by EMU, commercial and recreational, etc.) are available from 2009. Montenegro: No data on catch are available. Scientific estimation of total catch in re- cent year shows that about 60 tons of eel are landed, of which about 50% is taken by illegal fisheries. Algeria: Data are available in the FAO database, but the quality of this information is not confirmed. Greece: Fishing in the lagoons is based on the use of fixed barrier traps, which catch fishes during their seasonal or ontogenic offshore migration every year from Septem- ber to January. Barrier traps (V-shape traps) are passive, fixed gears and are part of the fence installed at the interface between the lagoon and the sea (for more details see A rdizzone et al, 1988). The fishermen cooperatives usually have the adequate infra- structure to store live eels up to their sale (the largest quantity of these are exported to other European countries, such as Italy and Germany). The total fishery of the eels and the total fishery of the rest species must be declared every month to the regional au- thorities. Turkey: Data are available in the FAO database, but the quality of this information is not confirmed. Egypt: Data are available in the FAO database, but the quality of this information is not confirmed. Reported figure 5000 tons for 2012 is unreliable. Tunisia: Data are available in the FAO database, the level of catch w as confirmed by the Tunisian participants to WGEEL. Morocco: Data are available in the FAO database, but the quality of this information is not confirmed. 2 .4 Recreational and non-com m ercial fisheries M ore data for recreational catch and non-commercial landings were available in 2014 compared w ith previous WGEEL reports. For the purpose of compilation and cross- checking, two sources of data were used; Country Reports and the (draft) ICES WGRFS 2014 report (Table 2.9). This analysis showed some discrepancies between sources and not reporting, even if required by the EU Data Collection Framework (Council Regu- lation (EC) No 199/2008 and Council Decision 2008/949/EC). Recreational fishery data on eels are to be collected, where appropriate, in the follow ing areas: • Baltic (ICES Subdivisions 22-32); • North Sea (ICES Division IV and Vlld) and Eastern Arctic (ICES Division I and II); • North Atlantic (ICES Division V-XIV); • Mediterranean and Black Sea. The EC (DG-MARE) has indicated some general principles in the forthcoming modifi- cations to the DCF (anticipated 2018 onwards) which are relevant to diadromous spe- cies, including improvement in the quality of data and coverage of recreational Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 fisheries. The ICES workshop about eel and salmon data collection (ICES, 2012a) rec- ommended the collection of data on all recreational and commercial eel and salmon fisheries regardless of how the catches are made. The data reported in the Country Reports were incomplete in some cases because they omitted marine or inland waters, reported only passive gears catches w hile angling is not prohibited, or because some of the countries are not fully sampling recreational catches, focusing only on a selected life stage. These facts make it impossible in 2014 to assess the most recent total landings and catches of recreational and non-commercial fisheries. Another data gap is the amount of eels released by recreational fishermen and the as- sociated catch & release (C&R) mortality. An estimate of the amount of released eels was only provided by the Netherlands and partially (marine angling only) for the UK (England) and Denmark. In most countries it is prohibited for recreational anglers to retain eels but catch & release fisheries on eel area allowed in all coimtries. The amount of fish released by recreational anglers can be substantial (Ferter et al, 2013) and catch and release mortality can be high (median 11% , mean 18%, range 0-95%, n = 274 stud- ies; Bartholomew and Bohnsack, 2005) depending on species and factors like hooking location, temperature and handling time. Unfortunately, no studies have been con- ducted to estimate catch and release mortality in eel. During the 2012 evaluation of tihe EMPs, most countries did not report recreational catches (landed and/or released) and if an estimate of the amount of released eel was presented, C& R mortality was assumed to be "zero". 2.5 M isreporting of data, and iliegal fisheries M ost coimtries did not report the level of underreporting, misreporting and illegal fish- eries in their Country Reports. The limited data that were presented judged insufficient to draw conclusions on the level of misreporting or illegal fishing. Some countries reported the existence of illegal practices but those were not quantified. It can be con- sidered that the current state of knowledge is insufficient to give an idea of the level of misreporting of data and illegal fisheries at the stock level (Table 2.10). 2.6 N on-fishery anthropogenic m ortallties ICES derived a framework for intemational assessment based on national/regional bi- omass and mortality stock indicators. LA, the lifetime anthropogenic mortality rate, is the addition of EF the fishery mortality and LH all other anthropogenic mortalities (e.g. hydropow er, barriers, etc.). Member States are required to report their estimates of the indicators in 2012, 2015, 2018 and every six years thereafter. In 2012, £ H and £F mortality estimates were not reported for almost half of the EMUs. Furthermore, for the EMUs for which mortality estimates were reported data were only available for 1 - 4 years. In 24 of 43 EMUs for which both mortality estimates were reported for at least one year, the rate due to F was greater than that due to H in the most recent year re- ported. H was greater than F in 15 EMUs, and the two rates were equal in the other four EMUs. In time, these mortality stock indicators will provide a suitable series to analyse trends in mortality for both fisheries and other anthropogenic mortalities. A t this point in time little can be said with regard to trends in anthropogenic mortalities due to the short time-series (1^4 years). Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 2 .7 Eel stocking 2.7 .1 Trends in stocking Data on the amount of stocked glass eel and young yellow eel were obtained from Country Reports and are provided in Electronic Tables E2.3 and E2.4. respectively. Note that various countries use different size and weight classes of young yellow eels for stocking purposes. Stocking of glass eel peaked in the late 1970s and early 1980s, followed by steep de- clined to a low in 2009 (Figure 2.23). The decline is most likely due to the increase in price of glass eel from ~€50 kg in the early 1980s to more than €400 kg in the late 2000s (see Figure 10-6 in WGEEL, 2013). The increase after 2009 is presumably caused by the implementation of EMPs, because stocking of glass eel is one of the management measures in m any EMPs. The impact of the price on the amount of stocked glass eel was particularly clear in 2014, when a strong supply of glass eels meant the price dropped sharply to around €100 kg and a sharp increase in stocked glass eels was ob- served. French stocking data are only available since 2010. Before 2010 stocking occurred in France but the data are not reported in the Country Report. The time-series only shows the reported amount of stocking and m ay underestimate the true amount of stocking that has occurred. The stocking of young yellow eels has been increasing since the late 1980s (Figure 2.24). The explanation for this increase is, however, less obvious but m ay also have to do with the increased price for glass eel. The proportion of glass eel amongst stocked eel has increased in the recent years (Fig- ure 2.25). S2 o -Q £ 3 Z CM CM CM CM Year Figure 2.23. Reported stocking of glass eel in Europe (Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Germany, the Netherlands, Belgium, Northem Ireland, Spain, Greece, France (no data be- fore 2010)) in millions stocked. 2013-2014 data not fully available. Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 T — T - ' t - T — T - T - T - X — r - T - T - T - T - C M C N C N C M Year Figure 2.24. Reported stocking of young yellow eel in Europe (Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Germany, Denmark, the Netherlands, Belgium, and Spain), in millions stocked. 2013-2014 data not fully available. □Young yellow eel nGlass 100% Year Figure 2.25. Stocking proportion in numbers stocked between on-grown and glass eel in Europe. The follow ing present an overview of stocking practices in various countries. Where information is new or different from that presented in WGEEL 2013, this is highlighted in italics. Norway: No stocking on a national level. Sweden: Until the 1990s, the transport of medium sized yellow eels from the west coast to the east coast (Sáttál) dominated the stocking programmes. Recently, however, quar- antined glass eel (i.e. ongrown) stocking is the only action left. Trollháttan eel (from Göta Alv) has alw ays been a small quantity, and this transport ended in 2005. In 2013, catches at Trollháttan were transported upstream past three hydropow er plants and Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 released in Lake Vánern, i.e. "assisted migration". In 2012 and 2013, glass eels were again imported from River Severn (UK), after a few years when they had been supplied by French glass eels. According to the Swedish EMP, about 2.5 million glass eels (in practice ongrown cultured eels) will be stocked annually. A ll stocked eel have been chemically marked since 2009. Finland: In 1989, it w as decided to carry on stocking only with glass eels reared in a careful quarantine. Since then, glass eels originating in River Sevem in the UK have been imported through a Swedish quarantine and restocked in almost one hundred lakes in Southem Finland and in the Baltic along the south coast of Finland. A ll stocked eel have been chemically marked since 2009. Estonia: A historical database is available on stocking of glass eel/young yellow eel in Estonia, w ith records back to 1950. In 1956 stocking of glass eels into L. Vörtsjárv was started. However, stocking has been irregular. The stocking rate w ith glass eels in L. Vörtsjárv has been relatively low: annual average in 1956-2000 w as about 37 ind.ha*1 w ith a maximum of 80 ind.ha4 in 1976-1984. Estonia had a state stocking programme of fish, including eel, for 2002-2010. During the period 2011-2014, the stocking of eel into the Lake Peipsi basin is supported by the European Fisheries Fund (EFF) up to a limit of 255 000 euros (co-financing up to one third of total annual financing). In 2011, 680 000 glass eels were stocked; in 2012, 910 000 glass eels and 120 000 ongrown cul- tured eels were stocked; and in 2013, 810 000 glass eels were stocked. A s the market price of glass eel in 2014 was extremely low, 900 kg or 3 million of glass eels and 193 000 of ongrown cultured eels were stocked into Estonian lakes. Latvia: Data on stocking from 1945-1992 were obtained from archives of USSR institu- tion Balribvod that w as responsible for fish stocking and fisheries control in the former USSR. Since 1992, every stocking of fish in natural waterbodies in Latvia must be re- ported to Ministry of Agriculture (BIOR) by special documents. In 2011, Latvia started stocking again. Glass eel were imported from UK Glass Eel by a supplier from Czech Republic. Generally, few people ("commission") representing the local municipality and the fish supplier actually participate in stocking to certify the fact. Lithuania: Stocking of Lithuanian inland waterbodies with glass eel originating in France or the United Kingdom began in 1956. During 1956-2007, a total of 148 lakes and reservoirs covering an area of 95 618 ha was stocked. About 50 million glass and juvenile eels were stocked in total. Stocking activities started again in 2011 within EMP framework. In 2011-2014, Fisheries Service under M inistry of Agriculture used support of European Fisheries Fund and stocked lakes releasing 1 million glass eels and 1 mil- lion ongrown cultured eels. Poland: Eel stocking was initiated in regions within current Polish borders around the beginning of the 20th century. This was done mainly in rivers in the Vistula River basin and in the Vistula Lagoon. The stocking material of the day originated from the coasts of the United Kingdom (glass eel), although the Vistula Lagoon w as also stocked with eel (20-30 cm total length) from the River Elbe. In 2011, Poland started stocking within the EMP framework. Data on stocking by private stakeholders comes from eel import- ers. A ll eels are foreign source: glass eels from France and England, and ongrown/cul- tured yellow eels from Denmark, Germany and Sweden. Germany: There is no central database on stocking, but some data are available. Data provided for 2011-2013 not yet complete and have to be considered as the minimum numbers. Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 Denmark: Stocking by fishers in inland waters has taken place for decades, in places where recruitment of young eel was limited or absent because of migration barriers or distance to the ocean. Glass eels are imported mostly from France and are grow n in heated culture to a w eight of 2-5 g before they are stocked. Stocking is done as a man- agement measure. In 2014 a total of 1.6 million 2-5 gram eels were stocked. In fresh- water 1.34 million eel of size 2-5 gram were stocked in lakes and rivers as a management measure and 0.26 million were stocked in marine waters. Netherlands: Glass eel and young yellow eel are used for stocking inland waters for as long as anyone can remember, mostly by local action of stakeholders. Future stocking of 1-1.6 t of glass eel is foreseen. A ll stocked glass eel are sourced outside the Nether- lands. The main stocking material is glass eels in the Netherlands. However, the aver- age w eight of stocked young yellow eel decreased from ~30g to ~3 g between 1920 and 2014. Belgium: Glass eel stocking in Belgium, both in Flanders and in Wallonia, has been carried out from 1964 onwards, with glass eel from the catching station at N ieuw poort (River Yser). H owever, due to the low catches after 1980 and the shortage of glass eel, together w ith regionalisation of the fisheries, this stocking w as stopped in Wallonia. In Flanders, stocking w as continued after 1980 with foreign glass eel imported mostly from the U K or France. Also, yellow eels were restocked, mostly from the Netherlands, but this was ceased after 2000 as yellow eels used for stocking contained high levels of contaminants. In Wallonia, glass eel stocking was again initiated in 2011, in the frame- w ork of the Belgian EMP. Quantities of glass eel stocked amount to 40 and 50 kg for W allonia in 2011 and 2012 respectively. In Flanders 156 kg, 140 kg and 500 kg were stocked respectively in 2012,2013 and 2014. The glass eel were supplied from the Neth- erlands but originated from France. In 2013, 140 kg was stocked in Flemish waters us- ing glass eel supplied by a French company (SAS Anguilla, Charron, France). Ireland: Purchase of glass eel for stocking from outside the state does not currently take place. The only stocking that takes place is an assisted upstream migration around the barriers on the Shannon, Eme and Lee. Assisted migration of upstream migrating pigmented small eel takes place in the Shannon (Ardnacrusha) and Eme (Cathaleen's Fall), and of pigmented young eel (bootlace) on the Shannon (Parteen Regulating Weir). Prior to 2009, small amounts of glass eel and pigmented small eels were taken in the Shannon Estuary and in neighbouring catchments and these were stocked into the Shannon above Ardnacrusha and Parteen H ydropower Stations. UK: There is no stocking of ongrown eel anywhere in UK. Glass eel from the England and W ales fishery are stocked into river systems of England and Wales: 53.6 kg in 2010, 50.1 kg in 2011, 41.5 kg in 2012, 65.7 kg in 2013, 55.6 kg in 2014. No eel stocking takes place in Scotland. In Northem Ireland, recmitment of glass eel and pigmented small eel to Lough Neagh has been supplemented by stocking of purchased glass eel since 1984, and these eel have been sourced from the glass eel fishery in England and Wales. However, in 2010, the 996 kg of glass eel purchased from UK Glass Eel Ltd originated from fisheries in San Sebastian, Spain and the west coast of France: no glass eels from UK waters were purchased. In 2011 and 2012, glass eel from UK and French sources were stocked into Lough Neagh though all were purchased from U K Glass Eels Ltd. In 2013 and 2014,1866 kg and 2680 kg respectively of entirely UK sourced glass eels were stocked into L. Neagh. 2014 was also the first time that glass eel going into Lough N eagh (and the River Lagan) were marked using Strontium Chloride. France: A public tender of 2 million Euros for stocking (and stocking monitoring) has been made each year since 2010. In 2014 this public tender was made twice. Glass eels Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 are all stocked in the EMU in which they are caught. Thus, there is no stocking in EMU where there isn't a glass eel fishery. Glass eels have been quarantined in fish sellers' tanks for the duration of sanitary analyses. A ll stocking sites are monitored to assess the efficiency of stocking. The first nationally organized stocking action started in 2010. In 2010, two projects representing 150 k € (including monitoring) for 200 kg restocked were selected. However, no glass eel were restocked because of the end of the glass eel season. However, 209 kg (glass eel mean weight 0.233 g and thus 900 000 glass eels) were restocked in the Loire River in July 2010 after these glass eel were collected from a CITES seizure. In 2011, eleven projects were selected for a total amount of 4024 kg. H owever, only 747.5 kg were really restocked, partly because of late selection process and partly because of lack of supply. In 2012, eleven projects were selected for a total amount of 3475 kg, and 3086 kg were really restocked. In 2013, eleven projects were selected for a total amount of 3400 kg, and 2940 kg have really been restocked. In 2014, eleven projects were selected for a total amount of 6307 kg, and 5656 kg have really been restocked. Apart from this national restocking programme, some local restocking m ay have taken place but the quantity, quality (glass eel or yellow eel), origins and objectives are unknown. For example: there has been a long history of stocking in Lake Grand Lieu (Adam, 1997) to enhance a fishery with a maximum of more than 2 t of glass eels in the 1960s and more than 1.5 t of elvers in the 1990s. Spain: N o stocking is managed on a national level. Each Autonom y has its own rules and experience conceming stocking. In Spain, different stocking experiences have been carried out: • In Navarra stocking is carried out in the Ebro River but only as a measure of artifidal maintenance of the presence of eel in the rivers. • Since 1988, C. Valenciana fishermen from the Albufera and from the Bullent and M olinell Rivers must give a percentage of their glass eels catches for restocking. These glass eels are raised in the public Centre for the Production and Experimentation of W arm Water Fishes until they reach a w eight of 8- 10 g. Fattened eels are released up in the river waters and wetlands of C. Valenciana and other autonomous regions. The EMP of C. Valenciana con- tains a detailed stocking plan. • In Asturias, the Head Office of Fishery purchased 6 kg and 8 kg of glass eel that w ere released in Sella and Nalón Rivers in 2010 and 2011 respectively. The price per kg of glass eel was 531.8 € in 2010 and 577.8 € in 2011. No stocking w as performed during 2012-2014. • In Catalonia Inner River Basins and the Ebro RBD, different stocking expe- riences have been carried out since 1996. During 1998-2007, fishermen gave 5% of their seasonal glass eel catches approximately for stocking in the Flu- via, M uga, Ter and Ebro Rivers. No stocking was performed during 2012- 2014. • In Cantabria, 40% of the total glass eel landings of the 2010-2011 fishing sea- son were used for restocking. Some of the catches were kept alive in tanks by the Council and stocked w eekly along the fishing period in different river basins depending on the source of landings. The rest of the glass eels were cultured and stocked at different stages of their life cycle, aiming to assess the efficiency of each of the methods. No data available for the 2012-2014. • In the Basque Country, a new pilot study started in the Oria River in 2011. In a first phase, 2400 young eels trapped in the Orbeldi trap (in Usurbil, Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 Gipuzkoa) were translocated up to the Ursuaran River (in Idiazabal, Gipuz- koa). Both rivers belong to the same river basin (Oria River basin). During 2012, and within the same project, 2.8 kg of glass eels from the fishery were stocked directly in the Oria River and another amount was kept for fattening in an eel farm: 1.7 kg of on-grown glass eel w as stocked after. In 2013, 6250 glass eels from the fishery in the Urola River were stocked directly up- stream. During the summer 2011,2012,2013 and 2014, different electric fish- ing operations have been carried out aiming to monitor the restocked individuals. Portugal: No stocking on a national level. Italy: The new glass eel regulation foresees that glass eel fisheries can continue on a local scale, provided that 60% is used for stocking in national inland waters open to the sea, and provided that fishers compile specific and detailed logbooks of catches and sales. This new system, together with reinforced controls by the Corpo Forestale dello Stato, shall ensure that information on recruitment in Italy is available from year to year, that most glass eel is conveyed to stocking and that illegal fishing is definitively prevented. Up to 2010, the new regulation was not in force, its definite approval being achieved in 2011. From 2011, the new regulation being in force, fishing has started again and catches are declared to the Ministry on a w eekly basis. In 2013, 67 kg glass eel, 126 kg ongrown eel and 9.4 kg bootlace eels were stocked. A t present, it is not possible to document where exactly restocking were performed, as provinces and re- gions have not provided this information. Overall, the two first years of implementa- tion of the new regulatory framework for glass eel fisheries (2011 and 2012) must be considered as a pilot period, accoimting for the setting up of the declaration system. A t present (2013 and 2014), filling of the forms is still lacking, and the details of the docu- ments of purchase and sale are also deficient. This does not allow complete traceability of movements on the Italian territory. To overcome this problem, a full traceability sys- tem is currently being studied, developed in collaboration w ith the Corpo Forestale dello Stato - Unit CITES. This system should ensure the full traceability of all glass eel movements, either from national waters or imported, also aiming to definitively erad- icate illegal fishing of glass eels. Greece: In the past some scarce, empirical and small scale attempts were undertaken with the aim of im proving local fisheries. Glass eel stocking was performed in the Lake Pamvotis (EMU-1) and the Kalama's delta (EMU-1), while young reared eels were in- troduced in the Lake Pamvotis and at the estuaries of W estem Greece rivers (Econo- midis, 1991; Economidis et ai, 2000). There is no information conceming the number of eels or their characteristics, and no data exists about the results of these experiments. Then in 2010 and 2012, two more stockings took place in Messolonghi -Aitoliko lagoons (EMU 1) and in River Acherondas (EMU 1) according to the protocol suggested by the HEMP. In 2013, eel stocking was performed in River Acherondas (EMU 1), w ith eels provided by a private company in Epirus. The agency responsible for the eel releases in 2013 w as the Regional Fisheries Authorities of Epirus-Westem Macedonia. Accord- ing to a decision (AAA: BAIOOPIT N02) in 2013, they have proceeded to the release of 10% of glass eels, imported by the aquaculture units in Epims. 2 .8 Aquaculture production of European eel Aquaculture production data for European eel limited to European countries from 2004 to 2013 are compiled from different sources: Country Reports to WGEEL 2014 Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 (Table 2.11), FAO (Table 2.12) and FEAP (Federation of National Aquaculture associa- tions) (Table 2.13). Some discrepancies exist between FAO and FEAP databases and the Country Reports, but overall the trend in aquaculture production is decreasing from 8000-9000 tonnes in 2004 to approximately 5000 tonnes in 2013 (Figure 2.26). Some of the discrepancies between FAO and the Country Report data m ay result from the pos- sibility that eel that is used for stocking is not being reported to the FAO. Figure 2.26. Different sources of data for aquaculture production of European eel in Europe from 2005 to 2013, in tons. 2.9 Environmental drivers This year, the working group members were asked to include in their country reports any information that they thought was relevant to consideration of the potential envi- ronmental drivers influencing the stock. This information has been compiled and is presented in Table 2.14. Though those were not alw ays reported in the country reports, they have been often assessed as having large effect in continental water, either as pos- sibly continental w ide change (e.g. temperature, eutrophication) or on a more local scale (unlike the oceanic factors). Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 Table 2.1. European eel recruitment time-series updated to 2014. 2.10 Tables CODE NAME COUNTRY AREA STACE Ring Ringhals scientific survey Sweden North sea gls. Stel Stellendam scientific estimate Netherlands North sea gls. Kavl K'avlingeán trapping all Sweden Baltic ylw. Yser Ijzer Nieuwpoort sdentific Belgium North sea gls. YFS2 IYFS2 scientific estimate Sweden North sea gls. Dala Dal'alven trapping all Sweden Baltic ylw. SeEA Sevem EA commercial catch UK British Isle gls. SeHM Sevem HMRC commercial catch UK British Isle gls. Imsa Imsa Near Sandnes trapping all Norway North sea gls. MiSp Minho Spanish part commerdal catch Spain Atlantic Ocean gls. Fre Frémur France North sea gls.+ ShaA Shannon Ardnacmsha trapping Ireland British Isle gls.+ Albu Albufera de Valencia commercial catch Spain Mediterannean Sea gls. Nalo Nalon Estuary commercial catch Spain Atlantic Ocean gls. Feal River Feale Ireland Atlantic Ocean gls.+ RhDO Rhine DenOever sdentific Netherlands North sea gls. Rhij Rhine Ijmuiden sdentific Netherlands North sea gls. Ronn R"onne A ° trapping all Sweden North sea ylw. Katw Katwijk sdentific estimate Netherlands North sea gls. Laga Lagan trapping all Sweden North sea ylw. MiPo Minho Portugese part commercial catch Portugal Atlantic Ocean gls. GiSc Gironde scientific estimate France Atlantic Ocean gls. Lauw Lauwersoog scientific estimate Netherlands North sea gls. Ebro Ebro delta lagoons Spain Mediterannean Sea gls. Meus Meuse Lixhe dam trapping Belgium North sea ylw. Gota Gáta Alv trapping all Sweden North sea ylw. Morr M"ornxmsán trapping all Sweden Baltic ylw. Mota Motala Str”om trapping all Sweden Baltic ylw. ShaP Shannon Parteen trapping partial Ireland British Isle ylw. Bann Bann Coleraine trapping partial Northem Ireland British Isle gls.+ ylw. Maig River Maigue Ireland Atlantic Ocean gls. Inag River Inagh Ireland Atlantic Ocean gls.+ Visk Viskan Sluices trapping all Sweden North sea gls.+ Eme Eme Ballyshannon trapping all Ireland British Isle gls.+ Sle Slette A Denmark North sea gls.+ KUt Klitmoeller A Denmark North sea gls.+ AICP Albufera de Valencia commercial cpue Spain Mediterannean Sea gls. Nors Nors A Denmark North sea gls.+ Table 2.2. European eel recruitment time-series; those only updated to 2013. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 C O D E N AM E COUNTRY AREA STACE Gude Guden Á trapping all Denmark North Sea Ylw. Bres Bresle France Atlantic Ocean Gls + ylw. Hart Harte trapping all Denmark Baltic Sea Ylw. ble 2.3. European eel recruitment time-series; those stopped or not updated to 2013 at least. CODE NAME COUNTRY AREA STAGE LAST YEAR YFSl IYFS scientific estimate Sweden North sea gls. 1989 Vida Vidaa Herjer sluice commerdal catch Denmark North sea g ls . 1990 Ems Ems Herbrum commercial catch Germany North sea gls. 2001 Tibe Tiber Fiumara Grande com- merdal catch Italy Mediterannean Sea gls. 2006 AdCP Adour Estuary (cpue) com- mercial cpue France Atlantic Ocean gls. 2008 AdTC Adour Estuary (catch) com- mercial catch France Atlantic Ocean gls. 2008 GiCP Gironde Estuary (cpue) commerdal cpue France Atlantic Ocean g ls . 2008 GiTC Gironde Estuary (catch) com- merdal catch France Atlantic Ocean gls. 2008 Loi Loire Estuary commercial catch France Atlantic Ocean gls. 2008 SevN Sévres Niortaise Estuary com- merdal cpue France Atlantic Ocean g ls . 2008 Vil Vilaine Arzal trapping all France Atlantic Ocean gls. 2011 Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 Table 2.4. GLMglass eel - year: area + site average of predicted values for 40 glass eel series, values given in percentage of the 1960-1979 period. 1960 1970 1980 1990 2 0 0 0 2 0 1 0 EE NS EE NS EE NS EE NS EE NS EE NS 0 130 192 97 87 119 72 39 13 20 4 4.5 0.4 1 1 1 2 107 50 78 90 54 18 3 9 1 4.2 0.4 2 143 164 53 10 1 102 30 25 7 13 2 6 .1 0.6 3 174 205 59 45 49 25 29 6 14 2 8.6 1.1 4 95 107 89 120 57 9 29 7 8 1 12.2 3.7 5 125 70 68 51 54 8 35 4 9 1 6 76 80 1 1 1 96 36 8 28 4 7 0 7 78 88 103 75 65 9 44 4 7 1 8 129 113 1 1 2 54 65 9 18 3 6 1 9 57 80 140 86 47 4 23 5 4 1 Table 2.5. GLM yellow e e l y e a r + site average of predicted values for 12 yellow eel series, values given in percentage of the 1960-1979 period. 1950 1960 1970 1980 1990 2000 2 0 10 0 175 158 51 90 29 17 13 1 232 169 55 37 36 18 12 2 227 164 103 47 20 33 1 1 3 367 137 125 42 13 19 7 4 181 54 59 31 49 26 36 5 275 102 110 60 16 9 6 130 141 33 44 9 15 7 145 95 67 44 2 1 2 1 8 147 159 61 57 18 14 9 313 104 54 33 23 7 Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 Table 2.6. Summary of the breakpoints identified in the glass eel time-series using the CUSUM method. K T im e p e r io d T im e - s e r ie s B r e a k p o in t s k l CKNorth 1960-2014 Glass eels 'North Sea' 1981 klc;i£l£Isewhere 1960-2014 Glass eels 'Elsewhere Europe' 1970,1982,1990 k 2 GENorlh 1980-2014 Glass eels 'North Sea' 1983 k 2cEEIscwhere 1980-2014 Glass eels 'Elsewhere Europe' 1990,1997 kScENorth 1980-2014 Ln(glass eels 'North Sea') 2000, 2013 kSGEEisewhere 1980-2014 Ln(glass eels 'Elsewhere Europe') 2000 Table 2.7. Breakpoints estimation for each time-series using the segmented regression method. T im e p e r io d T im e - s e r ie s B r e a k p o in t s 1960-2014 Glass eels 'North Sea' 1981,1984, 1996, 2012 1960-2014 Glass eels 'EIsewhere Europe' 1972,1978, 2011 1960-2014 Yellow eels - Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 Table 2.8. Time-series of yellow and silver eel described in the country reports for 2014. G ear START En d M issing Y ears U n it STAGE CODE Lo c a t io n N am e COUNTRY fykenet survey 1960 2013 0 Index yellow eel DenB Den Burg, Texel Den Burg fykenet survey Netherlands electro fishing 1979 2013 13 eel.m-2 yellow eel VesV Vester Vedsted brook Vester Vested elecrofishing Denmark beach seine survey 1925 2013 4 eel.haul-1 yellow + silver eel ska Skagerrak Skagerrak Beach Seine Survey Norway fykenet survey 1977 2013 2 eel. net-1 yellow eel Barseback Swedish west coast monitoring Sweden fykenet survey 2002 2013 1 eel. net-1 yellow eel Kullen Swedish west coast monitoring Sweden fykenet survey 1976 2013 2 eel. net-1 yellow eel Vendelsö Swedish west coast monitoring Sweden fykenet survey 2002 2013 0 eel. net-1 yellow eel Hakefjorden Swedish west coast monitoring Sweden fykenet survey 1998 2013 1 eel. net-1 yellow eel Fjallbacka Swedish west coast monitoring Sweden Elecrified trawl 1988 2013 0 n/ha yellow eel Ijsselmeer Northern Ijsselmeer trawl survey Netherlands Elecrified trawl 1988 2013 0 n/ha yellow eel Ijsselmeer Southern Ijsselmeer trawl survey Netherlands fykenet survey 1995 2013 2 kg/fyke/day (?) yellow eel Zandvliet Belgium fykenet survey 1995 2013 3 kg/fyke/day (?) yellow eel Antwerpen Belgium fykenet survey 1997 2013 2 kg/fyke/day (?) yellow eel Steendorp Belgium fykenet survey 1997 2013 4 kg/fyke/day (?) yellow eel Kastel Belgium 2006 2013 0 kg/ha silver eel BadB Baddoch Burn Baddoch Burn Scoltland 1966 2013 24 kg/ha silver reel GirB Girnoch Bum Girnoch Brun Scoltland 1999 2013 4 kg/ha silver eel Shie Shieldaig Shiledaig Scoltland 1991 2011 5 cpue silver eel BITl BITS-1 1991 2010 0 cpue silver eel BIT4 BITS-4 1988 2011 2 cpue silver eel NSIB NS-IBTS 1988 2005 6 cpue silver eel Pand Pandalus 1975 2013 0 number silver eel ImsS Imsa Imsa Siver Norway 1996 2013 0 number silver eel Frem Frémur Frémur France Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 T ab le 2.9. Recreational fisheries data for European eels. R e t a in e d I n l a n d M a r in e C o u n t r y / A n g p a s s i v e t o t a l A n g l i p a s s iv e t o t a l T o t a l Y E A R L I N G G E A R S I N L A N D N G G E A R S M A R I N E R E T A I NE D Norway 2013 NP NP NP NP Sweden 2013 NP NP NP NP Finland 2010 9 9 1 1 10 Estonia 2012 0.02 0.02 0.02 Latvia 2012 NC NP 0.102 0.102 0.102 Lithuania 2013 3 NP 3 NC NP 3 Poland 2013 26.7 NP 26.7 <1 NP <1 27 Germany 2013 NC NC NC NC 240 Denmark 2013 NC 8 8 50 50 58 Netherland s I 53 R e l e a s e d I N L A N D A N G L I N G P A S S I V E G E A R S M a r in e T O T A L I N L A N D A N G L I N G P A S S I V E T O T A L T O T A L G E A R S M A R I N E R E L E A S E D NC NC NC NP NC NC NC NP NC NP NC NC NC NP NC NP NC NP NC NP NC NC NC NC NC NC 70000 NC W 54 | R e t a in e d I n l a n d M a r in e C o u n t r y / A n g p a s s i v e t o t a l A n g l i p a s s i v e t o t a l T o t a l Y E A R L I N G G E A R S I N L A N D N G G E A R S M A R I N E R E T A I N E D 2010 Belgium 2013 (Flanders) 2013 (Wallonia) UK (England/ Wales) 2012 UK (Scotland) 2013 Ireland 2013 France 2012 Portugal 2013 Spain 2013 Italy 2013 53 NP NC NP N P NP NP NC NC NC 8 2 .6 ? NP NP NP NP NP 5.3 NP NP 53 26 NP 5.3 NC NP NP NP 5000 NP (#) NP NP NP NP NC NP NC NP 26 79 5.3 NC 2.4* 2.4* 2.4* Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 R e l e a s e d I N L A N D M A R I N E A N G L I P A S S I V E T O T A L A N G P A S S I V E T O T A L T O T A L N G G E A R S I N L A N D L I N G G E A R S M A R I N E R E L E A S E D 143 NP 143 25 NP 25 168 NC NP NC NP NC NP NP NP NC NP 32000 NP w NC NP NC NP NC NP NC NP NC NC NC NP NC NP NC NP NC NP NC NP Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 55 C O U N T R Y / Y E A R A n g L I N G R e t a in e d I N L A N D P A S S I V E T O T A L G E A R S I N L A N D M a r i n e A n g l i p a s s i v e N G G E A R S T O T A L M A R I N E T o t a l R E T A I N E D R e l e a s e d I n l a n d A N G L I P A S S I V E N G G E A R S M a r i n e T O T A L A N G I N L A N D l i n g P A S S I V E G E A R S T O T A L M A R I N E T o t a l R E L E A S E D Moxitenegr o 2013 NC NP NC NC NC NP NC NC Albania 2013 NC NP NC NP NC NP NC NP Greece 2013 NP NP NP NP NC NP NC NP Turkey 2013 NC NC NC NC NC NC NC NC Tunisia 2013 NC NP NC NP NC NP NC NP Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 Table 2.10. Estimation of underreported catches (in kg) of eel in 2013, by stage, as declared to the working group. Glass eel Yellow eel SlLVER EEL COMBINED (Y + S) EMU ÖO bO "bO h* 60 co 115 U £ Ohcu . . DL . . . Ú nd er re pt . % 'bO Dh(U 1- Vh<UT3 3 To ta l ca tc he s (k g) (3o T3 f f l "tlO cx 4! ...........P4 U nd er re pt . % U nd er re pt . (k g) To ta l ca tc he s (k g) Ol<V •§ 15u "Ö 13 gncu Pá U nd er re pt . % U nd er re pt . (k g) To ta l ca tc he s (k g) C/5 •M03 U TÍ € Eh<yP4 U nd er re pt . % U nd er re pt . (k g) To ta l ca tc he s (k g) FI 3000 4-5 150 3150 LT 12 555 0.1 14.2 12 569 PL 48 631 56.5 27 500 76131 NL 4.4 FR 5525 11.7 647 6172 23 738 0.3 65 23 803 - - 892 - - - 957 - UK 344 0 0 344 321 000 0 0 321 000 72 000 0 0 72 000 393 000 0 0 0 Joint EIFAAC/ICES/CFCM WCEEL REPORT 201 4 Table 2.11. Aquaculture production of European eel in Europe from 2005 to 2013, in tons. Source: Country Reports. N R . = not reported. 2004 2005 2006 2007 2008 2009 2010 201 1 2012 201 3 Denmark 1500 1700 1900 1617 1740 1707 1537 1156 1093 824 Estonia 26 19 27 52 45 30 20 25 35 NR Germany 328 329 567 740 749 667 681 660 706 757 Netherlands 4500 4500 4200 4000 3700 3200 2000 2300 2600 2900 Portugal 1,5 1,4 1,1 0.5 0.4 1,1 NR 0,6 NR NR Sweden 158 222 191 175 172 139 91 94 93 92 Poland 1 1 1 1 1 1 1 1,5 1,5 1,5 Italy 1220 1131 807 1000 551 587 NR NR NR NR Spain 424 427 403 478 461 450 411 391 352 210 Total 8157 8329 8096 8063 7419 6781 4741 4602 4880,5 4784,5 Table 2.12. Aquaculture production of European eel in Europe from 2004 to 2012, in tons. Source: FAO FishStat. 2004 2005 2006 2007 2008 2009 2010 201 1 2012 Denmark 1823 1673 1699 1614 895 1659 1532 1154 1061 Estonia 7 40 40 45 47 30 22 10 NR Germany 322 329 567 440 447 385 398 660 460 Netherlands 4500 4000 5000 4000 3700 2800 3000 3000 1800 Portugal 2 1 2 1 1 1 NR 1 NR Sweden 158 222 191 175 172 0 0 90 93 Poland NR NR NR NR NR NR NR NR NR Italy 1220 1132 807 1000 551 567 647 1000 450 Spain 424 427 403 479 534 488 423 434 373 Greece 557 372 385 454 489 428 372 370 320 Hungary 11 5 NR NR NR NR NR NR NR Total 9024 8201 9094 8208 6836 6358 6394 6719 4557 58 | Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 Table 2.13. Aquaculture production of European eel in Europe from 2004 to 2013, in tons. Source: FEAP. 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Denmark 1500 1610 1760 1870 1870 1500 1899 1154 1061 1061 Estonia NR NR NR NR NR NR NR NR NR NR Germany NR NR NR NR NR NR NR NR NR NR Netherlands 4500 4500 4200 3000 3000 3200 3000 2800 2300 2000 Portugal NR NR NR NR NR NR NR NR NR NR Sweden 158 222 191 175 172 170 170 NR 93 93 Poland NR NR NR NR NR NR NR NR NR NR Italy 1220 1132 808 1000 550 568 568 1100 1100 1100 Spain 390 405 440 280 390 510 446 402 350 315 Greece 500 500 385 454 489 428 428 372 304 304 Hungary 20 20 20 NR NR NR NR NR NR NR Total 8288 8389 7804 6779 6471 6376 6511 5828 5208 4873 Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 T able 2.14. P ossib le environm ental drivers sum m arized from country reports. COUNTRY CODE COMMENT ON ENVIRONMENTAL DRIVERS NO Some rivers are still severely affected by chronic or episodic acid water. The areas affected by acidification have likely been among the most important areas for eel in Norway. Based on surveys in 13 rivers that are now limed, it seems that occurrence and density of eel was reduced due to acidification (Thorstad et al., 2011, Larsen et al.r 2014). Densities of eel increased more than four-fold after liming when compared wdth pre-liming levels. LV Some research results related to climate change in Latvia and possible effects are published in: Climate change in Latvia and adaptation to it /eds. Maris Klavins and Agrita Briede. - Riga: University of Latvia press, 2012. -188 pp. Increase of water temperature and eutrophication would be factors improving eel living conditions in Latvia. BE Improvement of wrater quality by installing purification units is an on-going process (within the objectives of the Water Framework Directive). In summary following management measures are planned for restoration of eel habitat and accessibility of the rivers: • 90% of prior obstacles should be removed by 2015, other 10%- 2021; • resolving by migration barriers ti.ll 2027; • implementation of measures to attain the good quality class of prior rivers. UK The following impacts have been assessed for all RBDs in England and Wales; commercial fisheries, tidal gates, pumping stations, surface water abstractions and hydropower installations. The main impact that has not been assessed is the impact of manmade barriers, but work is ongoing to quantify the impact. The impact of the recreational fishery, predators and contaminants and parasites is treated as part of natural mortality. FR In France same impacts of climate change and water pollution effects has studied. Since 1960 the river Gironde discharge has been highly decreasing, lightly in the river Loire while the discharge remained stable in Seine. Moreover the summer temperature in the Gironde estuary has increased of 2.5 °C in 30 years. In France the concentration in nitrate has increased until the 1990s and has been stabilized since. Metallic and organic pollution is not well known and evolutions are site-specific (Le Treut ed. 2013) ES There is no information regarding how the environment in Spain has changed in the last 50 years that might have influenced eel production. AL Development of agriculture, construction of dams, development of industrial activities, have generated varies kind of impacts on ecological dynamics (physical and biological) GR In Greece national report was concluded that arrangement of facilities improving accessibility up from barriers are expensive and by doubtful results. Interventions in lowland ecosystems near the estuaries will be significantly more effective, as suggested in the Greek Management Plan for the Eel. Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 3 ToR e) Further develop the stock-recruitm ent relationship and associated reference points, using the latest available data 3.1 Introduction This chapter w ill first summarise past ICES advice on eel with a focus on reference points, and discuss the objectives and targets of the Eel Regulation; then discuss op- tions for providing advice, in particular focused on mortality reference points. Then, w e present the derivation of reference points for the eel, using three different ap- proaches; this part is essentially a rewriting of the preliminary results of WGEEL (2013). Future improvement of the analysis of the stock-recruit-relation w ill require additional data, for which w e supply recommendations. Finally, the recent upturn in recruitment is put into perspective, contrasting the observed upturn to the change in spawner escapement assessed in 2012. 3.2 Reference points used or implicated in previous ICES Advice Since 1998 (ICES, 1999 through to ICES, 2010), ICES has given advice4 that the stock has shown a long-term decline; that fishing and other anthropogenic impacts should 4ICES 1999 (ad\dce) advised "The eel stock is outside safe biological limits and the cur- rent fishery isn ot sustainable. (...) Actions that would lead to a recovery of the recruit- ment are needed. The possible actions are 1) restricting the fishery and/or 2) stocking of glass eel." ICES (2000) (advice) recommended "that a recovery plan should be implemented for the eel stock and that the fishing mortality be reduced to the low est possible level until such a plan is agreed upon and implemented." ICES (2001) (advice) recommended "that an intemational rebuilding plan is developed for the whole stock. Such a rebuilding plan should include measures to reduce exploi- tation of all life stages and restore habitats. Until such a plan is agreed upon and im- plemented, ICES recommends that exploitation be reduced to the low est possible level." ICES (2002) (advice) recommended "that an intemational recovery plan be developed for the whole stock on an urgent basis and that exploitation and other anthropogenic mortalities be reduced to as close to zero as possible, until such a plan is agreed upon and implemented. [...] Exploitation, which provides 30% of the virgin (F=0) spawning stock biomass is generally considered [...] a reasonable provisional reference target. H owever, for eel a preliminary value could be 50%." ICES (2006) (advice) advice read: "An important element of such a recovery plan should be a ban on all exploitation (including eel harvesting for aquaculture) until clear signs of recovery can be established. Other anthropogenic impacts should be reduced to a level as close to zero as possible." ICES (2008a) (advice) concluded "There is no change in the perception of the status of the stock. The advice remains that urgent actions are needed to avoid further depletion of the eel stock and to bring about a recovery." ICES (2009) (advice) reiterated its previous advice that "all anthropogenic impacts on production and escapement of eels should be reduced to as close to zero as possible until stock recovery is achieved". Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 be reduced; that a recovery plan should be compiled and implemented; that prelimi- nary reductions in mortality to as close to zero as possible are required until such a plan is implemented, until stock recovery has been achieved, until there is clear evi- dence that the stock is increasing, that both the recruitment and adult stock are increas- in g ,, and of sustained increase in both recruitment and the adult stock. ICES (2002) discussed a potential reference value for spaw ning-stock biomass: "a pre- cautionary reference point for eel must be stricter than universal provisional reference targets. Exploitation, which provides 30% of the virgin (F = 0) spaw ning-stock biomass is generally considered to be such a reasonable provisional reference target. However, for eel a preliminary value could be 50%." That is: ICES advised to set a spawning stock biomass limit above the universal value of 30%, at a value of 50% of Bo. ICES (2007) added: "an intermediate rebuilding target could be the pre-1970s average SSB level which has generated normal recruitments in the past." ICES has not advised on specific values for mortality-based reference points, but the w ordings "the lowest possible level" and "as close to zero as possible" im ply that the mortality limit should be set close to zero. Over the years, the implied time frame for this advice has changed from "until a plan is agreed upon and implemented", to "until stock recovery is achieved" and "until there is clear evidence that the stock is increas- ing". The first and third phrases are more interim precautionary mortality advice than clear reference points. 3.3 Objectives and targets /lim its of the Eel Regulation The Eel Regulation (Covmcil Regulation 1100/2007) sets a limit for the escapement of (maturing) silver eels at 40% of the natural escapement (in the absence of any anthro- pogenic impacts and at historic recruitment). That is: a limit is set at 40% of Bo, in-be- tween the universal level and the more precautious level advised. ICES (2008) noted that its 2002 advice w as "higher than the escapement level of at least 40% set by the EU Regulation." Because current recruitment is generally far below the historical level, a retum to the limit level is not to be expected within a short range of years, even if all anthropogenic impacts are rem oved (Áström and Dekker, 2007). The Eel Regulation indeed expects to achieve its objective "in the long term", but it does not specify an order of magnitude for that duration. Noting the general objective to protect and recover the European eel ICES (2010c) (advice) reiterated its previous advice that "all anthropogenic mortality (e.g. recreational and commercial fishing, barriers to passage, habitat alteration, pollu- tion, etc.) affecting production and escapement of eels should be reduced to as close to zero as possible until there is clear evidence that the stock is increasing." ICES (2011 advice) and ICES (2012 advice) reiterated its previous advice that "all an- thropogenic mortality (e.g. recreational and commercial fishing, hydropower, pollu- tion) affecting production and escapement of eels should be reduced to as close to zero as possible until there is clear evidence that both recruitment and the adult stock are increasing." ICES (2013 advice) once more advised "that all anthropogenic mortality (e.g. recrea- tional and commercial fishing, hydropower, pollution) affecting production and es- capement of silver eels should be reduced to as close to zero as possible, until there is clear evidence of sustained increase in both recruitment and the adult stock." Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 stock, w e conclude that a further deterioration of the status of the stock is to be avoided, which im plicitly sets an upper limit on anthropogenic mortality (in the order of mag- nitude of E A = 0.92, see below. The 40% biomass limit of the Eel Regulation applies to all management units, without differentiation between the units. Whether or not that implies that the corresponding mortality limit (EA = 0.92) also applies to all units or not, is unclear. However, since it is unknow n whether or not all areas contribute to successful spawning, a uniform mor- tality limit for all areas w ill constitute a risk-averse approach (Dekker, 2010). 3.4 Multiple criteria The Eel Regulation set a biomass limit at 40% of Bo. The current silver eel escapement Bcurrent, however, is estimated to be below that limit, at 6-18% (depending on the data source used; ICES, 2013b), and Bcum-nt is unlikely to restore to 40% of Bo in the near future; it is even more likely to decline for several years, due to the dow nward trend in recruitment observed in the past decade. A mortality limit of E A = 0.92 w ill corre- spond to the 40% biomass limit in the long run, but establishing/maintaining mortality at that level in the current, depleted state will not allow the stock to recover. The ques- tion arises what mortality limit to apply for the current, depleted state. WGEEL (ICES, 2010b) only considered an ultimate mortality limit (EA = 0.92). WGEEL (ICES, 2011a) followed standard ICES protocols and applied a reduction in the limit mortality in pro- portion to the biomass of the spawner escapement (setting the limit for EA = 0.92 at Bcunent = 40% of Bo and at E A = 0 for Bcurrent = 0). The Review Group for WGEEL sug- gested the application of criteria for short-lived stocks (ICES, 2013b), im plying E A = 0 for Bcurrent < 40% of Bo. The discussion of WKLIFE for short-lived species is not yet being available (WKLIFE-4, November 2014), while ICES (2014) specifies a harvest control rule for short-lived species but does not elaborate on its background. We therefore dis- cuss the rationale for specific short-lived-species criteria, and their relevance for eel. 3.4.1 Knock-on effects o f spawning stock depletion In short-lived species, the number of age groups in the spawning stock is low; at the extreme, for an annual species (spawning at age 1), there is just a single year class in the spaw ning stock. A depletion of the spawning stock in one year w ill have conse- quences for the next year class, and because of the presence of just a single year class, knock-on effects are to be expected for several more generations. Or conversely, an effort to restore the stock w ill rapidly translate into a recovery of the whole stock. In case the stock is depleted, an immediate action to reduce the anthropogenic mortality to the lowest possible level w ill be required, to avoid knock-on effects for the coming generations. For eel, the spawning escapement comprises many year classes (see Section 3.6, below); knock-on effects of current depletion/protection do not result in proportional de- cline/recovery of the spawning stock. Instead, prolonged protection is required to in- crease the size of the spawning stock in the long run. Section 3.72.2.2 (below) indicates that, despite the increased level of protection in recent years, the spawner escapement reported in 2012 actually went dow n by 4%. Knock-on effects are dampened, are smoothed out, by the m any year classes in the silver eel run. Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 3.4.2 Sensitivity to external or random perturbations In addition to the effects of management actions, the spawning stock size of short-lived species is sensitive to unpredictable extemal pertubations (e.g. environmental condi- tions). A single year of unfavourable conditions w ill have a large effect on the spawn- ing stock in the year(s) after. The fewer year classes in the spawning stock, the larger the effect of an incidental low year class (though, on the other hand, the low er the num- ber of years affected). For eel, the spawner escapement comprises m any year classes. Additionally, recmit- ment monitoring has shown a multi-decadal decline at a rather constant rate, perturbed by relatively small year-to-year variation. The causing factors for the decline are not w ell known; both, a depletion of spawner escapement from the continent and unfa- vourable oceanic conditions have been suggested. W hatever the ultimate cause, the long-lasting decline in recmit series indicates that short-term perturbations have had relatively small impact. 3.4.3 Speed of recovery The current silver eel run Bcurrent is estimated to be below the 40% limit of the Eel Reg- ulation, at 6-18% (depending on the data source used; ICES, 2013b), and Bcurrent is un- likely to restore to 40% in the short mn. Depending on the protocol applied, advised mortality levels m ay range from L A = 0.92 to L A = 0. Clearly, the low er the mortality level achieved, the faster recovery of the stock can be expected and the lower the risk of a continued decline or worse (Figure 8.1) (though multiple generation times might be required to achieve full recovery; Aström and Dekker, 2007). The previous Sections (3.4.1 and 3.4.2) did not indicate biological arguments for either a low or a high mor- tality advice. There appears to be no biological groimd for a mortality advice at low spaw ning stock biomass (SSB < Bum), other than the ultimate limit L A < 0.92. A high or a low mortality reference point probably is more a reflection of a low or high ambition level. WGEEL considers that to be outside its remit. Figure 3.1. Schematic overview of different harvest control rules. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 3.5 General stock-recru it relation, short-lived species protocol ICES in 2002 advised "Exploitatíon, which provides 30% of the virgin (F = 0) spaw ning- stock biomass is generally considered to be ... a reasonable provisional reference tar- get. H ow ever, for eel a preliminary value could be 50%". This advice was based on comparison of the eel to fish stocks in general and a tentative estimate based on life- history parameters (Dekker, 2003). Subsequent analyses (Dekker, 2004; ICES, 2013b) have indicated that the stock-recruit relatíon might actually show signs of strong de- pensatíon and/or overwhelm ing environmental drivers, in partícular evidenced by re- cruitment declining faster than the spawner escapement. Though neither the depensatíon nor the effect of environmental drivers has been proven beyond doubt, it is clear that reference points based on the data w ill be more strict than the standard advice (30% of Bo), or even the extra precautíous level (50% of Bo). The eel is a long-lived semelparous species. The suggestion made by the Review Group 2013 (ICES, 2013b, Annex 9) to apply a protocol for short-lived species actually contra- dicts the real life history parameters of the eel. Stacking a non-fitting protocol, on top of an assumed (standard) stock-recruit relatíon that is contradicted by the data would, in the view of WGEEL, be unwise and w ould imdermine the credibility of the resulting reference point. 3.6 The age composltion of the silver eel run escaping to the ocean In countries where silver eel fisheries exist, catches are regularly sampled; at other places, incidental samples have been analysed, or age distributíons have been derived from research traps. Results vary from region to region, from river to river, within and between the seasons, but overall, a w ide range of ages is found (Figure 3.2). In southem regions, female silver eels tend to be relatívely young (e.g. six years in Mediterranean lagoons; Figure 3.2), with only ten different year classes in the silver eel run. In north- em regions, female silver eels are usually much older (e.g. 17 years in inland waters in Sweden; Figure 3.2) with up to 20 different year classes in the catch. Overall, some thirty age groups are regularly represented in the silver eel run from all over the con- tinent. In additíon, there are sites showing an uncommon age composition, such as Burrishoole in western Ireland, and sites in Scotland, where growth under oligotrophic conditions is extremely slow, mean age of the silver eel is about 31 years, adding at least ten extra age groups to the continental mn. Though these exceptíonal sites are uncommon, their unusual age compositíon can be of cm cial importance, w hen consid- ering the populatíon dynamics of the eel stock. It is unknow n what areas contribute to successful spawning to what degree. Hence, we are not able to provide an estímate of the number of age groups actually contributíng to the spaw ning successfully, but it seems highly likely that a considerable number of year classes contribute each year. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 Figure 3.2. Age composition of the silver eel run from a number of selected sites. 3.7 Assessment methods 3.7.1 T ren d-based assessment 3.7.1.1 Introduction and objectives for Trend-based assessment Glass eel recruitment series are the most used to describe the status of the European eel stock as they are w ell-known and certainly the most reliable (see for example Jacoby and Gollock, 2014). Trend-based assessment is a valuable and robust tool to assess stock status, especially in data-poor situations. This kind of method has several advantages: it requires few kinds of data, it relies on few assumptions and consequently it is quite robust, simple and easy to understand, and harvest control rules m ay be easily defined. This kind of approach has been implemented for various European stocks and has been w idely im- plemented by Fisheries and Oceans, Canada (DFO, 2006) for the developm ent of the precautionary approach, and is generally recommended by ICES for data-poor situa- tions (ICES, 2012c). The objective of the following text is to derive stock indicators only based on the value and trend of abundance index (here recruitment) of the stock. 3.7 .1 .2 Method for Trend-based assessment The recruitment series contains two important pieces of information about the status of the stock: • the absolute value can inform on how close or far recruitment is from a 'nor- mal' level; • the trend of the recruitment can inform on an improvement or deterioration of the status of the stock. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 The principle of the analysis is thus to establish a reference level for the absolute value and the trend of recruitment. For the reference value of the recruitment (Rreferenœ) the mean recruitment of the baseline period 1960-1979 (= 1) is the most logical (see Chapter 2). The trend is computed as the exponential trend observed during the most recent years (0 indicates stable, positive value indicates an increase in recruitment, while a negative value indicates a decrease). A range of periods over which the trend was calculated w as explored and a five year period appeared to be an appropriate compromise, re- flecting the recent evolution in recruitment while smoothing interannual variability. Com bining both pieces of information in a status-and-trend diagram, four zones are defined: • green zone: if recruitment is above Rreferenœ and the trend is positive (i.e. re- cruitment status is good and no deterioration is expected); • yellow zone: if recruitment is above Rreferenœ but the trend is negative (i.e. recruitment status is good but m ay deteriorate in future); • orange zone: if recruitment is below Rreferenœ but the trend is positive (i.e. recruitment status is bad but signs of possible improvements are observed); • red zone: if recruitment is below Rreferenœ and the trend is negative (i.e. re- cruitment status is bad and may deteriorate in future). This approach is illustrated using the 'Elsewhere Europe' and 'North Sea' glass eel re- cruitment series (Chapter 2). 3.7 .1 .3 Results on Trend-based assessment Figure 3.3 shows the two recruitment series compared to the reference level defined above. Both recruitment series had oscillated between the four zones during the 1960s and the 1970s; before entering the critical zone (red) during the 1980s. Both series enter the cautious zone (orange) in the mid-1990s. The most recent years have entered into the cautious zone (orange), with an increasing trend in 2014 but a level of recruitment still low compared to the reference. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 5 years exponential trend o o - CN o m - -0.4 -0.2 0.0 0.2 0.4 5 years exponential trend Figure 3.3. Recruitment status-and-trend with respect to the four zones (green=healthy zone, yel- low=cautious zone, orange=other cautious zone, red=critical zone) for 'Elsewhere Europe' (upper panel) and 'North Sea' (lower panel) glass eel recruitment time-series 3.7 .1 .4 Discussion on, and management consequences of, Trend-based assessment The recruitment is used here as a proxy of the status of the stock. To have a more com- plete approach this method should also be applied to other life stages (yellow and sil- ver) of the eel as soon as robust indices for these life stages become available. This approach is quite simple and relies on the most reliable series available. However, this kind of approach also has the disadvantages of sim plidty in that (i) it cannot be used to make future predictions, (ii) it ignores the complex spatial structure of the stock, and (iii) it is very difficult to explain changes using the method alone, e.g. a pos- itive increase may be the result of appropriate management measures but may also result from favourable environmental conditions. However, it is a good signal for stock status. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 In period of stability at a 'normal' recruitment (around R t a r g e t ) the recruitment oscillated between the four zones. This may not be a desired feature. A margin around R t a r g e t and the 0 trend m ay solve the problem but needs to be developed. The status-and-trend diagrams provide a comprehensive and consistent view on the current recruitment status and evolution. Despite an increase in recent years, the re- cruitment appears to be in critical status and far from recovery to the healthy zone. Management actions should thus be continued as long as the recruitment is not in the healthy zone. 3 .7 .2 Eel specific reference points based on stock recruitm ent relationship 3.7.2.1 Introduction and objectives ICES provides fisheries advice that is consistent with the broad intemational policy norms of the Maximum Sustainable Yield (MSY) approach, the precautionary ap- proach, and an ecosystem approach, while at the same time responding to the specific needs of the management bodies requesting advice (ICES, 2014). For long-lived stocks with population size estimates, ICES bases its advice on attaining an anthropogenic mortality rate at or below the mortality that corresponds to long-term biomass targets ( B m sy ) . BMSY-trigger is a biomass level triggering a more cautious response. Below B m sy - trigger, the anthropogenic mortality advised is reduced, to reinforce the tendency for stocks to rebuild. Below BMSY-trigger, ICES applies a proportional reduction in mortality reference values (i.e. a linear relation between the mortality rate advised and biomass). The objective of this chapter is to derive from information available the stock indicators required to manage eel fully in the general framework setup by ICES (ICES, 2014). 3.7 .2 .2 Deriving biological reference point 3.7.2.2.1 Classical method for deriving biological reference point B m s y is the biomass level for which the stock can be on average exploited with a maxi- mum production (MSY) providing it is exploited at F m s y (ICES, 2014; Figure 3.4). To determine this level the production (yield) should be related to the stock size (B) through fisheries mortalities (F) through the production function. In the case of eel, fisheries are scattered throughout Europe in small scale fisheries tar- geting glass eel and/or yellow eel and/or silver eel (Dekker, 2000; 2003). Moreover, un- like other marine species, eel is suffering the impact of many other anthropogenic mortalities (pollution, obstacle to migration, etc.). For these reasons, and given the cur- rent knowledge, it is impossible to sim ply and reliably determine the production func- tion and thus derive MSY, B m s y and F m sy . ICES (2014) also define biological reference points based on the precautionary ap- proach to avoid a significant risk of impaired reproduction. B u m is defined as "the stock size below which there may be reduced reproduction resulting in reduced recruit- ment". B p a is the precautionary reference point derived from B u m by adding a safety m argin to take into account the uncertainty in stock estimates and to avoid reaching B l i m . Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 Biomass Reference Points ♦ ♦ M S Y B trigger or ♦ ♦ ® p a or ♦ MSYB escapement I1111 ♦1 iiiiiiii ♦♦1 ■1iii ý \/ ý lim 200 300 B msy 400 500 S S B Figure 3.4. Illustration of biomass-based biological reference points. Biim and Bpa are precautionary reference points related to the risk of impaired reproductive capacity, while MSY Besupemcnt often equal to Bpa is used in the advice framework for short-lived species. MSY Bwgger is the parameter in the ICES MS Y framework which triggers advice on a reduced fishing mortality relative to F m sy . B m sy is the average biomass expected if the stock is exploited at F m sy . Diamonds show the variable re- cruitment versus SSB that have been observed over the years. Recruitment can be seen to be gener- ally lower below Biim. (ICES, 2014). Biim can be determined by the examination of the stock-recruitment relationship. The recruitment used here for illustrative purposes is the 'Elsewhere Europe' series of glass eel recruitment (Chapter 2), pending the combination of this and the 'North Sea' series. The actual spaw ning-stock biomass (in the Sargasso Sea) has never been observed. The best available proxy is the silver eel escapement that exists after all of the fisheries and other mortalities (both natural and anthropogenic) in the continental and littoral wa- ters have occurred. This can be derived from the landing statistics as explained in ICES (2013b), and used here again in the absence of new data. The Ricker model presents an overcompensation that leads to a maximum production at an intermediate level of SSB (Ricker, 1954). The Beverton and Holt model presents a compensation for high recruitment. In that case, for high SSB, the recruitment does not increase as fast as the SSB (Beverton and Holt, 1957). Both Ricker and Beverton-Holt have maximum recruits per spawner at the origin, declining monotonically with in- creasing spawner abundance, and recruitment increases faster than SSB for SSB less than the value for maximum gain. The hockey-stick model is a simplification of these models corresponding to a one- breakpoint segmented regression with the first segment passing through the origin and the second being horizontal and corresponding to a plateau. This last model assumes Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 that recruitment is independent of SSB above some change point, below which recruit- ment declines linearly towards the origin at lower values of SSB. The fitting of these three models of stock-recruitment relationship to the 'Elsewhere Europe' glass eel recruitment index w as tested using the Akaike Information Criterion (AIC) (Akaike, 1974). The A IC for each model (Table 3.1) show no strong preference for one or the other model. Figure 3.5 shows the result of the hockey-stick model. The breakpoint is at the very high biomass (> 40 000 tonnes). B Current(1 0 0 0 t O nne S) Figure 3.5. Hockey-stick regression between proxy for European eel spawning-stock biomass (proxy silver eel escapement: estimated Bcurrem) and recruitment index between 1950 and 2010. Two- digit labels indicate the years of silver eel escapement, recruitment occurs two years Iater; the dashed lines indicate 95% confidence interval. Note the breakpoint in the regression line at the far right, at B = 43 000 tonnes. According to the hockey-stick model, the stock has virtually never been above the Bum (the breakpoint) since 1950. However, such a relationship provides an unrealistic fit to the data: observed recruitment has been below that predicted by the model ever since 1995 but nearly a lw ays above in the 1960s and 1970s. These difficulties m ay also be due to unreliable SSB (or R) data. They are derived from landings data and expert know ledge about the exploitation rate (ICES, 2013b). There are m any gaps and uncer- tainties in these data. 3.7 .2 .2 .2 Method for deriving eel-specific biological reference points G iven these limitations, it is difficult to derive any biological reference points using classical approach, but the S-R relationship remains a key function for the study of population dynamics in a perspective of management advice. It w as thus dedded to design an eel spedfic analysis to better take into account of the existing data. Instead of fitting an imposed form of stock-recruitment, a data-driven method is de- signed follow ing Dekker (2004) and ICES (2012b). A G A M (General Additive Model: Hastie and Tibshirani, 1990) is fitted on the same data used for the classical approach, using a cubic spline smoother of order 3 for the SSB. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 This kind of model allows the incorporation of factors that m ay directly affect this S-R relationship. To illustrate this possibility, a G AM is fitted with a linear effect of the year, to test for a progressive change in S-R relationship like a degradation of the re- productive efficiency, and a smoothed effect of North Atlantic Oscillation (NAO) (av- erage of monthly mean N A O indices (http://www.noaa.gov/) during the two years between escapement and recruitment); as a proxy of oceanic condition. Figure 3.6 illustrates the result of this G AM (AIC -25.73) and Figure 3.7 shows the GAM that included the year and N A O effects (AIC -31.66). These curves show two points of inflexion, the first for low value of biomass (about 15 000 tonnes) and a second at inter- mediate value (about 30 000 tonnes). x <D TD C ■*—> C. <D E o <D Cd 10 20 30 BCurrent(1000 tons) 40 Figure 3.6. Illustration of European eel stock-recruitment relationship fitted by a GAM. http://www.noaa.gov/ Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 X 0~o o c 0 E o 0a: 0 10 20 30 ^current (1 0 0 0 t o n s ) 40 Figure 3.7. Illustration of the GAM fitting for recruitment with a year effect and smoothed effect of spawning-stock biomass and NAO index. Since the stock-recruit relationship depends not only on the current biomass Bcumcnt, but also on extemal covariates (i.e. NAO), predictions (regression lines) can be generated for the whole range of biomasses, for different values of the NAO-index. The graph provides predicted regression lines, spanning the data range in recruitment indices and the range in NAO values. Com parison of A IC values suggests that curves fitted with G AM perform better than classical S-R relationship. The right-hand part of the G A M fit is very similar to a Ricker curve. If w e mimic the G A M fitting w ith a two-breakpoint curve (AIC = -24.28), the limit biomass is foimd at 27 800 tonnes (95% confidence interval: 23100-33 500 tonnes) that is 14% Bo (as estimate by sum m ing estimates delivered by each EMU, resulting in a value of 193 000 tonnes). However, the left-hand part of the G A M fit is unusual: it w ould suggest that when the spaw ning biomass decreases, the recruitment is lower than w ould be expected w ith a classical relationship. This effect is known as an Allee effect (Allee, 1931) and in the fisheries literature as depensation (Hilbom and Walters, 1992). It can seriously acceler- ate population decline and drive a population to extinction, or at least heavily hinder its recovery (Walters and Kitchell, 2001). This notion can be further developed by plotting in the same figure the 'pristine' re- placement line for L A = 0, as determined by the line crossing the origin and the point of coordinates Bo, pristine recruitment (Ro). In our example, the Ro is approximated by the mean recruitment of 1960-1979 (1 by definition). In this case, the pristine replace- ment line is above the stock-recruitment relationship at low values of recmitment (Fig- ure 3.8). In such circumstances, recruitment w ould produce fewer spawners than the previous generation, even in the absence of any anthropogenic mortalities. Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 By definition, where the lower confidence bound of the S-R relationship crosses the replacement line, the probability of a recruitment that cannot replace the current bio- mass is a = 5%. Where the mean predicted recruitment crosses the replacement line, there is a 50% chance of further deterioration. We label the biomass resulting in a mean predicted recruitment equal to the replacement line as BstoP/ and the biomass at which the 5% low er boimd crosses the replacement line as Bstoppa. In our example, BstoPPa w ould be at 18 900 tonnes and BstoP w ould be 13 200 tonnes. (Figure 3.8), biomass w ould have been below Bstoppasince 1998, and current escapement has remained close to Bstop since 2005. Taken at face value (see below) the BstoPPa reference point w ould have suggested a min- im izing of all anthropogenic mortality to zero, 15 years ago, and a high risk that the stock w as in the depensatory trap from 2005. <D■o c c<u E 0>a: 10 15 BcurrentOOOO tonnes) 20 25 30 Figure 3.8. Stock-recruitment relationship fitted by a GAM and 'pristine' replacement line. For B stop and Bstoppa explanation, see text. The recent increase of recruitment may appear contradictory w ith a stock in a depen- sation trap. Our analyses are based on estimate of SSB derived from landings data and expert know ledge about the exploitation rate (ICES, 2013b). M oreover Bo is the sum of data provided by countries and taken at face value. They are m any gaps and uncer- tainties in these data, and any change in these m ay produce different curve and lead to different conclusion. A t this time, however, it is difficult to link this increase to a change in silver eel escape- ment (our proxy for spawner biomass). Based on the data provided by the Member States in their first EMP progress reports in 2012, no improvement of silver eel escape- ment could be detected shortly after the implementation of the EMPs (Table 3.2). In fact, a comparison of the available data on silver eel escapement of 2010 (after imple- mentation of the EMPs) and 2008 (before the implementation) suggests a decrease of 4.3% (-544 tonnes). Noting the many uncertainties in the assessments (ICES, 2013a), it is unclear whether this is within confidence limits of the estimates or not. However, the recent increase in recruitment does not correspond to the reported trend in silver Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 eel escapement, whether assuming a three or four year- interval between silver eel es- capement and corresponding glass eel arrival. A n improvement in environmental condition m ay produce, temporarily, higher re- cruitment than expected. Besides, this increase is not yet fully consider as a trend shift. Note also that the last recruitment data are not yet place in these figures. Finally the observed data m ay be explained by other phenomenon like regime shift due to ocean change, decrease of recruitment efficiency due to spawner quality, etc. However, these are the best data available to the working group at this time. Even though no firm conclusions can be drawn on the existence of a depensatory stock-re- cruitment relationship, due to flaws underlined above, the managers should consider this phenomenon as being possible for eel and even that eel is already in the depensa- tion trap. This latter hypothesis w ould urge an immediate and complete reduction of all anthropogenic impacts (fisheries and other impacts) to zero. 3.7.3 Quantitative assessment applying generic reference points 3.7.3.1 Method "The ICES approach uses both fishing mortality rates and biomass reference points" (ICES, 2014). The Eel Regulation specifies a Iimit reference point (40% Bo) for the biomass of the es- caping silver eel, but does not specify a mortality limit. That is: the endpoint of the recovery process is specified, but not the route (the time required, the speed of recov- ery) towards that point. However, a mortality limit (above the 40% Bo) of lifetime mor- tality L A = 0.92 can be shown to correspond to the 40% biomass limit (Dekker 2010; ICES 201 la; 201 lb). The Eel Regulation, however, does not indicate what approach should be made to rebuild the stock (or correspondingly, what time-scale for rebuild- ing the stock is acceptable). For ICES, it will be in-line with its existing advice policy to recommend a linear reduction in mortality below the 40% limit adopted by the EU. Since it is very difficult to derive biological reference points (BRP) from eel data using classical methods (see above), w e here consider using these reference points derived from the EU eel regulation. In the 2010 Report of ICES Study Group on Intemational Post-Evaluation of Eel (SGI- PEE) (ICES, 2010a), a pragmatic framework to post-evaluate the status of the eel stock and the effect of management measures was designed and presented, including an overview of potential post-evaluation tests and an adaptation of the classical ICES pre- cautionary diagram to the eel case. In the 'classicaT Precautionary Diagram, annual fishing mortality (averaged over the dominating age groups) is plotted vs. the spawn- ing-stock biomass. In the 'm odified' Precautionary diagram, lifetime anthropogenic mortality E A (or the spawner potential ratio %SPR on a logarithmic scale) is plotted against silver eel escapement (in percentage of Bo). This 'm odified' diagram allows for comparisons between EMUs (%-wise SSB; lifetime summation of anthropogenic mor- tality) and comparisons of the status to limit/target values, while at the same time al- low ing for the integration of local stock status estimates (by region, EMU or country) into status indicators for larger geographical areas (ultimately: stock wide). In 2012, EU Member States post-evaluated the implementation of their Eel Manage- ment Plans, and provided estimates of national stock indicators; the '3Bs & E A ' (Bcurrent, Bbest, Bo & EA) for before, and since implementation of their EMPs (putatively 2008- 2012). ICES (2013a) reviewed those progress reports, concluding that information was Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 not alw ays completely reported or available, and the quality of the national data and assessment were hard to evaluate. Subsequently, the WGEEL decided to use the re- ported stock indicators in good faith, but recognising that their quality needs to be as- sured in the future. 3.7.3.2 Results Since not all countries have reported (and not for all years from 2009 onwards), the presented stock-wide sum represents the reporting countries; not all countries within the distribution area, and not even all countries within the EU. Moreover, the set of countries reporting indicators has changed over the years; therefore, the sum of report- ing countries cannot be compared between the years. WGEEL decided to restrict the graphical presentation to the latest data year, 2011. In some countries, additional man- agement measures have been taken in 2012 (e.g. Sweden closing the fishery in SE-west), but these have not been considered in this report. The diagrams present the indicators per EMU (Figure 3.9; top), and per country (Figure 3.9; bottom); each plot also contains the Sum of tlre reported areas. Some countries (no- tably France) did not report all stock indicators for each EMU (in particular Bo), but did so for the country as a whole. Thus, France is not represented in the top plot, but it is in the bottom, and continent-wide sums differ between the plots. The difference in out- comes between the plots emphasizes the importance of a consistent and full-coverage set of stock indicators. Finally, Figure 3.10 presents the status of each EMU in relation to the m odified Precau- tionary Diagram (i.e. the background colour that applies to the zone where the EMU bubble sits in the m odified Precautionary Diagram) in a map, where data-defident ar- eas have been shown by a ©. This map indicates that major areas have not assessed their part of the stock; while the sum of the reporting countries is far aw ay from the required stock-wide total. Joint E IFA A C /IC E S/C FC M W CEEL REPORT 2 0 14 Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 4 10 Spawner escapement, percent8ge of pristine (%) Figure 3.9. Modified Precautionary Diagram, illustrating the method to examine the status of the European eel stock (horizontal, spawner escapement expressed as a percentage of the pristine es- capement) and the anthropogenic impacts (vertical, expressed as lifetime mortality ZA). Data are those reported in the 2012 progress reports (ICES 2013a). The size of the points (bubbles) indicates the size of B b cs t, while their location indicates the status of eel in the EMU in terms of spawning biomass against the 40% target, and anthropogenic mortality against the rate equivalent to that bi- omass target (i.e. LA = 0.92 if B m rrcn t >40% Bo or EA = 0.92 * B c u r r e n t / ( 4 0 % Bo) if Bcun-ent <40% Bo). Green indicates the local stock is fully compliant, amber indicates that one target is reached but not the other, and red indicates that neither target is reached. In most cases, the 2011 indicators are shown; when these were missing, the 2010 indicators are used. Top: stock indicators by EMU and for the sum of the reported EMUs (59 EU-EMUs are missing); bottom: stock indicators by country and for the sum of the reported countries (26 EU and no-EU countries are missing). Note that non-reporting EMUs/countries do not show up in these plots. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 Figure 3.10. Stock indicators from the modified Precautionary Diagram (Figure 3.6), plotted on the location of their EMU. The size of each bubble corresponds to B b est, the biomass of escaping silver eels if no anthropogenic impacts had affected the current stock. The colour of each bubble corre- sponds to the position of the indicators, relative to the reference limits of the modified Precaution- ary Diagram (the background colour in Figure 3.9, above). For EMUs/countries that did not report their stock indicators (or incompletely), a © of arbitrary size is shown. Data from the 2012 progress reports (ICES 2013a). In most cases, the 2011 indicators are shown; when these were missing, the 2010 indicators are used. For France, indicators have only been reported for the country as a whole, not for the constituting EMUs; that country-total is shown (shaded red), along with the EMUs (®). 3.7 .3 .3 Discussion on and consequences for management The reference points taken here are those derived from the EU eel regulation, data are those reported by country and taken at face value and some country/EMU have not fully provided data. Am ong non-reporting countries, some have not involved in a stock recovery process. Keeping these limitations in mind, the stocks can be assessed as not within sustainable limits conforming to the Eel Regulation and ICES policies. For those EMUs that reported, the overall escaping biomass is 18% of Bo (cf EU limit 40% Bo) and the anthropogenic mortality (EA) is 0.41 compared to the limit of 0.42. For countries that reported (so including those that reported at country but not EMU lev- els), the overall escaping biomass is 6% Bo, and the anthropogenic mortality (EA) is 1.40 compared to the limit of 0.14. Management actions should thus be continued and even amplified for some EMUs/countries until their mortality is decreased below the reference point and ulti- mately that their biomass increases above the limit biomass. 3.8 A provisional harvest control rule for eel Assessment of the eel stock is not an easy task: because crucial knowledge of basic biological characteristics is incomplete; because the stock is scattered over an extremely large area, in typically small-scaled habitats; because the impacts vary from area to area; and because the stock has experienced a multidecadal decline and is now at a very low level. Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 Three complementary approaches to the eel assessment are presented having their ow n advantage and flaws. They all underline the bad status of the eel stock (recruit- ment and biomass), despite the encouraging recent increase in recruitment. The trend- based approach w ould lead to the conclusion that management actions should be con- tinued as long as the recruitment is not in the healthy zone. The classical approach w ould lead to the conclusion that already taken action are not suffident at least in some EMUs/countries. The eel specific approach w ould lead to an eel stock possibly in a depensatory trap that required an immediate and complete reduction of all anthropo- genic impacts (fisheries and other impacts) to zero. It can thus be concluded that a min- ima management actions should be continued if not amplified. In 2012, ICES convened WKLIFE (ICES, 2012d), to investigate the feasibility of devel- oping m ethodology for providing assessments and advice on data-deficient stocks. WKLIFE, however, did not include the assessment of the European eel in its consider- ations, because "ICES does not have an accepted time-series of stock-wide catch for eel". In 2013, the Review Group for WGEEL (ICES, 2013a) nevertheless suggested the application of WKLIFE's criteria for short-lived stocks. In Section 3.4, the rationale for applying those criteria have been discussed, concluding that there is no biological ar- gument for applying those criteria. WKLIFE considers seven types of stocks (Table 3.3), none of which strictly applies to eel. Rather than enforcing one of these categories on the eel, WGEEL recommends de- veloping a category for eel on its own. Unlike all other stocks, there is no realistic option to develop a single, stock-wide assessment based on primary data. Instead, WGEEL has developed an approach for an international assessment, in which only national stock indicators are used (Dekker, 2010; ICES 2010a,b; 2011a,b; 2012b; 2013b). Hence, the intemational stock assessment is based on national data only through the national stock indicators, not directly on the data themselves. This cascaded approach enables the assessment of the state of the stock in individual EMUs, allows to contrast indices of spawner escapement and total anthropogenic mortality to agreed reference points for these EMUs, and provides the information for the analysis of the stock-recruitment- relation and environmental drivers. Until complete spatial coverage has been achieved, the stock-recruit analysis is hampered by incomplete data. ICES in 2002 provided advice on a minimum limit to the spawning stock ("Exploita- tion, which provides 30% of the virgin (F=0) spawning-stock biomass is generally con- sidered to be [...] a reasonable provisional reference target. However, for eel a preliminary value could be 50%."). In the Eel Regulation, EU decided to adopt a limit of 40%, that corresponds to a mor- tality limit LA um = 0.92 w hen Bcunent > Bum. According to the Regulation, this reference point applies to all Eel Management Units, irrespective of the achievements in other Eel Management Units or the status of the stock as a whole. A s indicated above (Section 3.4.3), there is no biological argument to adopt a specific harvest control rule for EA when Bcummt < Biim. Analysis (Section 3.7.2.2.2) of the availa- ble data, however, indicates that current recruitment might be insufficient to replace current spawner escapement, and severe management actions might be required im- mediately. H owever, the quality of the data and hence the reliability of the analysis are not beyond doubt, and the working group recommends substantial steps forward, im- proving the database as w ell as the comprehensiveness of the analysis (below). A s the WGEEL considers the European eel to be a long-lived species in relation to har- vest control rules, and pending an improvement of the analysis of stock-and-recruit Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 data, W G E E L recommends that I C E S provides advice on the basis of the harvest con- trol rule for quantitative assessments (category 1), i.e. a proportional reduction in E A iim beloW Blim down tO E A lim = 0 at Bcurrent = 0. Future developm ent priorities In this chapter, the (potential) relation between the size of the spawning stock and the subsequent year-class strength has been analysed, extending the analyses in previous working group reports. To this end, an index of the spawning stock was derived (pro- portional to the landings (Dekker, 2004; ICES, 2012b); proportional to the landings tak- ing into account an expert estimate of the relative fishing pressure over the decades (ICES, 2013b)). It is well acknowledged that other factors - including spawner quality, ocean climate and conditions in the spawning area - might have an influence too (ICES, 2008). However, few studies have attempted to analyse more than one factor at a time (Dekker 2004; ICES, 2013b). Hence, different views on the causes of the recruitment decline exist, but no progress is actually made towards a comprehensive analysis. Looking forwards, therefore, the working group recommends: • an existing or new workshop is requested to compile and make available time-series of indices of eel quality, preferably from 1950 forward; • a workshop on ocean climate indices relevant to the eel (WKOCRE), in co- operation with the working group on oceanic hydrography (WGOH) is or- ganized, to compiles and make available time-series of indices that might relate to the survival of spawners and/or larvae in the ocean; • that WGEEL makes available time-series of (reconstructed) spawner escape- ment and documents how these time-series have been derived; consider sil- ver eel run reconstructions to be based on either silver eel landings data, yellow eel landings data, or other historical sources of information; • that a workshop/study group (i.e. one or 2-3 years?) is established to analyse the stock-recruitment relation for the European eel, taking into account the potential effects of spawner quality and ocean climate indices. Jo in t EIFAAC/ICES/CFCM WGEEL REPORT 2014 | 81 3 .10 Tables Table 3.1. AIC for attempts to fit three stock-recruitm ent m odels to yElsewhere Europe' glass eel recruitment index. Smaller values of AIC indicate a better fit. P a r a m e t e r n u m b e r AIC Ricker 2 28.68 Beverton 2 29.08 Hockey stick (one-breakpoint) 2 29.04 GAM 3 -25.73 GAM + year + NAO 5.8 -31.67 Table 3.2. A com parison of silver eel escapement of the years 2008 (prior to the im plem entation of EMPs) and 2010 (after im plem entation of the IMPs). In the case of Poland, the Netherlands, Bel- gium and Spain (marked in red), post-im plem entation data were only available for 2011, in the case of France (marked in blue) only for 2009. B c u r re n t 2 0 0 8 (T) B cu r re n t 2 0 1 0 (T) D iff (t ) 2 0 1 0 /2 0 0 8 %Diff 2 0 1 0 /2 0 0 8 SE 3463 3533 70 2.0 FI EE LV 1.7 1.7 0 0.0 LI 7.1 14.6 7.5 105.6 PL 469 199 -270 -57.6 CZ DE 2192 1919.2 -272.8 -12.4 DK 129.5 129.5 0 0.0 NL 439 482 43 9.8 BE 49 48 -1 -2.0 LU IE 142.6 216.4 73.8 51.8 GB 1707 1588.2 -118.8 -7.0 FR 2574.4 2234.6 -339.8 -13.2 ES 1173.7 1421.3 247.6 21.1 PT IT 269 285.5 16.5 6.1 GR Total 12 617 12 073 -544 -4.3 Table 3.3. Generic categorization of stocks by WKLIFE and its applicability for eel assessm ents. 82 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 WKLIFE CATEGORY Q u a l if y in g c r it e r ia A p p l ic a t io n t o eel Category 1 - data rich stocks (quantitative assessments) full analytical assessments and forecasts Partial spatial coverage; assessments for some areas incomplete Category 2 - negligible landings stocks landings are negligible in comparison to discards In cases where eel is caught as a bycatch, it is m ost often retained; when retumed to the water, survival is usually high. Category 3 - stocks w ith analytical assessm ents and forecasts that are only treated qualitatively assessments and forecasts which for a variety of reasons are merely indicative of trends in fishing mortality, recruitment and biomass Partial spatial coverage, known trends in mortality and biomass need not be indicative for un-assessed areas. Category 4 - stocks for which survey-based assessm ents indicate trends survey indices are available that provide reliable indications of trends in total mortality, recruitment and biomass N o such stock-wide surveys exist, other than the recruitment surveys, which are considered to be representative for larger regions. Category 5 - stocks for which reliable catch data are available for short time-series catch curve analyses can be undertaken and an estimate of exploitation provided Catch-curve analyses are not wide- spread, and need not at all be indicative for other areas. Category 6 - data- limited stocks only landings data are available; Following the implementation of the Eel Regulation, much more detailed data have become available. Life- history-parameter-based assessments for the eel vary from region to region. Category 7 - stocks caught in minor amounts as by-catch primarily caught as by-catch species in other targeted fisheries Eel is most often the target species of its fisheries Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 201 4 4 ToR c) Overview of available data and gaps for stock assessment 4.1 Introduction Chapter 3 highlights the range of data (at various geographic scales) required for the various stock assessment methods, and the fact that much of these data are not yet available to the working group and therefore elements of the assessment of whole- stock status remain uncertain. To facilitate the collection and reporting of these data, the following chapters of this report summarise the required, available and missing data (with reference to the methods discussed in chapter 3), consider a range of meth- ods available for the provision of such data, and means by which this provision can be improved. 4 .2 Consideration o f data required 4.2.1 Stock assessment The data requirements for eel stock assessment at national and international have been previously discussed and summarized by the ICES Workshop on Eel and Salmon DCF Data (ICES, 2012a). Generally, the data required for the assessment and management of European eel fall into three broad categories: • Data requested by ICES to undertake annually recurring intemational as- sessment; • Data requested by ICES or another scientific/ technical review group to pe- riodically (2012, 2015, 2018, 2024, and every six years thereafter) establish stock reference points, post-evaluate the Eel Regulation and implementation of EMPs; and • Data required by Member States to determine silver eel escapement levels relative to the target set out in the national EMPs and undertake river-spe- cific stock assessments according to EMPs. (Even though these data are used for the local stock assessment, they form the basis for the next level, the in- temational stock assessment. Therefore they are included here.) The general framework for intemational stock assessment and post-evaluation in Eu- ropean eel has been established and discussed in previous reports, and further devel- oped here in Chapter 3. In principal, the approach of the intemational assessment consists of the post hoc summing up of stock indicators, based on estimates for: • Bcurrent, the amount of silver eel biomass that currentlv escapes to the sea to spawn, corresponding to the assessment year; • Bo, spawner escapement biomass in absence of any anthropogenic impacts ('pristine'); • Bbest, spawner escapement biomass corresponding to recent natural recruit- ment that would have survived if there was only natural mortality and no stocking, corresponding to the assessment year; • E A , the sum of anthropogenic mortality rates, i.e. L A = E F (the fishing mor- tality rate, summed over the age groups in the stock.) + L H (the anthropo- genic mortality rate outside the fishery, summed over the age groups in the stock) or % S P R , the ratio of actual escapement B cunent to best achievable spawner escapement Bbest. S G I P E E ( I C E S , 2011b) indicated that estimates of either L A or % S P R usually refer to anthropogenic impacts in the most recent Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 year, not to impacts summed over the life history of any individual or cohort in the current stock. At present, the international stock assessment is based on national data only through the national stock indicators, not directly on the data themselves. The approach of re- gional stock assessment and post-hoc summing up of indicators for total stock assess- ment appears to be more pragmatic then a "central assessment". Most of the necessary monitoring structures and data should be available at the EMU level, and the interpre- tation of the results is easier. Additionally, the local assessments at EMU level are re- quired for post-evaluation of EMPs. Member States have been and are requested to report the indicators in their EMP reviews, along with data on the amount of glass eel recruiting to continental waters. The associated country data currently requested by ICES through the annual stock 'assessment' report to WGEEL are, where appropriate: • Quantity of glass or yellow eel recruitment, derived from commercial or rec- reational fisheries, or fisheries-independent surveys (further explained be- low); • Catches and landings by EMU, stage (yellow, silver eels), gear, commercial and recreational, and marine fisheries, and length frequency; • Catches and landings of eel <12 cm by EMU, with proportion retained for restocking and destination; • Quantity and origin of eel restocked, by glass eel, bootlace or ongrown; • Aquaculture production weight of eel, distinguishing between that sold for stocking versus sold for consumption, quantity and source of seed; • Fishing capacity by EMU, e.g. number companies, boats, fishermen, by stage (glass, yellow, silver) and by marine fisheries; • Fishing effort by EMU, e.g. number licences fished, number of net nights, by stage (glass, yellow and silver) and by marine fisheries; • Catch per unit of effort (cpue) for commerdal and recreational fisheries, by EMU, stage (glass, yellow, silver) and for marine fisheries; • Other anthropogenic impacts (non-fisheries), including type and quantity of impact, e.g. turbines - mortality rate and amount of silver eel killed in tonnes; • Scientific surveys of the stock: abundance of recruitment, yellow eel stand- ing stock, silver eel, by sampling method; • Catch composition by age and length, for commercial catches and sdentific surveys, by sub-catchments, catchments or EMU; • Other biological sampling to inform biological characteristics, e.g. length, weight and growth, parasites and pathogens, contaminants and predators, by sub-catchments, catchments or EMU. Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 201 4 In addition to the aforementioned stock indicators, ICES (2012b) requested the follow- ing data by EMU: • Wetted area habitat, by water type (lacustrine, riverine, transitional and la- goon, coastal); • Production values per unit area, e.g. kg/ha. • R(s*) The amount of eel (<20 cm) restocked into national waters annually. The source of these eel should also be reported, at least to originating Mem- ber State, to ensure full accounting of catch vs restocked (i.e. avoid 'double banking'). (Note that R(s*) for restocking is a new symbol devised by the WKESDCF to differ- entiate from "R" which is usually considered to represent Recruitment of eel to con- tinental waters.) 4.2.2 Data needs for stock-recruitment relationship 4.2.2.1 Recruitment Information on recruitment is essential to follow up natural variations and results of management actions over the area of distribution of the European eel. Recruit surveys (glass eel, young yellow eel) are the prime source of information on the status of the oceanic reproduction. Even though they play a minor role in the national assessments, these are essential to the overall evaluation of the Eel Regulation. Before the 3B and EA approach had been established, the ICES stock assessments of European eel has been based largely on examining trends in glass eel and yellow eel recruitment time-series. These time-series have consisted of a combination of fisheries-dependent and fisheries- independent data on both glass eel and young yellow eel stages. It was cautioned al- ready by the WGEEL (ICES, 2008) that data discontinuities, particularly related to data from commercial fisheries, can be expected following implementation of EMPs (e.g. management measures affecting fishing effort, season quota, size limits), and CITES restrictions, although at that time it was unknown to what extent this might impact on the dataseries. Loss of monitoring sites was highlighted already by SGIPEE (ICES, 2010a). Several fishery dependent time-series were lost due to restrictions of the fishery and for other reasons. The present availability of recruitment series for the calculation of the recruitment index series is also given in Chapter 2. It is vital that the existing recruitment time-series are maintained in order to provide consistent baseline intemational assessments. ICES (2012a) therefore recommended that eel recruitment time-series identified by ICES as contributing to the annual inter- national stock assessment process should be included in the new version of the Data Collection Framework (DCF, formally going to be known as DC-MAP). SGIPEE (ICES, 201 Oa) pointed out that the absence of any intemationally driven requirement to main- tain a recruitment dataseries needed to be corrected and highlighted the recommenda- tions of WGEEL (ICES, 2008) and EU Contract 98/076: Establishment of an international recruitment monitoring system for glass eel. Furthermore, SGIPEE (ICES, 201 Oa) rec- ommended that efforts to establish time-series for glass eel in non-EU countries (e.g. Norway, Turkey, Egypt, Tunisia, and Morocco) should be continued. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 Recruitment data required • Location of data collection • Stage and size of eel • Indicator data collected (numbers, biomass) • Capture and sampling method • Time-series • Capture effort In addition to the typical stock assessment efforts on the continental life stages of eel, standardized larval surveys as carried out by Germany in 2011 and Germany and Den- mark in 2014 (Hanel, pers. comm.; Hanel et al.r 2014) with a clear target on monitoring and evaluating eel leptocephali (or egg) densities in the Sargasso Sea need to be con- tinued on a regular basis to enable more immediate detection of changes in reproduc- tive success and possible spawning-stock biomass than can be achieved by monitoring medium- and longer-term trends in continental recruitment. In the long run, such data may also help to explain variations or apparent inconsistencies in the stock-recruit- ment relationship. Therefore, ICES (2012a) recommended that the new DCF (-MAP) supported the need for intemational surveys at sea of eel in the spawning area in the Sargasso Sea. 4.2.2.2 Spawning stock Whereas a rather well accepted recruitment series exists for the European part of the eel distribution area, information on spawner stock biomass is limited. The actual spawning-stock biomass (in the Sargasso Sea) has never been observed. The best avail- able proxy is the escapement of silver eels that exists after all of the fisheries and other mortalities (both natural and anthropogenic) in the continental and coastal waters have occurred. For present and future reports according to EU Regulation 1100/2007, Member States will provide the best estimate of silver eel escapement for each EMU. However, no direct estimate of historical escapement at the stock scale is available. Therefore, WGEEL (ICES, 2013b) attempted to reconstruct a time-series of escapement for the past 60 years from proxy data. The idea is to use the landings, prioritizing the silver eel fishery since they are the closest to the escapement. If it is not possible to use silver eel data, information from the yellow eel fishery may be used, although it will complicate the procedure. The methodology for the estimation of silver eel escapement from land- ings data has been discussed in ICES (2012b; 2013b). In the previous attempts to reconstruct historic silver eel escapement for the whole stock, several shortcomings were noted. So far, only EMUs or countries could be considered that provided both catches and Bcurrent. If either of these data had not been available, the EMU/country was not taken into account in our estimate. One should notice that some EMU/countries with high stock and/or catches have thus been left out (e.g. Norway, marine part of Denmark, Portugal and North Africa). Of further considerable concem for predicting this relationship is whether significant changes in effort or gear have occurred. Such changes would affect the relation be- tween landings and escapement if the expert-supplied exploitation rate estimates do not account for this. Jo in t EIFAAC/ICES/CFCM WCEEL REPORT 2014 WGEEL (ICES, 2012b) still noted, despite some improvements, a considerable degree of heterogeneity and unreliability in the landings dataseries. It has hence to be con- cluded that if the WGEEL continues to develop the stock-recruitment relationship us- ing these methods, it is of utmost importance that catch series are improved and that the splitting of these data by stage is also improved. The work on estimates of yellow eel landings should be continued as well because these may provide proxies for silver eel from missing ecoregions. The data requirements for (improved) establishing of the stock-recruitment relation- ship can thus be summarized as follows: • Increase the amount of information available (all countries constituting eel habitats should deliver the stock indicators and landings data). • Provide data for all relevant habitats. If necessary develop habitat-specific assessment methods. • Increase reliability and homogeneity of landings data, including a standard- ization of methods at least to some degree (e. g. regional standardization or standardization within a subset of methods). • Improve the separate reporting for glass, yellow and silver eels. • Provide information on fishing effort. • Provide information on exploitation rates (all anthropogenic impacts, in- cluding non-fisheries factors). • Achieve better geographical coverage, including the countries outside the EU but within the eel distribution area. This includes recruitment and silver eel escapement data. • Establish regular larval surveys in the ocean (Sargasso Sea). 4.3 Data quality issues During establishing the framework for intemational stock assessment in European eel, ICES (2012b) discussed the need for quality control on the national assessments, be- cause the quality of the international stock assessment depends on the quality of na- tional assessments and the consistency (and completeness) of these local and national assessments. SGIPEE (ICES, 201 la) started to develop quality criteria for the data and models underpinning the estimates of the "3Bs& £A". These quality criteria could be used initially by the member states as a check list when preparing their progress re- ports for the EU. At a later stage the quality criteria may be used as a tool (to assess quality of the estimates and identify over- and underestimates) during the post-evalu- ation of European eel stocks. The following recommendations on intemational stock assessment were formulated during ICES (2010b): • the reporting on stock status by countries is standardized; • the minimal information on stock status required is B cum ent, Bbest and Bo (or equivalent trios, e.g. Bcurrent, EA and Bo); • quality criteria for national stock assessments are considered, and imple- mented; • intercalibration between assessment methods be executed to standardize re- sults. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 As a first step, SGIPEE (ICES, 201 la) and WGEEL (ICES, 2012b) developed a scorecard, whlch could be used for a basic check for bias in the data (Annex 9 in ICES, 2012b). This scorecard is an attempt to summarize some of the important criteria that, however, needs further development: the list of criteria should be reviewed and realistic stand- ards for these criteria should be formulated. Another important step during the evalu- ation of the "3Bs& EA" is to predict if certain biases will produce an overestimate or underestimate. Finally a decision needs to be made on which "rule of aggregation" to apply when moving from the individual criteria, to the three estimates and to the over- all quantification of the status of an EMUs "3Bs& ZA" estimate. 4 .4 Data available vs gaps Given all of these data requirements, the working group has reviewed the available information provided in the Country Reports about the stock indicators and the habitat coverage achieved by the countries. The electronic table "Chapter 4 Table E4-1" accom- panying this report reveals considerable gaps of such information. The stock indicator, Bo, pristine biomass, is reported from 71 EMUs out of the 129 EMUs/countries in the area of European eel distribution. Stock and mortality indi- cators are lacking from many countries, especially from the eastem and southern parts of the Mediterranean Sea. The indicator Bbest is reported by 80 EMUs and the current escapement, Bcurrent, by 69 EMUs. Data on total mortality exist from 63 EMUs. In many countries riverine and lake habitats were assessed based on estimates of habitat specific productivity. Coastal and estuarine habitats have considerable data gaps. Table E4-1 also summarizes the existence of recruitment time-series as reported in the 2014 country reports to the WGEEL. Most monitoring sites are located in the North Sea region, several of them fishery independent. In the Biscay region only two sites for glass eel monitoring are still in operation. In the Mediterranean Sea only Italy reports data from one site in the Lazio eel management unit. For further information on re- cruitment series see also Chapter 2. 4 .5 Prioritization for future work (based on identified gaps) The prioritization of the gaps in terms of impact on the quality of the intemational stock assessment for eel has to be based on the discussion on shortcomings and limita- tions in the present assessment. Two major aspects can be extracted: 1) Improve the amoimt and the quality of the data (stock indicators, landings etc.) delivered by the countries already contributing somehow to the stock assessment. This also includes information on habitats, which so far are not sufficiently covered by the assessment, e.g. coastal and transitional waters. It is known that these may form important habitats for eel but there are con- siderable gaps in data on eel stocks in these habitats. 2 ) Include data from countries in the distribution area of European eel, from which information is lacking more or less completely (or for certain stages, e. g. glass eel recruitment), but which may be of considerable relevance due to the size of their local stocks. Whereas the first aspect has been discussed before, the second aspect will be explained shortly here. Stock assessment on a total population scale sets demands for stock indi- cators from a representative majority of habitats producing eel all over the area of dis- tribution. So far, information is missing for a considerable part of the distribution area. Jo in t EIFAAC/ICES/CFCM WCEEL REPORT 2014 A total of 38 countries are considered to produce eel across Europe, Africa and Asia and have presently (or have had in the past) eel capture fisheries production according to FAO (2011). Of these, 19 countries are in the EU and have produced EMPs. The relative role these countries play in eel exploitation can be roughly derived by ex- amining eel capture fisheries statistics. The annual catches of eel reported to FAO sta- tistics for 2007-2009 have been summarized in ICES (2011a, Table 3.2). Note that ICES (2008) has previously identified some inconsistencies in the FAO eel statistics, so the data should be viewed with caution, but they may be used here for illustrative pur- poses. In each year, European countries that have implemented EMPs account for most of the eel exploitation, but non-EU EMP countries account for considerable produc- tions in the region of 27 to 39% of the total catch (Figure 3.1 in ICES 2011a). In the latter group, Egypt accounts for most of the eel yields, but Albania, Tunisia and Turkey also contribute. For further information see also Chapter 2. These figures clearly indicate that even rough information from these countries outside of the EU will increase the quality and plausibility of the intemational stock assess- ment. However, in the absence of information on relative catches of yellow and silver eel in these statistics, and in silver eel characteristics of these countries, it is difficult to provide any greater understanding of the relative contribution (potential) of these other countries to the spawning stock and therefore future recmitments. Whereas the inclusion of data from countries not covered by the stock assessment so far is urgently needed, improvements in amount and quality (homogeneity, reliability etc.) of data have to be achieved as well for the EU countries during the implementation of the Eel Management Plans. These two approaches to data enhancement and im- provement should not be viewed as mutually exclusive as both need to be pursued to improve the collective ability to assess and to manage the eel stock. Furthermore, if, when and in which quality data from the so far missing countries can be provided is unclear. Meanwhile, the EU / European countries have the ongoing responsibility to ensure that their own contributions as good as possible. 4 .6 Recommendation from this chapter R e c o m m e n d a t io n A d r e s s e d t o Intemational coordination with countries outside the EU to ACOM / ICES Secretariat / EU / achieve adequate spatial coverage of eel stock assessment. GFCM / EEFAAC Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 5 ToR d) Identification of suitable tools (models, reference points etc.) in both data rich and data poor situations 5.1 Introduction The purpose of this chapter is to provide a source of reference for those wishing to implement eel stock assessments in their coimtries. The chapter draws on reports pre- vious Working Group, Study Group and Workshop reports, Country Reports and other publications (e.g. EMPs, EMP Progress Reports, EU-POSE and EU-SLIME project reports), and summarises the application of approaches to assess eel at various geo- graphic scales and under various data situations. The methods applied in various EU and other countries, their data requirements and outputs, are summarised in the accompanying electronic table, Table E5-1. 5.2 Methods available to assess silver eel production and escapement The methods available to determine the potential escapement, in the absence of anthro- pogenic impacts, and actual escapement of silver eel are outlined below. Silver eel es- capement is the amount of eel that have successfully passed and survived all of the potential anthropogenic and natural mortality impacts in continental freshwaters, es- tuaries and coastal waters (or fresh and saline waters) on their emigration to the oce- anic spawning groimd. 5.2.1 Methods based on catching or counting silver eels There are several means by which silver eel escapement can be estimated (at least) di- rectly from catching or counting eels. The EIFAC/ICES Working Group on Eels re- viewed these methods in 2008 (ICES, 2008). The following develops from this review, and adds consideration of the major practical issues associated with deploying these methods at geographical scales appropriate for basin district or national assessments. 5.2.1.1 Whole River or total traps; “ index” sites Wolf traps, or related systems, or use of winged nets deployed for research purposes can provide precise estimates of migrating eel population dynamics and under some circumstances all silver eels can be counted and weighed. However, this is usually only possible in smaller river systems where discharge pattem s allow for silver eel trapping throughout the migration season. Examples of this type of silver eel escapement esti- mation include the studies imdertaken on the Norwegian River Imsa (Vollestad and Jonsson, 1988), the French Rivers Frémur (Feunteun et al., 2000) and Oir (Acou et al, 2009), and the Irish Burrishoole river basin (Poole et al, 1990). There are several issues with applying this method for eel stock assessment that mean it is not widely suitable. There are exceptionally high resource requirements associated with installing and maintaining the traps. Given that the trap is required to fish the entire river width, there are likely to be relatively few suitable sites within EMUs. It is worth noting in this context that WKESDCF (ICES, 2012a) recommends the adoption of one index site per EMU, not specifying full detail of what constitutes an index site. Full and accurate measures of silver eel escapement require that traps operate through- out the entire period when emigrating fish are passing the site, and that they are all captured. However, the capture efficiency of the trap can be reduced by varying flow conditions. Given the considerable size range of silver eels (e.g. 35 to 100+ cm length) in some basins, the trap design may not be suitable to catch eels across the whole size Jo in t EIFAAC/ICES/CFCM WCEEL REPORT 201 4 range; i.e. is size selective. This is often the case with commercial gears (see below), especially where the fishery is controlled by a minimum size limit for the catch. In such circumstances, the catch may not accurately represent the full run. 5.2.1.2 Partial research traps and partial commercial fisheries Where trap efficiency is not 100%, mark-recapture methods (e.g. using passive inte- grated transmitters (PIT) or extemally attached high visibility tags) can be employed to estimate capture efficiency of the trap. The proportion of marked eels recaptured provides an estimate of the capture efficiency of the fishery. The catch is then raised by this efficiency to estimate the size of the run. A comprehensive measure of capture efficiency would incorporate the varying effects of river condition and fish size. Note therefore that mark-recapture methods require a model-based approach to raise the catch to the whole population based on estimates of capture efficiencies: all the meth- ods require some form of model-based approach to raise catches in account of fishery selectivity/efficiency and/or accounting for downstream parts of the basin. 5.2.1.3 Fisheries-based assessments; mark-recapture Commercial silver eel fisheries can, depending on their location and scale, provide good opportunities for direct estimation of the numbers and biomass of silver eels es- caping from eel producing systems. The approach of using tagging with mark-recap- ture can be used to estimate passage at commercial fisheries, in just the same way as a research trap. Provided that scientists have full access to the fishery and that the com- mercial operation permits the time and intervention to check the whole catch for tags, it is possible to determine the efficiency (proportion of run or local stock that is cap- tured) of the eel capture systems involved (see above). Examples of such investigations, of population dynamics and seasonal patterns of seaward migrating eels, include those undertaken on the River Loire, Rivers Shannon and Corrib, River Bann (Lough Neagh outlet), the River Imsa, the Baltic Basin and the St Lawrence River. Catch and effort data from closely monitored fisheries in enclosed waterbodies such as Lough Neagh (Northem Ireland) allow detailed assessments of eel production. However, such large and discrete eel fisheries constitute only about 5% of the continental fisheries, with the remainder consisting of very small and disparate fisheries. As with scientific monitoring studies, difficulties can occur when the fishing season does not cover the full migration period or when there is significant eel production downstream of the fishery area. Use of mark-recapture methods for estimating fishery capture efficiency allows for estimation of the numbers and biomass of migrating eels at the fishing sites. This can involve use of a variety of tags and marks (see Concerted Action for Tagging of Fish: www.hafro.is/catag). Experimental fisheries could be es- tablished in data poor areas and used to improve fishery monitoring methodologies. 5.2.1.4 Fish Counters and sonar Coimters and various acoustic technologies can allow for the estimation of silver eel escapement in locations where eel capture is not possible. McCarthy et al. (2008) used hydroacoustic methods to investigate variations in numbers of silver eels migrating downstream in the headrace canal of the Ardnacrusha hydropower plant in the River Shannon, Ireland. Resistivity counters have been trialled successfully for counting em- igrating silver eel in the UK (J. Hateley, pers. comm.), as have high-frequency multi- beam sonar (DIDSON®) in the UK, Ireland and the Netherlands (J. Hateley and W. Dekker*.* http://www.imares.wur.nl/NL/onderzoek/faciliteiten/didson/). The Didson http://www.hafro.is/catag http://www.imares.wur.nl/NL/onderzoek/faciliteiten/didson/ Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 may not be suitable for deployment in rivers >15 m width if a full width coimt is re- quired, and the main constraint at sites of appropriate dimensions is that the site must have a suitable profile with minimum or little shadowing of the beam (Briand et al, 2014; Bilotta et al., 2011; Keeken et al, 2011). Such eel counts, and linked data on size frequencies of the migrating eels, are only possible in locations where other fish species with target strengths in the same range as the silver eels are not also migrating down- stream at the same time as eels. Work is in progress in Ireland, UK, Poland, Sweden and other European countries that should lead to improved sampling protocols and to more widespread use of this method for estimation of eel escapement rates. 5.2.1.5 Acoustic or radio tracking of individual fish Where resources permit, mark-recapture escapement estimation at a partial fishery or trap (generally for silver eel) can be usefully supplemented for verification, or in some cases substituted, by acoustic (or radio) tracking with upstream and downstream re- cording receivers. This has the distinct advantage of observing the fish that pass an obstacle or fishery rather than estimating them from numbers not recaptured. This work is expensive and generally carried out at a research scale with small numbers of tags (rarely more than 100 individuals in any one study, and usually only tens). Tele- metric tracking can be an alternative means of eel passage estimation at sites where there is no possibility of a mark-recapture set-up, such as at large river hydropower sites, or used as a verification method for DIDSON® or similar hydroacoustic escape- ment assessments (McCarthy et ai, 2013). Where there is no tagged eel recovery, care needs to be taken to ensure that tracked tagged fish are still viable having passed through the tagged area, for example that the tagged fish have not been taken by mo- bile predators, or are not simply moving downstream in a moribund state. 5.2.1.6 General issues with catch, count and proxy approaches Few fisheries or in-river traps are operated at the very downstream extreme of the study basin, and therefore they miss any silver eel produced from the habitats further downstream. This is especially a problem when the study basin includes the estuary or even coastal waters. Given the practical and logistical difficulties associated with meth- ods relying solely on capture of silver eels, not least the ability to catch the eels in a manner that is representative of the entire run, there are relatively few places across Europe where this method can be adopted. A further limitation of these direct approaches, as it relates to European assessment and management of eel, is their inability to provide a measure of potential 'pristine' silver eel production in the absence of data from the appropriate historic period. Alt- hough such historic data exist and have been used for a small number of river basins, e.g. Burrishoole (Ireland), Neagh/Bann (UK N. Ireland), the approach cannot be used to back-calculate from present to historic production. Thus, while a new direct ap- proach might be deployed in a river basin, it can only provide an estimate of silver eel production from now onwards, assuming constant conditions. In the absence of his- toric data, therefore, we are reliant on models of eel production to estimate pristine levels. 5.2.2 Methods based on yellow eel proxies The use of proxy indicators from sedentary eels and habitat population models is an- other approach that has been applied to estimate silver eel escapement (e.g. Feunteun et al, 2000; Aprahamian et ah, 2007; Lobon-Cervia and Iglesias, 2008). In many river systems, surveys are commonly conducted to characterize the sedentary 'yellow eel' Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 component of the local stock. Mark-recapture or other more locally adequate methods could be used to estimate density of yellow and pre-migrant silver eels. A number of morphological characteristics have been identified that indicate pre-migrant status of eel, i.e. that they should be expected to emigrate as silver eels in the next migrant sea- son (Feunteun et al, 2000; Durif et al., 2005). It is possible therefore to estimate silver eel production from a water course based on the numbers of such 'pre-migrant' eels (Feunteun et al., 2000; Acou et al, 2009). The approach introduces two main sources of uncertainty in any estimate of silver eel production. First, if it is conducted in only one year it assumes that all eels classed as pre-migrants will actually become silver eels in the following migration season. Rather, evidence suggests that some pre-migrants may not emigrate in the year of marking (E. Feunteun, pers. comm.), and that studies using this method should be conducted over a number of years. The second assumption is that the eels sampled during the surveys are representative of the eel population across the river basin, such that the survey results can be raised to the system, typically according to the relative wetted areas. These procedures should nevertheless be standardized so that methodologies used can provide repre- sentative estimates of silver eel production, e.g. sampling at the beginning of the mi- gratory season (late summer in southem latitudes and middle summer in northem latitudes). Several habitat types representative of each catchment should be evaluated in order to be able to extrapolate for the whole catchment and include it in habitat population models. Eel mortality rates need to be determined throughout the river ba- sin including the estuary as well as fresh-water habitat. Acou et al. (2009) estimated silver eel production from two coastal river systems of western France, the Frémur and Oir. In the Frémur, 29 surveys covered about 2.3% of the wetted area of fluvial habitat, and four sites each in two still waters, and up to 32 sections of the Oir, accoimting for 8% of fluvial habitat but only along a 7.5 km length of river. Obtaining population density estimates for yellow eels in large water bodies including still waters is often difficult or impossible. Studies suggest that eels are often confined to shoreline margins of still waters because of the presence of cover and food (Jellyman and Chisnall, 1999; Schulze et al, 2004), though this is a topic that has received rela- tively little study. Whilst that presence of eels has also been recorded along the shore- line margins of many lake systems throughout Ireland (Poole, 1994; Moriarty, 1996; Rosell et al, 2005), these findings are commonly associated with seasonality, given that the shallow waters warm up quickest thereby promoting eel feeding behaviour in these regions. However, commercial fishing experience and scientific survey data have re- vealed that as water temperatures begin to rise throughout the summer months, eels are more commonly found in the deeper (>9 m) waters (Matthews et al., 2003; Allen et al, 2006; R. Poole, pers. comm.). Nevertheless, extrapolation of fluvial densities across the entire surface area of still waters may overestimate eel production from some still waters. In the Frémur, France, (Acou et al, 2009), only a 2.5 m wide shoreline strip of fluvial habitats produced eel and thus eels were absent from about 95% of the fluvial wetted area. It is clear that the proportion of water surface area occupied by eel can be a highly individual calculation and care needs to be taken in extrapolating between areas, to avoid grossly underestimating or over-estimating eel production in many wa- ters. The surveys have a significant resource requirement and therefore numbers and dis- tribution of surveys is often limited. To date we are unaware of any study testing the Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 number and distribution of surveys against the accuracy of their representation of the actual yellow eel population in a river system. Statistical methods are available to aid sampling design (e.g. power analysis), but these must be incorporated with spatial in- formation on habitat diversity and distributions in order to develop statistically robust stratified sampling programmes. 5.2.3 Model-based approaches to estimate potential and actual silver eel escapement The level of complexity that characterizes the life cycle of eel populations makes the simulation of its dynamics particularly challenging. Studies have already focused on the development of population dynamics models for several eel species including the American eel (Anguilla rostrata) (Reid, 2001), shortfin (A. australis) and longfin eel (A. dieffenbachia) (Francis and Jellyman, 1999), and European eel (A. anguilla). The Euro- pean SLIME (Dekker et al.f 2006) and POSE Projects (Walker et al.r 2013) reviewed de- velopments in quantitative modelling of European eel populations and tested different models in light of the management target proposed by the EC. The number and diversity of models developed for Anguillid species is considerable, starting with the age-structured and life table models of Sparre (1979) and Rossi (1979), respectively, and to date including input-output, stochastic and/or spatially distrib- uted demographic, VPA-like, and multi-stage stock-recruitment models, and covering a single life stage (glass eel) to the global stock. De Leo et al. (2009) provided a repre- sentative summary of the features of many of the models that have been used over the years to describe the dynamics of eels and predict the status of the stock. Because of the complex life cycle of eels the range of information needed to describe this and the complexity of the model that could be used, is high. Similarly, the range of information needed to estimate unexploited and current stock sizes and escapement is considera- ble. This includes standard type of stock assessment inputs/estimates such as recruit- ment levels, catch data but also less common factors such as stage-specific stock estimates and indices of habitat quality. This discussion focussed only on those models that have been applied in EMPs and/or are under continuing development, compared to those models that are not, as far as we can establish, being used in EMPs or subject to further developments. These mod- els, listed in alphabetical order, are as follows: • Demographic model of the Camargue (DemCam) • Eel Density Analysis 2.0 (EDA) • German Eel Model (GEM) • Scenario-based Model of Eel Production II (SMEPII) • Swedish analytical model (SWAM) • Model of eel population within a Hydrographic network (GloBang) • Length-Based Virtual Population Analyses (LVPA) • Dutch eel models • version of CAGEAN model (Deriso et al, 1980) A further model, GEMAC (glass eel model to assess compliance) exists as a glass eel- specific model used in France to determine actual glass eel settlement after fishing, glass eel fisheries mortality and other anthropogenic factors at that stage, and natural mortality from the glass eel arriving at the coast/estuary. It has been described in the Jo in t EIFAAC/ICES/CFCM WGEEL REPORT 2014 SLIME report, but it is not yet used in producing recruitment time-series data but could, given expert time and data, be used to improve estimates of recruitment of glass eel or give absolute recruitment estimate. However, as it is not designed to produce silver eel biomass and anthropogenic mortality reference points, it is not considered here. There are considerable differences between these models in terms of their level of com- plexity, data requirements, real cases in which they can be applied, etc. Knowledge of these differences is very important in order to identify the right model to apply to quantify potential and actual eel production and silver escapement, depending on eel population characteristics and data situations. The following descriptions are summa- rised from the reports of the SLIME (Dekker et al., 2006) and POSE (Walker et al., 2013) reports. 5.2.3.1 Demographic model o f the Camargue (DemCam) Modeí approach and processes DemCam is a stage-, age-, and length-structured model that provides a detailed de- scription of the status of the eel stock in a homogeneous water body, considering the main aspects (both natural and anthropogenic) that affect eel population dynamics. A general formulation makes it suitable to describe the demography of other different eel stocks, providing that a sufficient number of data are available for parameter calibra- tion. The model is designed to simulate the condition of the stock in actual, pristine and future conditions imder different scenarios. The model is deterministic with an annual time step, using density-dependent juvenile mortality, growth of undifferentiated, male and female eels, fishing mortality and length-dependent maturation. The model evaluates the consequences of fisheries, restocking, maturation, growth and natural mortality on the yellow and silver eel population and it explicitly accormt for the dynamics of glass eels to capture the effects of anthropogenic and other factors on this part of the population. Data requirements The model requires annual indicators of recruitment and fishing effort, and biological parameters, either directly assessed for the studied population (when data are availa- ble) or taken from literature. These required parameters are: Annual recruitment (time- series or index); Sex ratio (at silver stage or at 30 cm); Density-dependent juvenile mor- tality (back calculated from historical maximum); Sex-specific body growth (otolith, age at silvering); Sexual maturation (silver size); adult mortality (literature, or know); Fishing mortality (know, estimated). Further model developments foreseen but not planned at this time, can focus on im- proving the description of sex differentiation in small yellow eels and producing m ark- recapture estimates of yellow and silver eel abundance. The model also needs to be calibrated against length distributions of yellow and silver eel catches, to allow the ability to carry out sensitivity analyses on parameters and outputs, and to bootstrap input data. Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 Model outputs The output of the model is number of eels in a given time at a given age, size, sex and m aturation stage. Based on this information, the user can estimate the number of mi- grating silver eels for any given time. The model defines the eel stock and the harvest structured by age, length, sex and mat- uration stage (yellow or silver) on an annual basis. The output consists of biomass and number of eels in catches, and yellow and silver eel stock by age, length, sex and mat- uration structure under different management scenarios, such as stocking, fishing reg- ulations, and/or different environmental conditions. 5.2.3.2 Eei Density Analysis (EDA 2.0): A statistic model to assess European eel {Anguilla anguilla ) escapement in a river network Model approach and processes This is a framework of eel density analyses rather than a fixed, end-user model. It re- lates yellow eel densities to environmental variables, including anthropogenic impacts, and is extrapolated from survey sites to the river basin. The predicted yellow eel stock is then converted to a silver eel escapement, using a conversion rate. The modelling tool is based on a geolocalized river network database to predict yellow eel densities and silver eel escapement. There are six main steps in the model applica- tion: 1 ) Relate observed yellow eel presence/absence and densities to descriptor pa- rameters: sampling methods, environmental conditions (distance to the sea, relative distance, temperature, Strahler stream order, elevation and slope, etc.), anthropogenic conditions (obstacles, fisheries, etc.) and time (year trends); 2 ) Extrapolate yellow eel density in each river stretch by applying the statisti- cal model calibrated in step 1; 3 ) Calculate the overall yellow eel stock abundance by multiplying these den- sities by the surface of each stretch and summing them; 4 ) Estimate a potential silver eel escapement of each stretch by converting yel- low to silver eel abundance using a fixed conversion rate; 5 ) Calculate effective escapement by reducing potential escapement with silver eel mortalities during downstream migration; 6 ) Sum the effective escapement from all the stretches to give estimate at EMU scale. It is also possible to give an estimate of the pristine escapement by running the EDA model w ith anthropogenic conditions artificially set to zero and time variable datasets before 1980. Data requirements The model needs information on the yellow eel population, environmental character- istics, and anthropogenic impacts on eel production. The data required on the eel pop- ulation are the presence/absence and densities of yellow eel, typically derived from scientific surveys (e.g. electro-fishing surveys). Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 The environmental data are the distances to the sea and source, and the relative dis- tance (between sea limit and the more upstream source), the temperature in each seg- ment of the river network, the mean rainfall, the elevation, slope and stream order (Strahler and Shreve). EDA is designed to be applied at the EMU or larger scale. It uses the CCM v2.1 (Catchment characterisation and Modelling) a European hydrographical databases (Vogt et al, 2007, http://ccm.irc.ec.europa.eu/) to derive the environmental descriptors. The CCM2 database includes a hierarchical set of river stretches and catch- ments based on the Strahler order, a lake layer and structured hydrological feature codes based on the Pfafstetter system (De Jager et al, 2010). The primary catchment referred to is the drainage area; this is the smallest entity in this hierarchy and is drained by CCM river stretch. The anthropogenic impacts are described by the obstacle pressure (cumulative number of dams and their pass-ability), the land use, and fisheries. Model outputs The outputs of the model are the yellow eel density in each reach of river network, and the overall yellow eel stock abundance and a potential silver eel escapement at pristine and actual conditions. The biomass and number of yellow eel and eel escapement are optional. 5.2.3.3 German Eel Model (GEM) Model approach and processes The German eel model was developed specifically for describing the dynamics of the eel population of the River Elbe system, especially for estimating the escapement of silver eel between 2005 and 2007. The age-based model is data driven and was adapted to the available dataseries estimated relationships. The model treats the productive area as a single unit, so does not take into account spatial aspects like different habitat pattems, area dependent growth, etc. Nor does it account for the potential effects of density on eel production processes such as growth and mortality rates. The model is based on the structure of the Virtual Population Analysis (VPA), but the GEM works in the opposite direction. The initial population in number, by age group, at the beginning of year one is estimated. Then the model estimates the number of eels of each age group which leave the system for various reasons (natural mortality, fish- eries, predation, turbines, etc.) in the same year. The population at the beginning of the following year is then estimated based on the remaining population, and the numbers of immigrating elvers and restocked eels. The following parameters are assumed to be stable during the total model period: • Growth and weight-length relationship; • Relative age distribution of eel eaten by cormorants; • Relative age distribution of silvering eel; • Mean weight of eel in the stomach of cormorants; • Relative age distribution of immigrating eels. The natural mortality is split into two components: the effect of cormorants and the remaining natural mortality. It is assumed that the age distributions of eel caught in fisheries and those eaten by predators are similar to the age distribution of the stock. Also, that turbines and pum ping stations only impact silver eels. http://ccm.irc.ec.europa.eu/ Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 Note that for the Elbe dataset at least, analyses have shown that the size and the relative age distribution of the initial year has relative low effects concerning the year tx if the period between the initial year and the year tx is more than 18 years. Thus, GEM re- quires a 'training' dataset of at least 18 years. Data requirements The following input data are required for the model: • Catch in kg by fishermen and angler per year; • Number of restocked eel by age group and year; • Number of immigrating elvers by age group and year (if data are not avail- able for each year, estimates based on international time-series can be used); • Catch in kg by cormorants per year; • Mortality of silver eels due to hydropower plants and water removals in % per year. Input data are provided as numbers per cohort, with various counts or length distri- butions converted to age profiles based on survey data. The model requires descrip- tions conceming the weight-length relationship and the growth of eel to estimate the mean weight of eel by age group and to transform length-based estimates into age- based estimates. The relative age distribution of eel captured by cormorants is required for estimating the total number of eel consumed by cormorants. It is assumed that the proportion of eel in the food of cormorants is dependent on the density of eel. The model also contains the option to add stochastic noise to the input data which are normally distributed with a mean of zero and a given variance. If the variance is real- istic this option can be used for estimating the confidence intervals of the escaping sil- ver eels by means of bootstrap methods. Outputs Model outputs are population size, catch by fishermen, catch by anglers, catch by cor- morants, mortality by other natural reasons, and silver eel escapement, all expressed as numbers per cohort. 5.2.3.4 Scenario-based Model of Eel Populations (SMEP II) Model approach and processes SMEP II is a software package developed to model the dynamics and exploitation of eel populations (Aprahamian et al, 2007). It is based on the scale of a river basin, and simulates the freshwater phase of eel production. It is a population dynamics model that simulates both the biological characteristics of the eel population and a number of potential anthropogenic influences on that population. Biological processes modelled include growth, natural mortality, sexual differentiation, maturation (silvering) and migration within the basin. Anthropogenic influences include environmental and hab- itat quality, fishing practices, barriers to migration and stocking. The population dynamics model used is a length-based model that describes the dy- namics of a population of eels for the duration of its stay in the river basin. The model is also sex-, stage-, and area-specific and accounts for density dependent effects, and habitat structure and quality. Therefore, it tracks changes in undifferentiated, yellow Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 (male and female) and silver (male and female) eels within four seasons and for each reach in the basin. The model does not make any assumptions about the d)mamics of eels that have migrated from the river back to the sea (i.e. on silver eels once they exit the basin). Since only partial simulation of the population dynamics is possible (the salt water phase of population's life is not simulated), processes such as recruitment cannot be modelled explicitly and therefore, information about them needs to be provided extemally (or estimated). Model outputs are provided both as numbers and biomass of eel, per sex and life stage, river reach and year; and length-frequency distributions. SMEP II is designed to pro- vide time-series or equilibrium outputs for each reach and summarised for the catch- ment for: undifferentiated eels, male and female yellow and silver eels: in terms of numbers, density and biomass, length-frequency distributions, sex ratios, and pre- dicted catch numbers and biomass. The model can be used to project the population forward from a predetermined starting condition or estimate the starting conditions that could lead to a given population size or structure. As a projection tool, the user may vary anthropogenic influences and levels of recruitment in order to create 'what- if' management scenarios, relative to the given reference point. Data requirements SMEP II must at least have information describing the eel life-history processes, and the size and structure of the river basin and the level of annual recmitment, in order to predict potential production under 'pristine', constant conditions. Where data are available, either for historic or present conditions, these can also be applied to charac- terise the yellow eel population (in the past or present), impacts on escapement (e.g. fishing or turbines), inputs such as stocking events, and changes in the available area and quality of habitat. These additional data allow the user to set the model to simulate escapement under various conditions (past, present and future), and to alter the effects of impacts and inputs in order to examine their relative influence on escapement. The biological processes that apply to the life cycle of eels in the study river are defined by the user from river-specific information, or can be parameterised according to val- ues from neighbouring rivers or from the scientific literature. Recruitment of eel is described according to the length of recruits (mean and standard deviation), the maximum number of recmits in any year, and a time-series of recmit- ment as an index of that maximum. The model also needs information to describe the effect of density on the dynamics of eels if such effects are to be taken into account in the calculations. This is characterised according to the level of eel density biomass at or above which the density-dependent variations in biological processes take a strong effect. In terms of the spatial component of the model, the user defines the number and to- pography of the reaches, their length and wetted area, as well as information about obstacles that might constrain the movements of eels between the reaches. The user also sets the speed at which eels move between reaches. Where anthropogenic impacts are to be included in the model, fishing is described as catch weight by stage (glass, yellow, silver eels) and assigned to specific reaches sea- sons and years, and turbine mortality is described as the proportion of eel that are killed when passing a turbine. 100 | Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 If stocking is to be simulated, this is described in terms of the number and length dis- tribution (mean length and range) of stocked eels, the reach where they are stocked, and the season and year when the stocking takes place. Modet output SMEP II reports the results of simulations in a series of .csv files that provide, for each reach in every year: the density and biomass of undifferentiated, male and female yel- low eels; numbers and weight of emigrating male and female silver eels; the proportion of females; and the numbers and weight of 'catch'. End-of-run files provides summaries of density and biomass of undifferentiated, males and female yellow eels, biomass of male and female silver eels, and 'catch' (numbers and biomass) of undifferentiated, yellow and silver eels, and the length frequency of eels, stages and sexes in each reach. 5.2.3.5 GlobAng, a model o f eel population dynamics w ithin a hydrographicai network GlobAng is designed to perform simulations of eel population dynamics within a hy- drographical network. After calibration with real field data, the model is able to eval- uate the putative pristine silver eel escapement in response to a variety of management scenarios, especially when the spatial (reach) dimension is important. The main strengths of GlobAng are that it takes the river system into account, permits testing of spatial management scenarios and can be used to analyse impacts of barriers. It also takes into account density dependent processes and non-linearity in the relationship between recruitment and silver eel escapement. Data requirements GlobAng requires a description of the connectivity and carrying capacities of river sys- tem reaches and a recruitment time-series. Additional data, such as time-series of age structure of yellow or silver eels or eel population distribution throughout the catch- ment, are required for calibration and validation procedures. Modei approach and processes GloBang integrates growth, recruitment, sexual differentiation, maturation, natural mortality and migration within a watershed. Impacts of fishing and migration barriers can also be simulated. The time step is the week. Sex determinism, natural mortality and movement depend on density. Modei output The main outputs are sex and age structure of yellow eels in each reach and silver eel escapements either for long run (equilibrium) or over time. 5.2.3.6 Swedish analytical models (SWAM) SWAM was originally developed for the Swedish (coastal) fisheries (west and east coast), to investigate how yellow and silver eel fisheries, fishery restrictions and glass eel restocking affect present and future spawner escapement (and catch) in a specified homogenous water body. Estimated present and potential spawner escapements can also be related to estimated escapement at some earlier time representing a more pris- tine stock. The main strengths of SWAM are its simplicity, transparency and flexibility (it can be applied to many different types of systems, using little data), and that it gives analytical solutions that are well defined and do not depend on simulations, and allow Jo in t EIFAAC/ICES/CFCM WCEEL REPORT 2014 for changes between what is used as an input or an output (e.g. either using data on either recruitment or catch). Its main weakness is that it is dependent on parameter estimates from other sources, and that it omits many (possibly important) biological processes (e.g. using one size where all eels of one sex silver or migrate, or for sexual differentiation). Data requirements In general, only externally determined parameter estimates are used as input, but re- cruitment time-series can also be incorporated. No tuning or calibration process is in- corporated in the models. The input must be a continuous series of annual length frequencies of commercial landings. Modeí approach and processes Following classic fishery modelling, only recruitment, mortality (natural and fishing) and average growth are considered annually. Model output Both equilibrium and time-dependent deterministic solutions can be derived. The main output is proportional spawner escapement, either as equilibrium solutions or over time since management actions have been applied. Depending on available input, es- timates can be made of silver and yellow eel catch and spawner escapement in num- bers (or biomass) or recruitment into the yellow eel fishery (in numbers) for a specific year (based on data on yellow eel catch). 5.2.3.7 Length-Based Virtual population analysis Data requirements Fishery modelling, only recruitment, mortality (natural and fishery induced), growth and maturation by size class to the silver eel stage and subsequent escapement each year are considered. The model requires data on total number of eels landed per size class per year, derived from landings statistics and catch composition sampling. A breakdown of catches by gear type results in gear-specific outputs. Additionally, pa- rameter values are required for growth, and for natural (non-fishery) mortality. Modei approach and processes The LVPA model quantifies the population state and the impact of fishing, based on total landings in numbers by length class in recent years. Modei output The model aims to provide a critical post-evaluation of management measures imple- mented during the data years. A minimum of assumptions and a maximum of data ensure a close tracking of the true population. Derivation of reference points is straight forward, but has not yet been elaborated. The outputs are population numbers, partial fishing mortality for each gear type, and silver eel. 5.2.3.8 Dutch eel models The Dutch EMP reporting relies on models in three components to produce data for reporting (Bierman et al, 2012; Van de Wolfshaar, 2014). These consist of three inter- acting processes: a dynamic population model for yellow eel for estimating %SPR, an 102 | Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 extended yellow eel model for estimating mortality rates, and a static spatial model for yellow and silver eel. Their use and interaction is described in Bierman et al. (2012). The population model starts with recruitment data and applies growth, natural mor- tality, fishing mortality, and maturation parameters on a rate basis to follow cohorts through to silver eel. The extended yellow eel model uses fitting the data on catches per unit of effort from stock surveys, or length-frequency distributions from retained catches, to assess yellow eel stock trends and compare fishing mortality estimates with actual measurements derived from stock biomass surveys. The static spatial popula- tion model estimates standing stock biomass of yellow and silver eel to further derive biomass of silver eel escapement using geographic data of fresh water bodies with spa- tially-structured eel density data. Data requirem ents/ Mode/ approach and processes The method uses a mix of rate-based process with actual survey and fisheries data, and geographic information. Modei output The Dutch method produces the three biomass and summed anthropogenic mortality rate reference points required for local EMP and intemational reporting. 5.2.3.9 CAGEAN model (Deriso, 1980) and Simplified eel population model (Dekker, 2008) Modei approach and processes; summary These two models, based on classical fisheries rate based processes, each feature once in use by WGEEL reporting countries (Poland and Lithuania) to supply Bcurrent and Bbest B from basic fishery data. 5.2.4 Use of other methods and extrapolations to calculate or estimate bio- mass reference points 5.2.4.1 Wetted area based estimations Many countries or EMU assessors use some means of extrapolating from habitat area data to derive the biomass reference points, particularly Bo, but also combining with knowledge of eel specific parameters to aid calculation of Bbest. There are variable de- grees of sophistication applied, ranging from simple map-based water area measure- ment combined with application of literature-derived eel carrying capacities, to detailed reach-based modelling approaches verified with field survey data. The most robust of these approaches use GlS-determined wetted area, with natural and man- made barriers defined and field verification to give reach-based accessibility parame- ters. This approach can often interlink with WFD assessments of river continuity and/or estimates of population level targets for other species (e.g. migratory salmonids in Northern European countries). A good example is that used for the Irish EMPs based on a wetted area model originally designed for defining Atlantic salmon habitat-based stock reference points (McGinnity et al, 2011). Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 | 103 6 ToR b) Review the life—history traits and m ortality factors by ecoregion 6.1 Introduction The working group explored whether the ICES approach to assessing Data-Limited Stocks (DLS) might offer an altemative approach for assessing the stock status of the European eel. This DLS approach has been developed within the WKLIFE I, II, III re- ports (WKLIFE IV met the week before WGEEL 2014 but the report was not available for WGEEL to consider). As the new ICES model for providing advice aims to deliver this at the ecoregion scales (Figure 6.1), the working group explored these eel life-his- tory traits at this scale, compared to other geographic scales typically applied to eel assessment. 104 | Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 Ecoregions based on iCES Advice ACFM/ACE report (2004) iCES Convention area (FAO area 27) includes regions A-G, L Zones H-J, M are outside the !CES area A: Greenland and lceland Seas B: Barents Sea C: Faroes D: Norwegian Sea E: Celtic Sea F: North Sea G: South European Atlantic Shelf H: Western Mediterranean Sea I: Adriatic-lonian Seas J: Aegean-Levantine Seas K: Oceanic northeast Atlantic L: Baltic Sea M: Black Sea Figure 6.1. ICES ecoregions. 6.2 L ife-h istory traits relevant to eel assessment The work of WKLIFE suggests that in the absence of quantitative data, life-history traits may be used to assess stocks. The life-history traits used by some of the DLS ap- proaches to define reference points for sustainable exploitation, that appear potentially relevant to eel are: growth parameters using the von Bertalanffy function; various L50 matured, where 50% of the population by length has silvered; Length and age; Fecun- dity; Weight-at-age and Length-weight relationship. Due to their outstanding complexity in life cycle, with oceanic reproduction and larval transport, ascending as glass eels in rivers, growing as yellow eels in a diversity of marine, brackish, or freshwater habitats, and - after metamorphosis - leaving the fresh- water habitat for a period of oceanic migration to distant spawning grounds, the eel is Jo in t EIFAAC/ICES/CFCM WCEEL REPORT 2014 1 not assessable or manageable in the same way as most other marine exploited fish spe- cies. The presence of different life stages and metamorphoses, its longevity and sem- elparity and the exceptional migration advocates the need to use specific eel-oriented life-history traits, different from the ones used in other fish stock assessments. Moreover, eels are eurytopic and have a widespread geographic range from the warm waters of the North African continent to cold Scandinavian river systems. The high natural variability in habitats where they live, added to the variety of anthropogenic pressures in these different habitats, provokes an exceptional plasticity in traits over the local stocks. Probably the most striking examples of this are the extreme differences in sex ratio and size and age at silvering over a latitudinal gradient. Furthermore, while in most marine species mainly the adult sized fish is exploited, in eel, immature life stage are targeted by fisheries, from recruiting glass eel, resident yel- low eels and migrating potential spawners in the silver stage. In European eel, in contrast to other marine species where detailed and comprehensive monitoring data e.g. fecundity and reproduction potential, allow "finger on the pulse" management, uncertainties and gaps in knowledge about essential phases in eel's life history (especially concerning reproduction, fecundity and migration success) hamper stock assessment and management. All the above illustrates why assessment based on a classical set of life-history traits, as used by most exploited marine species, is not feasible for eel, and advocates the need for a specific eel-based approach with an expanded set of eel-specific life-history traits. An overview of the potential eel-specific life-history traits is given in Table 6.1. These may be classified as traits related to silvering process, population, quality and growth. As both sex and stage (yellow or silver) are crucial factors when describing an eel pop- ulation, most parameters have to be split into those categories. Males at silvering are smaller than females at silvering and most often also younger. The size at silvering is used both as a quality factor (condition) but also for the conver- sion between length and weight (and vice versa) when calculating the production in biomass. Other, population-related traits include sex ratio and mean age. Age is of out- most importance in all models as this affects the lifetime mortalities. Quality-related traits such as good condition and sufficient energy accumulated through lipid stores is required for fuelling the migration and production of gametes. Fecundity and lipid content are parameters not yet used in any eel quantitative model to our knowledge. However, as quality/fitness in this long-migrating species probably is a determining factor for a successful reproduction, those parameters may be consid- ered in the future in more complex models. Also growth rate and von Bertalanffy param- eters are relevant descriptors for growth. The working group examined the information provided in Country Reports to ascer- tain what life-history trait data were available by country. Data on the various life- history traits are available, and a summary of their availability is provided in the elec- tronic Table E6-1 accompanying this report. Time constraints within the meeting pre- cluded a more detailed compilation and analysis but this is recommended in the future (see below). Previous working group reports (ICES 2010; 2011) and scientific papers (e.g. Vollestad, 1992; Tesch, 1977) provide further details. 106 | Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 6.3 ICES ecoregion vs other geographlc scales Available data show large and progressively increasing levels of variation in the eel life-history traits at basin, country and ecoregion scales. For example, length at silvering for females is 471-675 mm within the ecoregion Westem Mediterranean Sea and 420- 1120 in Celtic Sea Ecoregion. Age at silvering for females in Celtic Sea Ecoregion ranges from 8-28 years but for Westem Mediterranean Sea the range in age at silvering is 7- 12 years. In marine species the degree of variability of LHTs within an ecoregion is considerable lower than the degree of variability of LHTs in eels even in the same EMU. Marine fish stocks may inhabit large sea areas and the management unit may with good reason be an ecoregion. However, the use of life-history traits in assessment on an ICES ecoregion scale is considered not appropriate for assessment of the eel stock. The WGEEL proposes that the Eel Management Unit is the most appropriate geo- graphic scale for the assessment of data-limited eel stocks in alignment of the EU's Eel Regulation (EC 1100/2007), and that data on life-history characteristics be collated at the spatial scale of the eel management unit (EMU) as part of the development of the European Eel Stock Annex (see Annex 4). Table 6.1. O verview of eel life-history traits information available, as reported in the country re- ports to the WGEEL 2014. *L50 = the length at which 50% of the population has silvered, as defined by WKLIFE. L if e - F I i s t o r y t r a it s Y e llo w EELS MALES Y e l l o w eels FEMALES SlLVER EELS MALES SlLVER EELS FEMALES POPULATION Silvering related traits Length at silvering (average, range, L50*) N /A N/A X X Weight at silvering (average, range) N /A N /A X X Age at silvering (average, range) N/A N /A X X Population related traits Sex ratio (100* F/(F+M)) X X X X Condition/qualitv related traits Fecundity (average, range) N /A N /A X Lipid level (average, range) X X Condition factor (average, range) X X X Length/weight relationship X X X X X Growth related traits Von Bertalanffy parameters: Lmf, K, to X X X X X Growth (cm/year) X X X X X Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 7 ToR f (i)) Explore the standardization of methods for data co l- lection, analysis and assessment 7.1 Introduction Eel is thought to be one (panmictic) population spread over Europe, (including the Mediterranean) and parts of North Africa, but local conditions vary so much that uni- form stock-wide management is impractical. For those countries with the EU, the de- velopment and implementation of protecdon measures has therefore been delegated to the national / regional levels and management / assessment is at the national, EMU or individual river level as set out in the Eel Management Plans. The EU Member States (MS) have used an extensive variety of methods to determine stock indicators to meet both national and intemational obligations, with only little coordination or standardization among MS. This means that full intemational stand- ardization (facilitating Community support) may need to be more flexible than for tra- ditional marine fisheries, although there might be scope for a general move to more standardized approaches, which might aid quality control in the future. The standard- ization and coordination of the data collection, analysis and reporting would imequiv- ocally facilitate post-evaluation of the EMUs, and will provide for more cost-effective data collection and analysis (ICES, 2013a). In addition, an appropriate eel whole-stock assessment, could only be achieved if all the eel-producing habitats (rivers, lakes, tran- sitional and coastal waters) are taking into account. Thus, to achieve a population- wide, international assessment it is necessary to try to standardize the assessment method as much as possible, taking into accoimt the data available in the various coun- tries, such an approach is outlined in Section 7.3. The first step is to analyse what in- formation is available in each of the eel producing coimtries and based on this compilation we can explore the options for a common methodology for assessment. 7.2 Available inform ation in eel producing countries Four tables have been designed to analyse the available information in eel producing countries: two of them dealing with commercial and recreational fisheries respectively, one regarding the information compiled in the EU surveys, and one referring to na- tional surveys. The aim of these tables was to have a general idea of the available in- formation, so the parameters have been grouped in general categories and are much less detailed than in other sections of the present report. A colour code has been estab- lished to determine the level of data available per EMU at the country level in those countries having a management plan, or per Country in those not having a plan (Table 7.1). The table has been fulfilled taking into account the expert knowledge of the coun- try representatives in the meeting in the case of Norway, Sweden, Latvia, Lithuania, Poland, Germany, Denmark, Netherlands, Belgium, Ireland, United Kingdom, France, Spain, Portugal, Italy, Montenegro, Albania, Greece, Turkey, Tunisia. Information from Malta, Slovenia, Croatia, Egypt and Algeria has been recorded from the GFCM Background technical document on eel fisheries and aquaculture in the Mediterranean Sea (under revision). No information has been obtained for Finland, Estonia, Russia, Luxemburg, Slovenia, Bosnia-Herzegovina, Cyprus, Lebanon, Israel, Libya and Mo- rocco. The exploited stages change depending on the Country, and fisheries has been forbid- den in some Coimtries following implementation of EMPs (Table 7.2). Among glass eel fishing countries, data regarding capacity, effort and landings exists in France, Por- tugal, United Kingdom and Italy, whereas in Spain only catch information is collected 108 | Jo int EIFAAC/ICES/GFCM WGEEL REPORT 2014 in all the EMUs. In those countries with an existing EMP, within the EC Eel Regulation, yellow and silver eel fisheries are widely distributed. In the rest of the Mediterranean countries, except from Tunisia which compiles data regarding effort and catches and landings, the only available fishery data relate to catches and landings. In European countries with an existing EMP, recreational fishery capacity and catches and landings data are documented, except from United Kingdom and Spain (Table 7.3). But among the countries reporting data, Denmark, Germany and Belgium do not collect effort data. Only Lebanon records fishery data in the case of the Mediterranean countries without an existing EMP within the remit of the EC Eel Regulation (European Commission, 2007). Most of the EU countries record WFD data and are able to determine eel abundance using these surveys (Table 7.4) even if this abundance might be underestimated in most of the cases because few of them have eel specific surveys. In the same way, except from Spain, all the countries having commercial fisheries have implemented DCF and record biological data within this framework. However, most of the countries where recreational fishery is performed have not implemented DCF. Though most countries have collected DCF data for commercial fishery, there are concems that it does not meet the requirements for eel. Conventional marine fisheries management is built upon regionally coordinated data collection programmes feeding into a stock-specific assessment. Given the substantial convergence in methodologies across the ICES as- sessed stocks (mostly age-based cohort assessments to reconstruct populations based on catches, with a subordinate role for standing stock surveys of juveniles for assess- ment tuning only), this allows for a substantial standardization in data collection pro- grammes, as in the current DCF Regulation. For eel the situation is much more complex, and the standardized approach applied to marine species is inappropriate. The WKESDCF Workshop (ICES, 2012a) reviewed brief overviews of the data collec- tion programmes for eel currently implemented under the DCF and the problems and concems identified by those Member States represented at the meeting. It was evident that Member States had adopted very different approaches to meeting the require- ments of the DCF, further highlighting the ambiguities in the current measures relating to diadromous species. Some Member States had collected no information because they believed (rightly or wrongly) that the measures did not apply to diadromous species in their waters; others had collected only the data specified in Commission Decision 2010/93, using data in assessments, but not all equally efficient or not on an annual basis; and others had developed pilot studies to cover a wide range of sampling re- quired to address national and international obligations for assessments. Workshop participants identified examples of the problems that they had encountered with the current data collection requirements for diadromous species; these included: • Inadequate geographical coverage; • Incompatibility of the requirements with the wide range of fishing methods employed; • Requirements are based on fisheries and not local river conditions (i.e. each river basin, and part, is subject to different recruitment patterns and hum an pressures leasing to localised differences in stock structures); • Reduction or closure of fisheries removes the requirement to collect data; • No fisheries-independent data collection requirement, especially in the ab- sence of fisheries; • No requirement to collect recruitment data; Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 109 • Inappropriate requirements for age analysis; • No data collection on non-fisheries anthropogenic factors affecting stocks; • Bycatch sampling is of limited use and value; • M aturity data are not required for assessment. It is hoped that some of these concems can be addressed as part of the next revision of the DCF (formerly known as EU-MAP). There are large differences in the information recorded in national surveys among the eel producing countries (Table 7.5). Those countries without an EMP don 't compile data regarding recruitment or anthropogenic mortality but, they do have some popu- lation surveys and data regarding some biological parameters. Even the countries that already have an EMP (those in the EU), have a very different level of information. Recruitment data are mainly collected in southem EU countries, and these countries also have some information on populations, but some of them use Eel specific electrofishing surveys, while others use other kinds of passive sampling methods. Most of the EU countries collect some information that allows them to esti- mate escapement. Even if it is not collected routinely, almost all the EU countries have some information regarding biological parameters; but data regarding natural mortal- ity are lacking in most cases. Some non-fishery anthropogenic mortality data are col- lected, many countries have data on hydropower mortality; some of them have data conceming barriers, intakes (water diversion structures) and predation. However, in the case of predation many countries consider this mortality as natural. In summary, most of the countries within the eel distribution range have some data regarding fisheries, but many of them, especially the non-EU Mediterranean countries, lack scientific (fishery-independent) eel specific surveys. The EU countries compile in- formation within the WFD and DCF directives, but these data are 1) not available in the non-EU countries, though some operate a similar programme, and 2) the data rec- orded in the DCF have been shown not to be useful for stock assessment purposes. Therefore, taking into account the common available information, a standardized ap- proach should be based on yellow eel density; preferable from surveys, such as those within the WFD, and if this is not available, from fisheries data (though these data are generally in the form of cpue and will need to be converted to density estimates). 7.3 Standardized approach One set of data that is common among most countries within the eel's natural range is that collected as part of the Water Framework Directive (WFD) program (Table 7.4). It consists in most cases of multispecies electric fishing assessments, distributed over a catchment. These data have the potential to be converted into yellow eel standing stock estimates for a catchment/ RBD / EMU, using current models (EDA, SMEPII: see Chap- ter 5). From the yellow eel standing stock estimate, it is possible to estimate silver eel escapement based on maturation schedule (Bevacqua et al., 2006), eye index (Pank- hurst, 1982), colour measurements using a spectrophotometer (Durif et al, 2009a) and /or a combination of methods (Acou et al., 2005; Durif et al, 2009b) (reviewed in Section 4.4 of WGEEL, 2010). WFD is focused on assessing the status if fish populations in fresh and transitional wa- ter, it has the advantage in that it is collected throughout the EU countries and the disadvantage that similar data are not collected (currently) in the non-EU countries. In relation to eel there are also some limitations of the data: 110 | Jo int EIFAAC/ICES/GFCM WGEEL REPORT 2014 1) In some countries eel does not contribute to the metric for assessing good ecological status (GES) for fish and thus eel are not assessed quantitatively as part of the program. 2 ) Sampling is undertaken on a 3- and sometime 6-year rolling program so an- nual assessments would not be available. 3 ) It is a multispecies method and so may underestimate the eel component in the population, but can be address through calibration of the technique (Baldwin and Aprahamian, 2012). 4 ) Quantitative assessments for eel are mainly confined to rivers that can be sampled using electric fishing, in most cases this means that the eel popula- tions in lakes, large rivers, transitional and coastal waters have not been quantitatively assessed and for these habitats the riverine estimates of silver eel production are used as proxies for these water bodies. However, these habitats are most effectively sampled using passive gears with catches ex- pressed in terms of catch per unit of effort (cpue). In order to use such data in the assessment there is a need to be able to convert the cpue estimate into a density estimate, this would then allow the data to be integrated with that collected using electric fishing and analysed in a similar way to that col- lected for WFD for non-riverine habitats or non EU countries (Figure 7.1). Though there are limitations to the dataset, it is a near universal set of data collected in a near standard way available throughout much of the eel's distribution range. Its spa- tial coverage may be limited as in most cases it is confined to those areas which can be effectively sampled using electric fishing and would need to be expanded to cover lakes, large section of river and transitional waters, especially as the latter habitats rep- resent the majority of the wetted area in an EMU. There is the limitation that a complete assessment, using all the data, for an EMU would only be possible on a three year (pos- sibly six year) basis, this does not prevent partial annual assessments within the EMU, and may be just as valid. For those countries where eel does not contribute to the metric for the assessment of GES and therefore may not be quantitatively sampled, it may be possible to alter protocols to include eel. It is important to note that the suggestion for a standardized approach is based on the yellow eel component of the stock, the WFD database is one source of such data, there may be others, but to convert yellow eel density data into silver eel escapement the same procedure, outlined in Figure 7.1, would still need to be followed. Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 111 Yellow eel (Scientific and /or fishery) survey Net/trap- CPUE DATA GAP Electric fishing Anthropogenic. mortality Yellow eel Densitv SMEPÍI/EDA Yelloweel standing stock SMEPIí/EDA— i Eyeindex Colour Silvereel escapement Anthropogenic. mortaiity Mortality Sex ratio Maturation schedule Growth rate Silvereel production Figure 7.1. Flow diagram show ing how yellow eel data collected as part of the WFD program and from other sources can be used to estim ate silver eel escapement. For such an approach there is a need to: 1 ) Undertake a study to convert cpue data to density data across a variety of habitats, some work in this area, is currently underway in Ireland and, will start in France in 2015, but is needed to be undertaken in a w ider range of habitats and countries. Associated with this is a need to standardize on the measurement of wetted area. Analysis in 2010 of the use of wetted area mod- els for estimating silver eel production revealed a lack of consistency within and between countries on how production area is determined and reported. The types of habitat considered in these estimates varied between EMUs and countries and differences were found in the estimates areas and these cre- ated uncertainty for stock assessment at the intemational level. A consistent approach, including all types of natural eel habitat is necessary, and may require more data collection to inform this process (ICES, 2010b). 2 ) Validate the models (EDA, SMEP II) and other approaches outlined in WGEEL (ICES, 2010b) to estimate silver eel escapement. A preliminary com- parison has been made between the predictions by the silvering model (Bevacqua et al, 2006) and the number of silver eels as determined by the 112 Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 silver index (Durif et al., 2009b). The dataset used for the validation was dif- ferent from that used to develop the model. The test data consisted of lengths of 1102 eels (male and female at different stages) collected in France in different types of water habitats. The predicted number of silver eels was very close to what the silver index determined (Figure 7.2). In the dataset 13% of the eels at were the pre-silver stage and 35% at the silver stage; the model predicted that 41% of the eels were silver. This value is intermediate between the estimate of strictly silver eels and a broader estimate which would encompass pre-silver eels. Figure 7.3 shows that the model behaves very well in the >600 mm, length classes with less than 3% difference with the index estimations. The main difference occurs in the 500 mm length class (6% difference). Figure 7.2. Percentages of silver eels (blue: as determined using the silver index; green: as predicted according to the silvering rate m odel) according to each size dass. ■ silver index model 300 400 500 600 700 800 900 1000 1100 length class(mm) Figure 7.3. Percentages of silver eels (blue: as determined using the silver index; green: as predicted according to the silvering rate m odel) according to each size class. Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 113 3 ) Spatially model life-history traits (growth, mortality, maturation schedule, sex ratio) in order to transport parameters from data-rich to data-poor EMUs. As an example data have been collected on the age and size of silver eel across their natural range. The mean length of female eel increased sig- nificantly with latitude (p <0.01), from 575 to 697 mm between 37-70° lati- tude, explaining 4% of the variability (Figure 7.4). There was no relationship between male size and latitude remaining constant at between 290-470 mm (Figure 7.4). latitude Figure 7.4. M ean length of silver eel in relation to latitude; fem ale (red), male (blue). Age at silvering, increased significantly with latitude for males and females (Figure 7.5). Average growth rate decreased significantly with latitude for female and male eel (Figure 7.6). 114 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 laötude Figure 7.5. M ean age of silver eel in relation to latitude; fem ale (red), male (blue). latitude Figure 7.6. M ean growth rate of eel in relation to latitude; fem ale (red), male (blue). An A nalysis of Covariance (ANCOVA) m odel incorporating latitude, longitude, year and habitat explained 35% and 62% of the variability in length and age of m ales at silvering, respectively, and 33% and 65% of the variability in length and age of fem ales at silvering, respectively (p < 0.01). 4 ) Combine the im pacts of anthropogenic (fisheries, hydropow er, water diver- sion structures, barriers, predation etc.) mortality together w ith the assess- m ent of silver eel escapem ent to estim ate overall silver eel production. Jo in t EIFAAC/ICES/GFCM WCEEL REPORT 201 4 I 115 7.4 Recommendations It is recom m ended that a program of research be undertaken w ith the aim of standard- ising / cross calibrating the assessm ent m ethods used to estim ate silver eel escapem ent from yellow eel abundance data, w ith the follow ing objectives: 1 ) Validate the m odels (EDA, SMEPII and others) and other approaches out- lined in WGEEL (2010) that are used to estim ate silver eel escapem ent from yellow eel abundance data. 2 ) Cross calibrate yellow eel catch per unit of effort (cpue) w ith density data across a variety of habitats (rivers, lakes, transitional water and coastal w a- ters). 3 ) D evelop a consistent approach to m easuring w etted area across all types of natural eel habitat. 4 ) Spatially m odel the life-history traits currently used in the m odels (growth, m ortality, maturation scliedule, sex ratio) in order to transport parameters from data-rich to data-poor EMUs. 5 ) Com bine the im pacts o f anthropogenic (fisheries, hydropow er, water diver- sion structures, barriers, predation etc.) mortality into the overall assess- m ent of silver eel escapem ent. 7.5 Tables Table 7.1: Coding used to classify data availability. NP NP: "N o t Pe r t in e n t ", where th e questio n asked does n o t apply t o th e in d iv id u a l case ( for example where c a t c h d a t a are absent as there is no fishery OR WHERE A HABITAT TYPE DOES NO T EXIST IN AN EMU). Parameter compiled in 100% of the EMUs or country area Parameter compiled in >50% of the EMUs or country area Parameter compiled in <50% of the EMUs or country area This parameter is not compiled 1 1 6 | Jo int EIFAAC/ICES/CFCM WGEEL REPORT 2014 Table 7.2. Available commercial fishery data by coimtry (blanks m ean no inform ation was availa- ble). Capacity Effort Catches & Land- ings G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er NO NP NP NP NP NP NP NP NP NP SE NP NP NP FI EE LV NP NP NP LT NP NP NP RU PL NP NP NP DE NP NP NP DK NP NP NP NL NP NP NP BE NP NP NP NP NP NP NP NP NP LU NP IE NP NP NP NP NP NP NP NP NP UK FR ES PT NP NP NP IT MT NP NP NP NP NP NP NP NP NP SI NP NP NP NP NP NP NP NP NP HR NP NP NP BA ME NP NP NP AL NP NP NP NP NP NP GR NP NP NP NP NP NP TR NP NP NP CY NP NP NP NP NP NP NP NP NP SY LB NP NP NP NP Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 117 Capacity Effort Catches & Land- ings G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er IL EG NP NP NP LY TN NP NP NP DZ NP NP NP MA Table 7.3. Available recreational fishery data per by Country (blanks m ean no information was available). Capacity Effort Catches & Landings G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er NO NP NP NP NP NP NP NP NP NP SE NP NP NP NP NP NP NP NP NP FI EE LV NP NP NP LT NP NP NP RU PL NP NP NP NP NP NP DE NP NP NP DK NP NP NP NL NP NP NP BE NP NP NP LU IE NP NP NP NP NP NP NP NP NP UK NP 1 NP NP . FR NP | NP NP NP NP NP ES PT NP NP NP NP NP NP NP NP NP IT 118 | Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 Capacity Effort Catches & Landings MT G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er G la ss Y el lo w Si lv er SI HR BA ME NP NP NP AL NP NP NP NP NP NP NP NP NP GR NP NP NP NP NP NP NP NP NP TR NP NP NP CY NP NP NP NP NP NP NP NP NP SY LB NP NP NP IL EG |: LY TN NP NP NP NP NP NP NP NP NP DZ MA Jo in t EIFAAC/ICES/CFCM WGEEL REPORT 201 4 I 119 Table 7.4. Information recorded in the EU m onitoring programs by Country. H 3 o >r § 3 > X3 cr>HH 2 H H 3H mcn 33 c3 Mm z 2 2 3 2 3 2 3 23 Y/N 2 2 2 3 2 3 2 3 2 3 Multiple passes 2 2 2 3 23 23 23 Eel specific W FD 2 2"3 23 23 23 23 Abundance 2 2 "3 2 3 2 3 2 2 3 Biometrics 2 2 *"3 2 3 2 3 2 3 2 3 2 3 Y/N 2 2 ”3 2 2 3 2 3 2 3 2 3 2 3 Glass eel surveys 2 2 -3 2 2 3 2 3 2 3 2 3 2 3 Yellow surveys 2 2 2 3 2 3 2 3 2 3 2 3 Silver surveys an3 2 "3 2 2 3 2 3 2 3 2 3 2 3 Length no 3 3 2 2 -3 2 3 2 3 2 3 2 3 2 3 Weight n>►in_ £L 2 2 "3 2 3 2 3 2 3 2 3 2 3 Age 2 2 2 3 2 3 2 3 2 3 2 3 Parasites 2 2 *"3 2 3 2 3 2 3 2 3 2 3 Sex 2 2 2 *3 2 3 2 3 2 3 2 3 2 3 Y/N 2 2 "3 2 "3 2 3 2 3 2 3 2 3 2 3 Glass eel surveys 2 2 2 2 3 2 3 2 3 2 3 2 3 Yellow surveys 2 2 2 33 2 3 2 3 2 3 2 3 2 3 Silver surveys on 3 3ÍDr>•-»rt>w 2 "3 2 -3 2 3 2 3 2 3 2 3 2 3 2 3 Length 2 2 "3 2 3 2 3 2 3 2 3 2 3 2 3 Weight cr.o 3 £L 2 2 2 3 2 3 2 3 2 3 2 3 2 3 Age 2 2l-3 23 23 23 23 23 23 Parasites 2 2 "3 2 3 2 3 2 3 2 3 2 3 2 3 Sex Joint EIFAAC/ICES/G FCM W CEEL REPORT 2014 2> O N H 2 r-< tnO r rca cn-< n> 2H 2-a 2a 2 a 2a 2 a 2 a 2a Y/N 2 a 2 -a 2 a 2 a 2 a 2 a 2 a 2 a Multiple passes 2 >-3 2 -a 2 a 2 a 2 a 2 a 2 a 2 a Eel specific W FD 2a 2-a 2a 2a 2a 2a 2a 2a Abundance 2’-d 2-a 2a 2a 2a 2a 2a 2a Biometrics 2’-d 2-a 2a 2a 2a 2a 2a 2a Y/N 2H 2-a 2a 2a 2a 2a 2a 2a Glass eel surveys 2 a 2-a 2a 2a 2a 2a 2 a 2 a Yellow surveys 2 -a 2a 2a 2a 2a 2a 2a 2a Silver surveys O na 2■-ð 2-a 2a 2a 2a 2a 2a 2a Length n0 1 3 2 -a 2 -a 2 a 2 a 2 a 2 a 2 a 2 a Weight n>3 Q.HT 2 2 -a 2 a 2 a 2 a 2 a 2 a 2 a Age 2 a 2-3 2a 2a 2a 2a 2a 2a Parasites 2 a 2 -a 2 a 2 a 2 a 2 a 2 a 2 a Sex 2 -a 2 -a 20 2a 2a 2a 2a 2a Y/N 2 -a 2 a 2 a 2 a 2 a 2 a 2 a 2 a Glass eel surveys 2 -a 2 a 2 a 2 a 2 a 2 a 2 a 2 a Yellow surveys 2 -a 2 a 2 a 2 a 2 a 2 a 2 a 2 a Silver surveys ona 2 -a 2 a 2 a 2l"v2 2a 2a 2a 2a Length í?fDn-tnD) 2 -a 2 a 2 a 2 a 2 a 2 a 2 a 2 a Weight o3 2 -a 2 a 2 a 2 a 2 a 2 a 2 a 2 a Age 2"a 2a 2a 2a 2a 2a 2a 2a Parasites 2 -a 2 a 2 a 2 a 2 a 2 a 2 a 2 a Sex Joint EIFAAC/ICES/CFCM W CEEL REPORT 201 4 122 Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 Table 7.5. Information recorded in national surveys per eel producing Country. Recruitment data R in ln p -ira l n a r a m p - N n n f i s h p r u m n r - Glass eel Young yellow eel Population Escapement ters tality C at ch es C PU E Su rv ey Tr ap C at ch es C PU E Su rv ey Tr ap Ee l sp ec ifi c el ec - tr of ish in g su r- V PV C u s<U o ,w Ö S £ t Q 9 Si lve r pr od uc tio n D ID SO N Tr ap M ar k- re cp at ur e A ge in g Se x l 13 Mo 13ö 3<a Gr ow th ra te H yd ro po w er Ba rr ie rs In ta ke s Pr ed at io n NO NP NP NP NP m m SE NP NP NP NP F I EE LV \i ■■ LT RU PL DE NP NP DK NL NP NP NP BE Lu H 73 o73 > r 1 2m 03 > 73 CQ 2 H H 73H tn C/3 71 73 G m 2 2 2 73 Catches G lass eel R ecruitm ent data 2 2 2 73 CPUE Survey Trap Catches Y oung yellow eel CPUE Survey Trap Eel specifíc elec- trofishing sur- v p v t; P opulationOther eel specifíc c i in r m r c Silver production E scapem ent DIDSON Trap M ark-recpature A geing B iological param e- ters Sex Natural M ortal- G rowth rate 2 ”3 2 73 H ydropow er Non fishery m or- tality 2 73 Barriers 2 73 2 73 2 73 Intakes 2 73 2 73 2 73 Predation Joint EIFAAC/ICES/G FCM W GEEL REPORT 201 4 | 123 c n k : n Catches Glass eel R ecruitm ent data CPUE Survey Trap Catches Young yellow eel CPUE Survey Trap Eel specific elec- trofishing sur- V P V Q PopulationOther eel specific c i i r x r o x r c Silver production E scapem ent DIDSON Irap Mark-recpature Ageing Biological param e- ters Sex Natural Mortal- Growth rate Hydropower Non fishery m or- tality Barriers Intakes Predation NJ Joint EIFAAC/ICES/CFCM W CEEL REPORT 2014 Jo in t EiFAAC/ICES/CFCM WGEEL REPORT 2014 | 125 8 ToR f (ii)) ... and work with ICES DataCentre to develop a data - base appropriate to eel along ICES standards (and wider geogra- phy) 8.1 Introduction Chapter 4 of thi-s report outlines the data requirem ents and gaps for the different stock assessm ents undertaken by the w orking group, and at the w orkshop on evaluating progress of eel m anagem ent plans (WKEPEMP) in 2012 (ICES, 2012a). Chapter 5 refers to the different m odels created by different countries to estim ate production and silver eel escapem ent and their data requirements. The overall conclusion of these chapters is the need for the collection of eel-specific data and the efficient availability of these data to the w orking group from countries w ithin the distribution range of the eel. WGEEL 2013 (ICES, 2013) noted a critical need for the im provem ent in the quality and consistency of data reporting at the national and EMU level. This inconsistency in re- porting affects the intem ational stock assessm ents and lim its our ability to provide m anagem ent advice for the eel stock. Currently the w orking group m em bers need to trawl through all country reports and m anually extract the relevant data. This is time consum ing - a d igitised reporting database w ould ensure a m ore efficient use of time at the w orking group session. The recom m endation from the WGEEL in 2013 w as a standardization of data table formats for use in the country reports. The standardiza- tion tables are offered as a format w hich w ill facilitate national reporting to all interna- tional fora requiring eel data. The long-term objective of such standardization is to facilitate the creation of an international database of eel stock parameters. The next step in digitising and standardising the data used by the w orking group is to address the storage issues for the data required annually for the stock assessm ents. Currently, data are stored in various spreadsheet files and databases created by m em - bers but u sing their institute facilities such as com puter software and servers. The time taken to update and m aintain these databases is done on a voluntary basis. This is not a good long-term strategy how ever and therefore a structured plan for storing data needs to be created, not least because of the im portance of the stock assessm ents in the ICES advice and evaluation of the Eel Regulation. 8.2 WGEEL Stock Assessment database There is a requirem ent for a reporting tem plate and database to facilitate the ease of extracting data from the Country Reports for use in the stock assessm ent and data anal- yses undertaken by the w orking group. Actíort plan for developing the database • D igitise Country Reports • Facilitate a streamlined, standardised reportíng process in EXCEL for the im m ediate future u sing the tem plate from WGEEL 2013; w ith the prospect o f creating a SQL or ACCESS database w ith rem ote access for data providers in the future. • Circulate EXCEL tem plate to Country Report lead authors • Facilitate Stock A ssessm ent w ith a stock assessm ent database containing: • Recruitment tim e-series 126 | Jo in t ElFAAC/ICES/GFCM WCEEL REPORT 2014 • Research data - (to be decided in the future) * yellow eel / standing stock data (see Chapter 7) * silver eel data • Encourage participation of all countries w ithin the eel distribution area and ensure all databases can capture data from different regions. U se WGS1984 (latitude/longitude) geoereferencing. • Countries outside EU • ICES countries • GFCM countries • EIFAAC countries 8.3 Existing databases It is not the aim of the task group to reinvent the w heel. There are a num ber of data- bases that have been created in the past, both w ithin the w orking group and during various intem ational projects. A discussion is required to determ ine h ow useful the data held in these databases are to the stock assessm ents carried out by the w orking group, and how to adopt those that can be used. In the fo llow in g text w e provide a prelim inary consideration of som e exam ple databases. 8.3.1 Recruitment Index database The recruitment index database w as created at the WGEEL m eeting in Rom e in 2006 (ICES, 2006) and is stored on a postgres (postgis) server accessible to the m em bers of the WGEEL. The database w as initially designed to store a range of data from catches to effort. To date it has on ly been used to m aintain the recruitment time-series. H ow - ever, it has the capacity to include yellow and silver eel series. The design links a loca- tion table w ith three tables describing either the recruitment series or the yellow or the silver eel series, and finally to use a final table to store data (Figure 8.1). Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 127 Figure 8.1. Schematic design of the eel recruitment index database. 8.3.2 EU-POSE Project-DBEEL database The aim of the EU-POSE project (Walker et al., 2013) w as to provide EU eel scientists and m anagers w ith a com prehensive know ledge of the techniques m ost suitable for the assessm ent of their local eel stocks, and thereby to support the conservation and m anagem ent of eel through the Eel M anagem ent Plan process. POSE developed a da- tabase structure for eel (DBEEL) in order to facilitate the collation and dissem ination of data for analysis by different m odels (see Chapter 5). This structure (Figure 8.2) could be adopted at the international level to support the coordinated assessm ent and m anagem ent of eel, and the intercalibrations requiring ex- changes o f eel data. H ow ever, m anagem ent of the database is a substantial task requir- ing resources, funding and quality control measures. 128 | Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 A. Geographicdata: i. RiverBasinDistrict ii. Catchment iii. Riversegment iv. Rivernode v. lake vi. Seaoutiet B. Environmental data: i. Temperature íi. Slope iii. Ðistancetosea iv. Habitattype v. Wetted area vi. Ecological productivity vii. Non-calcareouspercentage C. Pressure Impact data: í. Habitatloss ii. EcologicalStatus ili. Stocking iv. Obstruction: i. Chemical ii. Physical v. Predators: i. Fishery ii. Wildlife Figure 8.2. Database structure for the EU-POSE DBEEL. 8.3.3 International Eel Quality Database In recent years WGEEL has considered the risks o f reduced biological quality of (silver) eels. The reduction of the fitness of potential spawners, as a consequence of (specific) contam inants and diseases, and the potential m obilization of h igh loads of reprotoxic chem icals during migration, m ight be key factors that decrease the probability of suc- cessful m igration and reproduction. An increasing am ount of evidence indicates that eel quality m ight be an im portant issue in understanding the reasons for the decline of the species. A n international Eel Q uality Database already exists and is stored at In- stituut voor Natuur- en Bosonderzoek (INBO) in Belgium . It is updated on an annual basis by the institute w ith the relevant data, and a n ew application is currently under developm ent. The database is a com pilation of eel quality data over the w orld, includ- ing contam inants and diseases. The new application w ill be a m ore efficient system (m igrating from Excel worksheets to an A ccess database) and w ill include opportuni- ties to include m ore data fields and validation m echanism s. The database has been ex- panded now to include all anguillid species and hence w ill be renam ed (from EEQD (European Eel Quality Database) to EQD (Eel Q uality Database)). Further developm ent of the database is foreseen in the future. 8.3.4 Data Collection Framework Since 2000, an EU fram ework for the collection and m anagem ent of fisheries data has been in place. This fram ework w as reformed last in 2008 resulting in the Data Collec- tion Framework (DCF). Under this framework the M ember States (MS) collect, m anage and m ake available a w id e range of fisheries data n eeded for scientific advice. The data are collected on the basis of N ational Programm es in w hich the MS indicate w hich data are collected, the resources they allocate for the collection and h ow data are col- lected. M ember States m ust report annually on the im plem entation of their National Programm es and the Scientific, Technical and Econom ic Com m ittee for Fisheries E. Biological Processes: i. Migration Differentíation iii. Maturation iv. Mortality V. Growth D. Seientifio Observation data: i. Scientificfishing i. Electrofishing ii. Scientific gear fishing i. Gear characterístics ii. M igration monitoring Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 | 129 (STECF) evaluates these Annual Reports. Part of these data collected by the MS is up- loaded in databases m anaged by the Joint Research Centre (JRC) in response to data calls issued by DG MARE. These data are analysed by experts o f the STECF and form the basis for scientific op inions and recom m endations form ulated in STECF reports. The resulting scientific advice is used to inform the decision m aking process for the C om m on Fisheries Policy (CFP). If the recom m endations of WKESDCF (ICES, 2012a) and various STECF m eeting re- ports are accepted, the n ew DCF (formerly to be called EU-MAP) program m e, w hen agreed, w ill result in the collection of biological com m ercial and fishery-independent data on eels that w ou ld prove useful for stock assessm ents by the w orking group in the future. The WGEEL needs to consider a data call to use these data at future w orking groups and a d iscussion should be had w ith STECF to create a platform for this to happen on a rolling basis. 8 .4 Pros and cons for ICES DataCentre hosting an eel database If the w orking group are successful in applying to the ICES DataCentre to host the database, a num ber of issues m ust be addressed: • Can ICES DataCentre hold data from countries outside the ICES area? The w orking group works in collaboration w ith countries from ICES, GFCM and EIFAAC. The Italian Beam Trawl Survey is carried out in areas outside ICES countries but is hosted by the DataCentre so this is not anticipated to be a problem for eel data. • The data supplied to the DataCentre are public data in agreem ent w ith the ICES data policy ('http://w w w .ices.dk/m arine-data/guidelines-and-pol- icv/Pages/ICES-data-policy.aspxl. The only exception is com m ercial fisher- ies data that is com m ercially sensitive inform ation and therefore commercial data policy applies. The w orking group w ou ld need to get a data agreem ent from all data providers in relation to data publication. • Is there another alternative host organisation where the data remains private but has the funds and expertise required? • W ho has access to the database? • It is very im portant that the w orking group can easily access the data rem otely, so that work can progress outside the dates of annual m eet- ings, and w hen m eetings occur in different countries. It has yet to be established in DataCentre access w ould only be available at the ICES headquarters in Copenhagen. Currently a copy of the recruitment da- tabase is stored on one of the WGEEL m em ber's com puter, and R<-> postgres interaction is easy to set up. It is the conclusion of the w orking group that the best option is to work w ith ICES DataCentre to address the issues outlined above but that a solution m ay not be possible w ithout needing an alternative host centre. 8.5 Work Plan fo r developing a working group database The task of creating a standardised database for the WGEEL stock assessm ent cannot be done w ithin the short time frame of the annual m eeting. A work plan w ith tasks has been outlined b elow and it is the intention of the group to work on these topics over the com ing year. http://www.ices.dk/marine-data/guidelines-and-pol- 130 | Jo in t EIFAAC/ICES/CFCM WGEEL REPORT 2014 • Finalise additions and im provem ents to the stock assessm ent recruitment tables. • Create Stock A ssessm ent (Recruitment) Database Fact Sheet outlining (draft tem plate available): • Role of database • O utlíne w hat is captured in the relational database ■ Tables * Fields (units) ■ C ode requirem ents (EMU) • O utput from database ■ Reporting requirements for WGEEL and structure, raw data/ sum - m ary data ■ Creation of output queries ■ A ccess to export data from database • Export to R. • Create and fill m etadata docum ent for database (draft tem plate available) • ICES DataCentre requires com pliance w ith the IS019115. • The m etadata describes the data captured in the database, listing the ow ners of the data w ith relevant contact details. The Metadata w ill m ake it easier to retrieve, use and m anage the inform ation resource. • C om plete DataCentre Request Form. • Liaise w ith datacentre in the creation of: • SQL database • U ser friendly interface for adding data rem otely • Suitable/relevant output queries to assist stock assessm ent process at WGEEL • Rem ote access to raw data for stock assessm ent at WGEEL and other eel w orkshops created in the future • M aintenance program m e ■ Request form s for changes/additions to colum ns in tables ■ Request form s for additional fields w ithin a colum n * Arrangem ent in place to add tables to database for other life stages should additional stock assessm ent analysis be created. • Once a database tem plate and interface have been designed by ICES. The w orking group w ill need to create a docum ent for users on h ow to fill in the form. • Other: liaise w ith ICES over the long-term storage of data files created at w orking groups. • W hat happens to files on SharePoint after a num ber o f years; are they archived or deleted? 8 .6 Conclusion It is proposed that all country report authors w ill adopt the digital tem plate created in WGEEL 2013, to ensure the efficient operation of the w orking group. This efficient han- Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 dling and processing o f data has been recom m ended in several previous reports (in- cluding ICES, 2001; ICES, 2010a, ICES, 2013b). Concerted action is required in 2015 by key m em bers o f the w orking group in cooperation w ith the ICES DataCentre, to ensure these recom m endations are not reiterated next year. 132 | Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 9 ToR g) Provide guidance on management measures that can be applied to both EU and non-EU waters 9.1 Introduction The inform ation in this chapter w ill be im portant in gu id ing n ew participants to WGEEL and non-EU countries as to the possible m anagem ent options that could be applied in their regions and to considerations o f future post-evaluations of EU eel man- agem ent plans, and of other m anagem ent plans outside of the EU. It should be noted that there is som e disparity am ong M ember States regarding the degree of realisation of these measures: som e M embers States appear to be im plem ent- ing the foreseen m easures according to their schedule, w hile others are lagging behind. H ow ever in the fo llow in g analysis, the apparent absence of m anagem ent m easures of a particular type does not necessarily indicate a lack of appropriate action, since, for exam ple, a country that has never had a com m ercial fishery could not be expected to take m anagem ent m easures to control one. D uring the creation of the Eel Regulation in 2007 the Council of the European U nion noted that in relation to eel there are diverse conditions and needs throughout the C om m unity w hich w ill require different specific solutions. That d iversity should be taken into account in the planning and execution of m anagem ent m easures to ensure protection and sustainable use of the eel population. In order to ensure that their eel recovery m easures w ere effective and equitable, it w as necessary that M em ber States identified the m easures they intended to take and the areas to be covered, that this inform ation be com m unicated w id ely and that the effectiveness of the m easures be evaluated. To that effect Articles 2(8) & 2(10) o f the 2007 Eel Regulation 1100/2007 state that: (8) A n Eel M anagem ent Plan m ay contain but is not lim ited to, the fo llow in g measures: • R educing com m ercial fishing activity. • Restricting recreational fishing. • Restocking m easures. • Structural m easures to m ake rivers passable and im prove river habitats, to- gether w ith other environm ental m easures. • Transportation of silver eel from inland waters to waters from w hich they can escape freely to the Sargasso Sea. • Com bating predators.* • Temporary sw itching off hydro-electric pow er turbines. • M easures related to aquaculture. (10) In the Eel M anagem ent Plan, each M ember State shall im plem ent appropriate m easures as soon as possib le to reduce the eel mortality caused by factors outside the fishery, including hydroelectric turbines, pum ps or predators, unless this is not neces- sary to attain the objective of the plan. *Given that the ToR for this section related only to anthropogenic im pacts, man- agem ent actions undertaken or proposed in relation to Combating Predators were not included. Jo in t EIFAAC/ICES/GFCM WGEEL REPORT 2014 1 133 9.2 Analysis of Management Measures reported Differing m anagem ent structures w ithin the EU m ean that EMPs and assessm ent pro- cedures vary betw een Member States. Information and data relating to m anagem ent m easures were obtained from ICES WKEPEMP report (ICES, 2013a), previous ICES Reports and the Country Reports to the WGEEL from 2013 & 2014, w ith the list of Countries included in the analysis derived from Table 10.3 of the WGEEL 2013 report (ICES, 2013b). A total of 1362 individual m anagem ent actions w ere reported from the 81 EMUs estab- lished by M ember States for the im plem entation of their EMPs, the precise details of w hich can be found in ICES (2013a). G iven the volum e of m anagem ent m easures adopted across the EU, it w as decided for the purposes of this report to filter the available data under the classification of man- agem ent actions listed in ICES WKEPEMP (ICES, 2013a), w hich were: • Commercial fishery • Recreational fishery • H ydropow er and obstacles • Habitat im provem ent • Stocking • Others M anagem ent actions aim ed at control of commercial and/or recreational fisheries w ere the m ost com m only adopted, w ith slightly fewer m easures addressing hydropow er and obstacles to eel m ovem ents, and few er still im plem enting habitat im provem ent or stocking m easures (Figure 9.1). Commercial fishing Recreational fishing Hydropower and obstacles Habitat improvement Stocking Others Figure 9.1. The proportion of m anagem ent actions of various categories im plem ented in EMPs across the EU. 1 3 4 | Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 9.2.1 Aquaculture Though listed in the Eel Regulation as a possible feature of m anagem ent m easures no M ember States reported any direct actions related to aquaculture. 9.2.2 Fisheries 9.2.2.1 Commercial fishery Across the EU, 17 countries have adopted m anagem ent m easures to reduce the im pact of com mercial and recreational fishing on the eel stock (Figures 9.2 and 9.3). D espite the large variety of m easures proposed by each country, they are in general devoted to reducing fishing effort, size limit, and to im plem enting national registers for catches. In the majority of cases such actions w ere driven by: • im provem ents in fishery administration systems; • the introduction or extension of closed seasons; • a reduction in fishing effort.. The diversity of commercial fishery m anagem ent m easures w as large but the variation w ithin these different categories w as even larger, ranging from the prohibition of spe- cific fishing gears such as fykenets in a particular fishing area, to a total ban of com - mercial eel fisheries (e.g. N orw ay and Ireland). v s . / Figure 9.2. EU and non-EU countries adopting m anagem ent m easures affecting commercial eel fisheries: green = m easures either in place or intended; w hite = no know n measures; grey= no data. (D istribution of countries taking measures remains the same, for all life stages o f eel). Jo in t EIFAAC/ICES/GFCM WCEEL REPORT 201 4 I 135 9.2.2.2 Recreational fishery & T ' c • 'y r ’ • . Figure 9.3. EU and non-EU countries adopting m anagem ent m easures affecting recreational fish ing for eel: green = m easures either in place or intended; w hite = no know n measures; grey= no data. The m anagem ent m easures adopted to reduce the im pact of recreational fishing on eel populations covered a w id e range o f actions, sim ilar in m any w ays to those u sed in the comm ercial fisheries, and included: • a com plete ban on targeting or capturing eel; • restricting the fishery at certain periods or life stages (e.g. im plem enting closed seasons); • introducing a quota to reduce the num bers caught; • adjusting gears and hours of fishing thereby reducing their efficiency; • regulating the fisheries by im plem enting system s to report catches; • increase m inim um size limit. 9.2.3 Hydroelectric turbines, pumps and obstacles The im pact of hydroelectric turbines and proposed m itigation m easures to aid eel m ovem ents w ere the subject of previous review s by WGEEL (ICES, 2004; 2008). Exten- sive review s focusing on eel passage were produced by the UK Environm ent A gency as part of their Eel M anual in 2011; https://w w w .gov.uk/governm ent/uploads/system /uploads/attach- m ent_data/file/297341/geho0411btqb-e-e.pdf eel passage https://www.gov.uk/government/uploads/system/uploads/attach- 136 Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 EMP m easures that are intended to m itigate for the problem s caused by hydropow er, pum ps and obstacles are detailed in Country Reports and their distribution across the EU is illustrated in Figure 9.4. It should be noted that w hilst coverage of these m easures looks w idespread across M em ber States, m any of the m easures proposed in national or EMU eel m anagem ent plans have not yet been im plem ented or are only partially im plem ented. A ll continen- tal life-history stages of eel can be adversely affected by these type of m igratory im- passes. Juvenile eels (glass eel and sm all yellow eels) m ay be obstructed in their upstream m igrations. Silver eels, and large yellow eels in som e locatíons, can be de- layed in downstream m igration due to river discharge regulation and they are likely to experience significant m ortality rates associated w ith passage downstream through pow er generation facilities. Such mortalities, and non-fatal injuries, can result from ei- ther im pingem ent at turbine intake screens or follow ing entrainment and passage through turbines. Similar adverse effects on eels can occur at pum ping stations, though generally EMP m easures do not specifically address these. H ow ever, m any of the hy- dropow er m itigation m easures are also relevant to problem s associated w ith pum ping stations and other anthropogenic obstacles im peding riverine eel m igrations. Facilitation of natural upstream m igration in hydropow er im pacted eel populations has been proposed by eight countries in respect of glass eel and nine countries in re- spect o f sm all yellow eel. This in volves either rem oval of barriers or installation of ap- propriate eel pass structures. Likewise, rem oval of obstacles and/or provision of eel pass facilities has been proposed by nine countries for larger yellow eels and by five countries for silver eel m igrating downstream . M anagem ent m easures involving hydropow er plant operational protocols or design features are proposed m easures in eleven M ember States, though the specific details are unclear or are subject to future technology advances. A short to m edium -term m easure included in the EMPs for several countries is the trapping of silver eels up- stream of hydropow er dam s for release downstream . This m easure also provides in- com e for eel fisherm en affected by EMP restrictions on com m ercial eel capture as their skills are re-em ployed in such conservation fisheries. Research and surveys to docu- m ent the im pact of hydropow er on eel populations of individual EM Us have been pro- posed by seven countries and a number of others listed a sm all num ber of "other" related m easures that appear to be of lim ited applicability to EMPs elsew here. Jo in t EIFAAC/ICES/CFCM WGEEL REPORT 2014 I 1 37 « °-«-o / Figure 9.4. EU and non-EU countries adopting management measures relating to hydropower and obstacles: green = measures either in place or intended; white = no known measures; grey= no data. 9.2.4 Habitat improvement M easures categorised as habitat im provem ent in the ICES WKEPEMP report (2013a) and the Country Reports to the WGEEL in 2014 (see Annex 10) w ere reported by only six M ember States. The specific m easures taken com prise a variety of actions that are often som ew hat vague in nature, ranging from those broadly relating to increasing habitat connectivity, and water quality im provem ent, to the adoption of protected ar- eas, and the benefit to the eel as a consequence of the application of the Water Frame- work Directive. Broad similarity of m easures betw een countries cannot be assum ed. The distribution of habitat im provem ent m easures by country affecting all eel life stages is show n in Figure 9.5. Maps for individual life stages are identical, since habitat im provem ent m easures generally have w id e ranging im pacts that affect all life stages. 138 | Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 Figure 9.5. M anagem ent measures related to Habitat Improvement taken by country affecting all eel Iife stages: green = measures either in place or intended; w hite = no know n measures; grey= no data. 9.2.5 Stocking In 2008, prior to the inception of EMPs in 2009, tw elve countries proposed the use of stocking in their m anagem ent plans to enhance eel populations. In 2013, stocking of glass eel w as undertaken in 16 Member States (Figure 9.6). W hilst stocking is a measure featuring in virtually all of the EMPs for w hich there are data, on ly six achieved their EMP stocking target. M ost EMUs have partially reached their targets and a few have yet to im plem ent the action (ICES, 2013a). The m ost com m on reason given for a country being unable to achieve its stocking tar- get w as a lack of funding to buy glass eel. The im pact of hold ing and m aintenance- feeding of elvers in aquaculture needs to be addressed w ith regard to their potential adaptation to culture conditions w hich are subsequently deleterious w hen stocked out, as know n from other fish species like salm on and trout. G iven the unknow n nature of som e of the eel pathogens in the w ild , biosecurity m ust be of h ighest priority in any transport/translocation or eel culture system . A ll equip- ment, vehicles, tanks, personnel and clothing m ust be thoroughly disinfected before and after any contact w ith eels and critical control points should be established at all rearing/holding facilities. Stocking w ith on grow n you ng yellow eel carries the risk of spreading disease, reduced genetic fitness and skew ed sex ratios, w hile the stocking of w ild-caught you ng yellow eels from clean donor sites m ay be deleterious if they are stocked in contam inated recipient sites (Walker et a l, 2009). Jo in t EIFAAC/ICES/CFCM WGEEL REPORT 201 4 | 139 C oncem s about current eel stocking practices have been expressed and its effective contribution to ensure increased silver eel production has been raised. It has been rec- om m ended that there should be a co-ordinated marking program m e of stocked eel and thereby separable from w ild eel in subsequent sam pling. The effects of stocking under EMPs cannot be dem onstrated im m ediately because of the generational lag tim e but recent Swedish work indicates that stocked eels behave in the sam e w ay as natural recruits (ICES, 2013b).WGEEL review ed the use of stocking as a m anagem ent m easure in their reports from 2010 and 2013 (ICES 2010 & 2013b). There w as alm ost no n ew evidence available to WGEEL in 2013 that w as not consid- ered by ICES WGEEL in its 2010 report and the conclusions of both are similar, i.e. that there is evidence that translocated and stocked eel can contribute to yellow and silver eel production in recipient waters, but that evidence of further contribution to actual spaw ning is lim ited (by the general lack of know ledge of the spaw ning of any eel). T 4 <• „ O * Figure 9.6. M anagem ent m easures related to Stocking taken by country: green = m easures either in place or intended; w hite = no know n measures; grey= no data. 9 .2 .6 Other management options Other m anagem ent options listed by Member States in their EMPs and associated Re- ports, include a w id e range of actions, none of w hich effectively refer strictly to man- aging an anthropogenic im pact but m ostly to other issues ranging from legal fram ework enhancem ent to m onitoring and research. Other m anagem ent options essentially fall under eight m ain subgroups: 1 ) Strengthening of the framework, including: 1.1) Reinforcem ent of legal framework; 140 I Jo in t EIFAAC/ICES/CFCM WCEEL REPORT 2014 1.2 ) Reinforcem ent of co-ordination am ong agencies and interested par- ties; 1.3 ) D issem ination, raising of awareness; 1.4) Stakeholders' involvem ent. 2 ) Reinforcem ent of fishery reporting structures, including 2 .1 ) Setting up of fisheries reporting system s (other than DCF); 2.2 ) U se of im port/export data to m onitor com m ercial fisheries; 2.3 ) U se of catch/return logbooks to m onitor com m ercial fisheries; 2 .4 ) Im provem ent of fisheries control (enforcement); 2.5 ) Control and contrast of illegal fisheries (enforcement). 3 ) Reinforcem ent of m onitoring frameworks, including 3 .1) Catchm ent surveys, by fykenet or electrofishing (both m ultispecific or eel-specific) in defined catchments; 3 .2) Establishm ent of new , or the continuation of existing recruitment m onitoring, m ost specific for glass eel and m any aim ing at investigat- ing potential n ew sites; 3.3 ) A ssessm ent of sites for silver eel m onitoring, the im plem entation of or continuation of escapem ent monitoring; 3.4 ) Continuation of m onitoring of index rivers. 4 ) A ssessm ent of efficacy of technical actions, to 4.1 ) Enhance accessibility and m igration routes; 4.2 ) Reduce im pacts and losses on eel populations. 5 ) A ctions related to restocking, including 5.1 ) Identification of areas for restocking; 5.2 ) Im plem entation of restocking plans; 5.3 ) Investigations of contribution of stocking to the eel stock; 5.4 ) Pilot studies for restocking actions. 6 ) A ctions related to eel quality issues and fish health, such as 6 .1) M onitoring of Anguillicola crassus; 6.2 ) Investigations on pathogens and contamination; 6.3 ) Im plem entation of sanitary agreem ents specific for dealers; 6.4 ) Assurance of com pliance to Fish H ealth Directive. 7 ) Inclusion of eel w ithin specific conservation or species protection pro- gram m es. 8 ) Research actions, generic or specifically aim ed at: 8 .1 ) D evelopm ent of m odels for the assessm ent of stock indicators; 8.2 ) D evelopm ent of m odels to assess com pliance w ith targets; Joint EIFAAC/iCES/GFCM WCEEL REPORT 2014 8.3 ) Development of indices for assessing management effectiveness; 8.4 ) Setting up of river or basin indexes for recruitment and escapement quantification; 8.5 ) Development of ecosystem-based models specific for eel; 8.6 ) Retrieving and analysing historical data. Some of these actions refer specifically to eel stage, i.e. glass eel, yellow and silver eel: such is the case with specific monitoring targeting recruitment, yellow eel stock or es- capement. Most of the management options listed here refer to all eel life stages be- cause they are generic or aimed at enhancing the knowledge base or the general working framework. 9.3 Post-evaluation In 2013, the European Commission stated that Member States have been progressively implementing more and more management measures as foreseen in their EMPs. These measures include fisheries restrictions, restocking, facilitation of upstream and down- stream migration, etc. There is however some disparity among Member States regard- ing the degree of realisation of these measures: some Members States appear to be implementing the foreseen measures according to schedule, while others are lagging behind. Some of the most challenging measures to implement are the removal or mod- ification of large obstacles, usually due to technical and financial constraints. The re- covery plans have only been in place for several years with many having been submitted late (ranging from several months to almost two years after the deadline). Given that it will take at least 2-3 eel generations (i.e. at least ten years) before any significant trends in the stock status can be observed, it is too early to draw conclusions as to the effectiveness of these measures. Of the 81 EMUs established by Member States for the implementation of their EMPs, progress was made in implementing management measures related to fisheries, but other anthropogenic management measures, such as improving habitats and passage, or achieving stocking targets have often been postponed or only partially imple- mented. Following the 2012 EMP Reviews (ICES, 2013a) it remains difficult to assess the out- come of EMPs against the 40% escapement target set by the Eel Regulation. The scien- tific advice gleaned from the sources examined underlines that the effectiveness of individual management measures cannot always be demonstrated: necessary data are missing or the measures concemed are not expected to produce their effects immedi- ately or in the short term. For instance, there is high probability that restrictions on fisheries for silver eel have contributed to increase in silver eel escapement. However, management measures targeting eels prior to the silver eel stage (e.g. stocking) are not expected to have yet contributed to increased silver eel escapement due to generational lag time (ranging from approximately five years in the Mediterranean lagoons to 25- 30 years in Northem Europe). Non-fisheries measures related to hydropower, pump- ing stations and migration obstacles are also difficult to evaluate at this point in time, mainly due to the site specific nature of potential impacts and lack of post evaluation data. 142 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 The post-evaluation process commencing with the reporting by Member States in 2012 has been first and foremost a synchronized process of national post-evaluations. Na- tional reports have evaluated to what extent the implementation of the EMP(s) has been successful, and whether the targets have been achieved. 9.4 Conclusions The stock in the whole distribution area is considered to constitute one single panmictic population (Palm et al., 2009; Als et a l, 2011). This contrasts strongly with the scattered, small-scale pattern of the continental stock and the national/regional scale of manage- ment (Dekker, 2000; 2008). Management of the stock by uniform measures all over the EU (e.g. a common minimum legal size, a common closed season or a shared catch quotum, etc.) were not feasible or applied, since uniform measures cannot be designed in a way that would be effective all over the EU (or the wider range of the eel) due to large variations in eel life history over its natural range. Regionalised management (a common objective and target, but local action planning, local measures and local implementation) is central to the EU Eel Regulation (Dekker, 2004; 2009) and on this basis Eel Management Plans have been developed per coun- try/region. Few cross-boundary EMPs exist. Note, however, that the European eel range extends beyond the EU and that the management of the eel and anthropogenic impacts are necessary throughout its range. As such it is hoped that the information above will be an important and useful reference to new participants to WGEEL and non-EU countries, suggesting possible management options which could be applied in their regions and to considerations of future post-evaluations of implemented manage- ment actions. 9.5 Recommendations We recommend a comprehensive evaluation of the effectiveness of various manage- ment measures across EU and non-EU waters facilitating the prioritisation of manage- ment actions. Management guidelines have been produced on various topics; it is recommended that these are hosted on the EIFAAC web site, so that their specific details can be scruti- nised. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 143 Annex 1: Reference list A c o u , A . , L e f e b v r e , F ., C o n t o u r n e t , P . , P o i z a t , G ., P a n f i l i , J. a n d C r iv e l l i , A .J . 2 0 0 5 . S i l v e r i n g o f f e m a l e e e l s ( A n g u i l l a a n g u i l la ) i n t w o s u b - p o p u l a t i o n s o f t h e R h ö n e D e l t a . B u l l e t i n F r a n c a is d e la P e c h e e t d e la P i s c i c u l t u r e 3 6 8 : 5 5 - 6 8 . A c o u A . , G a b r i e l G ., L a f f a i l l e P . , F e u n t e u n E . 2 0 0 9 . D i f f e r e n t i a l p r o d u c t i o n a n d c o n d i t i o n i n d i c e s o f p r e m i g r a n t e e l s ( A n g u i l l a a n g u i l l a ) i n t w o A t la n t i c c o a s t a l c a t c h m e n t s o f F r a n c e . In : C a s - s e l m a n J .M . a n d C a i m s D .K . ( e d s . ) , E e l s a t t h e e d g e : s c i e n c e , s t a t u s , a n d c o n s e r v a t i o n c o n - c e r n s . A m e r i c a n F i s h e r i e s S o c i e t y S y m p o s i u m , 5 8 : 1 5 7 - 1 7 4 . A d a m G ., 1 9 9 7 . L 'a n g u i l l e e u r o p é e n n e ( A n g u i l l a a n g u i l la L . 1 7 5 8 ) : d y n a m i q u e d e la s o u s - p o p u l a - t i o n d u la c d e G r a n d - L ie u e n r e la t io n a v e c l e s f a c t e u r s e n v i r o n n e m e n t a u x e t a n t h r o p i q u e s . T h é s e d e d o c t o r a t U n i v e r s i t é P a u l S a b a t i e r , T o u l o u s e III, 3 5 3 p p . A k a i k e , H . 1 9 7 4 . A n e w l o o k a t t h e s t a t i s t i c a l m o d e l i d e n t i f i c a t i o n , I E E E T r a n s a c t i o n s o n A u t o m a t i c C o n t r o l 1 9 ( 6 ) : 7 1 6 - 7 2 3 , d o i : 1 0 .1 1 0 9 /T A C .1 9 7 4 .1 1 0 0 7 0 5 , M R 0 4 2 3 7 1 6 . A l l e e W .C . 1 9 3 1 . A n i m a l A g g r e g a t i o n s . A s t u d y in G e n e r a l S o c i o l o g y . U n i v e r s i t y o f C h i c a g o P r e s s , C h i c a g o . 4 3 1 p p . A l l e n , M ., R . R o s e l l a n d D . E v a n s . 2 0 0 6 . P r e d ic t in g c a t c h e s f o r t h e L o u g h N e a g h ( N o r t h e r n Ir e - l a n d ) e e l f i s h e r y b a s e d o n s t o c k i n p u t s , e f f o r t a n d e n v i r o n m e n t a l v a r i a b l e s . F i s h e r i e s M a n - a g e m e n t a n d E c o l o g y 1 3 (4 ) : 2 5 1 - 2 6 0 . A l s , T .D . , H a n s e n , M .M ., M a e s , G .E ., C a s t o n g u a y , M ., R ie m a n n , L ., A a r e s t r u p , K ., M u n k , P ., S p a r h o l t , H . , H a n e l , R . a n d B e r n a t c h e z , L . 2 0 1 1 . A U r o a d s l e a d t o h o m e : p a n m i x i a o f E u r o - p e a n e e l i n t h e S a r g a s s o S e a . M o l e c u la r E c o l o g y 2 0 : 1 3 3 3 - 1 3 4 6 . A p r a h a m i a n M .W ., W a lk e r A .M . , W i l l i a m s B ., B a r k A . , K n ig h t s B . 2 0 0 7 . O n t h e a p p l i c a t i o n o f m o d e l s o f E u r o p e a n e e l ( A n g u i l l a a n g u i l la ) p r o d u c t i o n a n d e s c a p e m e n t t o t h e d e v e l o p m e n t o f E e l M a n a g e m e n t P la n s : t h e R iv e r S e v e m . IC E S J o u r n a l o f M a r in e S c i e n c e 6 4 : 1 4 7 2 - 1 4 8 2 . A r d i z z o n e G .D . , C a t a u d e l l a S ., a n d R o s s i R . 1 9 8 8 . M a n a g e m e n t o f c o a s t a l l a g o o n f i s h e r i e s a n d a q u a c u l t u r e i n I t a ly . F A O F i s h . T e c h . P a p . 2 9 3 . B a l d w i n , L . a n d A p r a h a m i a n , M . 2 0 1 2 . A n e v a l u a t i o n o f e l e c t r i c f i s h i n g f o r a s s e s s m e n t o f r e s i - d e n t e e l i n r i v e r s . F i s h e r i e s R e s e a r c h 1 2 3 - 1 2 4 : 4 - 8 . A s t r ö m M . a n d D e k k e r W . 2 0 0 7 . W h e n w i l l t h e e e l r e c o v e r ? A f u l l l i f e c y c l e m o d e l . I C E S J o u r n a l o f M a r in e S c ie n c e , 6 4 : 1 - 8 . B a r t h o l o m e w A , a n d B o h n s a c k J A . 2 0 0 5 . A r e v i e w o f c a t c h - a n d - r e l e a s e a n g l i n g m o r t a l i t y w i t h i m p l i c a t i o n s f o r n o - t a k e r e s e r v e s . R e v i e w s i n F i s h B i o l o g y a n d F i s h e r i e s 15: 1 2 9 - 1 5 4 . B e v e r t o n , R . J. H . a n d H o l t , S . J. 1 9 5 7 . O n t h e D y n a m i c s o f E x p lo i t e d F i s h P o p u l a t i o n s , F i s h e r y I n v e s t i g a t i o n s S e r i e s II V o l u m e X IX , M i n i s t r y o f A g r ic u l t u r e , F i s h e r i e s a n d F o o d . B e v a c q u a D . , P . M e l iá , A . J. C r iv e l l i , G . A . D e L e o a n d M . G a t t o . 2 0 0 6 . T i m i n g a n d r a t e o f s e x u a l m a t u r a t i o n o f E u r o p e a n e e l in b r a c k i s h a n d f r e s h w a t e r e n v i r o n m e n t s . J o u r n a l o f F i s h B io l - o g y 6 9 : 2 0 0 - 2 0 8 . B e a u la t o n , L ., P . L a m b e r t , E . P r e v o s t a n d A . B a r d o n n e t . 2 0 1 4 . S c i e n c e f o r g l a s s e e l f i s h e r i e s m a n - a g e m e n t : H o w t o d e f i n e T A C i n F r a n c e ? A m e r ic a n F i s h e r i e s S o c i e t y A n n u a l M e e t i n g S y m - p o s i u m , Q u é b e c C i t y , Q u é b e c , C a n a d a . B e v a c q u a D . , P . M e l iá , M . S c h ia v in a , A . J. C r iv e l l i , M . G a t t o a n d G . A . D e L e o . I n p r e p . A n a g e - I e n g t h s t r u c t u r e d d e m o g r a p h i c m o d e l f o r a n g u i l l i d e e l s , I n r e v i e w t o E c o l o g ic a l A p p l i c a - t i o n s . B ie r m a n , S .M ., T ie n , N . , v a n d e W o lf s h a a r , K .E ., W in t e r , H .V . , d e G r a a f , M . 2 0 1 2 . E v a lu a t io n o f t h e D u t c h E e l M a n a g e m e n t P l a n 2 0 0 9 - 2 0 1 1 . I M A R E S C 0 6 7 /1 2 , p p . 1 3 2 . 144 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 B i lo t t a , G .S . , S ib l e y , P . , H a t e l e y , J., a n d D o n , A . 2 0 1 1 . T h e d e c l i n e o f t h e E u r o p e a n e e l A n g u i l l a a n g u i l l a : q u a n t i f y i n g a n d m a n a g i n g e s c a p e m e n t t o s u p p o r t c o n s e r v a t i o n . J o u m a l o f F i s h B i o l o g y 7 8 : 2 3 - 3 8 . B r e a k e r , L . C . 2 0 0 7 . A c l o s e r l o o k a t r e g i m e s h i f t s b a s e d o n c o a s t a l o b s e r v a t i o n s a l o n g t h e e a s t e r n b o u n d a r y o f t h e N o r t h P a c i f i c . C o n t i n e n t a l S h e l f R e s e a r c h , 2 7 : 2 2 5 0 - 2 2 7 7 . B r ia n d , C ., B o n h o m m e a u , S ., B e a u la t o n , L ., a n d C a s t e ln a u d , G . 2 0 0 8 . A n a p p r a i s a l o f h i s t o r i c a l g l a s s e e l f i s h e r i e s a n d m a r k e t s : l a n d i n g s , t r a d e r o u t e s a n d f u t u r e p r o s p e c t f o r m a n a g e m e n t . W e s p o r t , I r e la n d . B r ia n d , C ., S a u v a g e t , B ., a n d E r ia u , G . 2 0 1 4 . S u i v i d e l a d é v a l a i s o n e n 2 0 1 2 - 2 0 1 3 s u r la V i la i n e . I n s t i t u t i o n d ' A m é n a g e m e n t d e la V i la i n e , L a R o c h e B e m a r d . D e k k e r W . 2 0 0 0 . T h e f r a c t a l g e o m e t r y o f t h e E u r o p e a n e e l s t o c k . I C E S J o u r n a l o f M a r in e S c i e n c e , 5 7 : 1 0 9 - 1 2 1 . D e k k e r W . 2 0 0 3 . D i d la c k o f s p a w n e r s c a u s e t h e c o l l a p s e o f t h e E u r o p e a n e e l , A n g u i l l a a n g u i l l a ? F i s h e r i e s M a n a g e m e n t a n d E c o l o g y 10: 3 6 5 - 3 7 6 . D e k k e r , W . 2 0 0 4 . S l i p p i n g t h o u g h o u r h a n d s ; p o p u l a t i o n d y n a m i c s o f t h e E u r o p e a n e e l . F a c u l t e i t d e r N a t u u r w e t e n s c h a p p e n . 1 8 6 p p . D e k k e r W ., P a w s o n M ., W a lk e r A . , R o s e l l R ., E v a n s D . , B r ia n d C ., C a s t e l n a u d G ., L a m b e r t P ., B e a u la t o n L ., A s t r ö m M ., W ic k s t r ö m H ., P o o l e R ., M c C a r t h y T .K ., B l a s z k o w s k i M ., d e L e o G . a n d B e v a c q u a D . 2 0 0 6 . R e p o r t o f F P 6 - p r o j e c t F P 6 - 0 2 2 4 8 8 , R e s t o r a t io n o f t h e E u r o p e a n e e l p o p u l a t i o n ; p i l o t s t u d i e s f o r a s c i e n t i f i c f r a m e w o r k i n s u p p o r t o f s u s t a i n a b l e m a n a g e m e n t : S L IM E . D e k k e r W ., D e e r e n b e r g C . a n d J a n s e n H . 2 0 0 8 . D u u r z a a m b e h e e r v a n d e a a l i n N e d e r l a n d : O n d e r b o u w i n g v a n e e n b e h e e r s p la n . I M A R E S r a p p o r t C 0 4 1 /0 8 , 9 9 p p . D e k k e r W . 2 0 0 9 . A c o n c e p t u a l m a n a g e m e n t f r a m e w o r k f o r t h e r e s t o r a t í o n o f t h e d e c l i n i n g E u - r o p e a n e e l s t o c k . P a g e s 3 - 1 9 in J .M . C a s s e l m a n & D .K . C a ir n s , e d i t o r s . E e l s a t t h e E d g e : s c i e n c e , s t a t u s , a n d c o n s e r v a t i o n c o n c e r n s . A m e r ic a n F i s h e r i e s S o c i e t y , S y m p o s i u m 5 8 , B e - t h e s d a , M a r y la n d . D e k k e r , W . 2 0 1 0 . P o s t - e v a l u a t i o n o f e e l s t o c k m a n a g e m e n t : a m e t h o d o l o g y u n d e r c o n s t r u c t io n . I M A R E S r e p o r t C 0 5 6 /1 0 , 6 9 p p . D e k k e r , W . 2 0 1 2 . A s s e s s m e n t o f t h e e e l s t o c k i n S w e d e n , s p r i n g 2 0 1 2 . F ir s t p o s t - e v a l u a t i o n o f t h e S w e d i s h E e l M a n a g e m e n t P la n . A q u a r e p o r t s 2 0 1 2 :9 . S w e d i s h U n i v e r s i t y o f A g r ic u l t u r a l S c ie n c e s , D r o t t n i n g h o l m . 7 7 p p . D e k k e r , W . a n d N . S jö b e r g . 2 0 1 3 . A s s e s s m e n t o f t h e f i s h i n g im p a c t o n t h e s i l v e r e e l s t o c k i n t h e B a lt i c u s i n g S u r v i v a l A n a l y s i s - C a n a d ia n J o u r n a l o f F i s h e r i e s a n d A q u a t i c S c i e n c e - 2 0 1 3 - 0 2 5 0 .p d f . D e J a g e r , A .L . a n d V o g t , J .V . 2 0 1 0 . D e v e l o p m e n t a n d d e m o n s t r a t i o n o f a s t r u c t u r e d h y d r o l o g i c a l f e a t u r e c o d i n g s y s t e m f o r E u r o p e . H y d r o l o g i c a l S c i e n c e J o u r n a l . 5 5 : 6 6 1 - 6 7 5 . D e L e o , G . A . , P . M e l ia , M . G a t t o a n d A . J. C r iv e l l i . 2 0 0 7 . E e l p o p u l a t i o n m o d e l i n g a n d i t s a p p l i - c a t i o n t o c o n s e r v a t i o n m a n a g e m e n t . S y m p o s i u m o f t h e A m e r i c a n F i s h e r i e s S o c i e t y . D e r i s o , R , B . 1 9 8 0 . H a r v e s t i n g s t r a t e g i e s a n d p a r a m e t e r e s t i m a t i o n f o r a n a g e - s t r u c t u r e d m o d e l . C a n a d i a n J o u r n a l o f F i s h e r i e s a n d A q u a t i c S c i e n c e , 3 7 : 2 6 8 - 2 8 2 . D e r i s o , R . B ., B . J. Q k a in n 111 a n d P . R . N e a l . 1 9 8 5 . C a t c h - a g e a n a l y s i s w i t h a u x i l i a r y i n f o r m a t i o n . C a n a d i a n J o u r n a l o f F i s h e r i e s a n d A q u a t i c S c i e n c e , 4 2 : 8 1 5 - 8 2 4 . D F O . 2 0 0 6 . A H a r v e s t S t r a t e g y C o m p l i a n t w i t h t h e P r e c a u t io n a r y A p p r o a c h (P D F ) . D F O C a n . S c i . A d v i s . S e c . S c i . A d v i s . R e p . 2 0 0 6 /0 2 3 . D u r i f , C ., S . D u f o u r a n d P . E lie . 2 0 0 5 . T h e s i l v e r i n g p r o c e s s o f A n g u i l l a a n g u i l la : A n e w c l a s s i f i c a - t i o n f r o m t h e y e l l o w r e s i d e n t t o t h e s i l v e r m i g r a t i n g s t a g e . J o u m a l o f F i s h B i o l o g y 6 6 (4 ) : 1 0 2 5 - 1 0 4 3 . Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 145 D u r i f , C .M .F ., v a n G i n n e k e n , V ., D u f o u r , S ., M ú l l e r , T ., E lie , P . 2 0 0 9 a . S e a s o n a l e v o l u t i o n a n d i n d i v i d u a l d i f f e r e n c e s i n s i l v e r i n g e e l s f r o m d i f f e r e n t l o c a t i o n s , in : V a n d e n T h i l la r t , G ., D u f o u r , S ., R a n k in , J .C . (E d s .) , S p a w n i n g m ig r a t io n o f t h e E u r o p e a n e e l : R e p r o d u c t i o n in - d e x , a u s e f u l t o o l f o r c o n s e r v a t i o n m a n a g e m e n t , S p r in g e r N e t h e r l a n d s , p p . 1 3 - 3 8 . D u r i f C ., G u ib e r t A . , E l ie P . 2 0 0 9 . M o r p h o l o g i c a l d i s c r i m i n a t i o n o f t h e s i l v e r i n g s t a g e s o f t h e E u r o p e a n e e l . In : C a s s e l m a n J M , C a i m s D K ( e d s ) E e l s a t t h e e d g e : s c i e n c e , s t a t u s , a n d c o n - s e r v a t i o n c o n c e r n s . A m e r i c a n F i s h e r i e s S o c i e t y S y m p o s i u m 5 8 , B e t h e s d a , M a r y la n d , p p 1 0 3 - 1 1 1 . E c o n o m i d i s , P .S . 1 9 9 1 . C h e c k l i s t o f f r e s h w a t e r f i s h e s o f G r e e c e . R e c e n t s t a t u s o f t h r e a t s a n d p r o - t e c t i o n . G r e e k S o c ie t y fo r t h e P r o t e c t io n o f N a t u r e , A t h e n s , 1—47 . E c o n o m i d i s , P .S . , D im i t r io u , E ., P a g o n i , R ., M i c h a lo u d i , E . a n d N a t s i s , L . 2 0 0 0 . I n t r o d u c e d a n d t r a n s l o c a t e d f i s h s p e c i e s i n t h e i n l a n d w a t e r s o f G r e e c e . F i s h e r i e s M a n a g e m e n t a n d E c o l o g y , 7: 2 3 9 - 2 5 0 . E u r o p e a n C o u n c i l . 2 0 0 7 . C o u n c i l R e g u l a t i o n (E C ) N o 1 1 0 0 /2 0 0 7 o f 1 8 S e p t e m b e r 2 0 0 7 e s t a b l i s h - i n g m e a s u r e s f o r t h e r e c o v e r y o f t h e s t o c k o f E u r o p e a n e e l . O f f i c ia l J o u r n a l o f t h e E u r o p e a n U n i o n L 2 4 8 / 1 7 : 1 - 7 . F A O . 2 0 1 1 . F i s h S t a t P l u s - U n i v e r s a l s o f t w a r e f o r f i s h e r y s t a t i s t i c a l t i m e - s e r i e s . F o o d a n d A g r i - c u l t u r e O r g a n i z a t i o n o f t h e U n i t e d N a t i o n s , F i s h e r i e s a n d A q u a c u l t u r e D e p a r t m e n t , http://www.fao.org/fishery/statistics/software/fishstat/en. F e u n t e u n , E ., A . A c o u , P . L a f f a i l l e a n d A . L e g a u l t . 2 0 0 0 . E u r o p e a n e e l (A n g u i l l a a n g u i l la ) : P r e d ic - t i o n o f s p a w n e r e s c a p e m e n t f r o m c o n t in e n t a l p o p u l a t i o n p a r a m e t e r s . C a n a d ia n J o u m a l o f F i s h e r i e s a n d A q u a t i c S c i e n c e s 5 7 (8 ) : 1 6 2 7 - 1 6 3 5 . F e r t e r , K ., W e l t e r s b a c h , M .S . , S t r e h lo w , H .V . , V o l s t a d , J .H ., A l o s , J ., A r l i n g h a u s , R ., A r m s t r o n g , M ., D o r o w , M ., d e G r a a f , M ., v a n d e r H a m m e n , T ., H y d e r , K ., L e v r e l , H . , P a u lr u d , A . , R a d t k e , K ., R o c k l in , D . , R e e d t z , S p a r r e v o h n , C . a n d V e ig a , P . 2 0 1 3 . U n e x p e c t e d l y h i g h c a t c h - a n d - r e l e a s e r a t e s i n E u r o p e a n m a r i n e r e c r e a t i o n a l f i s h e r i e s : i m p l i c a t i o n s f o r s c i e n c e a n d m a n a g e m e n t . IC E S J o u r n a l o f M a r in e S c ie n c e , 7 0 : 1 3 1 9 - 1 3 2 9 . F r a n c is , R . I. C . C . a n d D . J. J e l ly m a n . 1 9 9 9 . A r e m e a n s i z e d a t a a d e q u a t e t o m o n i t o r f r e s h w a t e r e e l f i s h e r i e s ? M a r in e a n d F r e s h w a t e r R e s e a r c h 5 0 (4 ) : 3 5 5 - 3 6 6 . H a n e l , R ., S t e p p u t t i s , D . , B o n h o m m e a u , S ., C a s t o n g u a y , M ., S c h a b e r , M ., W y s u j a c k , K ., V o b a c h , M . a n d M i l le r , M . J. 2 0 1 4 . L o w la r v a l a b u n d a n c e in t h e S a r g a s s o S e a : n e w e v i d e n c e a b o u t r e d u c e d r e c r u i t m e n t o f t h e A t la n t i c e e l s . N a t u r w i s s e n s c h a f t e n . D O I 1 0 .1 0 0 7 / s 0 0 1 1 4 - 0 1 4 - 1 2 4 3 - 6 . H a s t i e T .J. a n d T ib s h ir a n i R .J . 1 9 9 0 . G e n e r a l i z e d A d d i t i v e M o d e l s , N e w Y o r k : C h a p m a n a n d H a l l . H i l b o m , R ., a n d W a lt e r s , C . J. 1 9 9 2 . Q u a n t i t a t i v e f i s h e r i e s s t o c k a s s e s s m e n t : c h o ic e , d y n a m i c s a n d u n c e r t a i n t y . R e v i e w s in F i s h B i o l o g y a n d F i s h e r ie s , 2 : 1 7 7 - 1 8 6 . I b a n e z , F ., F r o m e n t i n , J .-M ., a n d C a s t e l , J. 1 9 9 3 . A p p l i c a t i o n o f t h e c u m u l a t e d f u n c t i o n t o t h e p r o c e s s i n g o f c h r o n o l o g i c a l d a t a in o c e a n o g r a p h y . C o m p t e s R e n d u s d e l ' A c a d é m i e d e s S c i- e n c e s S é r i e III - S c i e n c e s d e la V i e - L i f e S c i e n c e s , 3 1 6 : 7 4 5 - 7 4 8 . IC E S . 2 0 0 1 . R e p o r t o f I C E S /E I F A C W o r k in g G r o u p o n E e l s . IC E S C .M . 2 0 0 1 /A C F M : 0 3 . I C E S . 2 0 0 2 . R e p o r t o f I C E S /E I F A C W o r k in g G r o u p o n E e l s . IC E S C .M . 2 0 0 2 /A C F M : 0 3 . I C E S . 2 0 0 4 . R e p o r t o f I C E S /E I F A C W o r k in g G r o u p o n E e l s , 7 - 1 1 O c t o b e r 2 0 0 3 , S u k a r r ie t a , S p a in . I C E S C M 2 0 0 4 /A C F M : 0 9 . I C E S . 2 0 0 6 . R e p o r t o f t h e 2 0 0 6 S e s s i o n o f t h e J o in t E I F A C /I C E S W o r k i n g G r o u p o n E e ls . C M 2 0 0 6 /A C F M , 16 : 3 5 2 p p . I C E S . 2 0 0 7 . R e p o r t o f t h e 2 0 0 7 S e s s i o n o f t h e J o in t E I F A C /I C E S W o r k in g G r o u p o n E e l s . I C E S A d v i s o r y C o m m i t t e e o n F i s h e r y M a n a g e m e n t . IC E S C M 0 0 7 /A C F M : 2 3 . http://www.fao.org/fishery/statistics/software/fishstat/en 146 Joint EIFAAC/IŒS/CFCM WCEEL REPORT 2014 I C E S . 2 0 0 8 . T h e r e p o r t o f t h e 2 0 0 8 S e s s i o n o f t h e J o in t E I F A C /I C E S W o r k in g G r o u p o n E e l s , S e p - t e m b e r 2 0 0 8 ; I C E S C M 2 0 0 8 / A C O M : 1 5 .1 9 2 p p . a n d c o u n t r y r e p o r t s . I C E S . 2 0 1 0 a . R e p o r t o f t h e S t u d y G r o u p o n I n t e r n a t io n a l P o s t - E v a l u a t i o n o n E e l s , 1 0 - 1 2 M a y 2 0 1 0 , V i n c e n n e s , F r a n c e . I C E S C M 2 0 1 0 /S S G E F :2 0 . 4 2 p p . I C E S . 2 0 1 0 b . T h e r e p o r t o f t h e 2 0 1 0 S e s s i o n o f t h e J o in t E I F A C /I C E S W o r k i n g G r o u p o n E e ls , S e p t e m b e r 2 0 1 0 ; IC E S C M 2 0 0 9 / A C O M : 1 8 .1 9 8 p p . a n d C o u n t r y R e p o r t s . IC E S . 2 0 1 1 a . R e p o r t o f t h e 2 0 1 1 S e s s i o n o f t h e J o in t E I F A A C /I C E S W o r k in g G r o u p o n E e l s L is - b o n , P o r t u g a l , 5 - 9 S e p t e m b e r 2 0 1 1 ; I C E S C M 2 0 1 1 /A C O M : 1 8 , 2 4 4 p . I C E S . 2 0 1 l b . R e p o r t o f t h e S t u d y G r o u p o n I n t e m a t i o n a l P o s t - E v a l u a t i o n o n E e l s (S G I P E E ) . I C E S C M 2 0 1 1 /S S G E F : 1 3 . 4 2 p . I C E S . 2 0 1 2 a . R e p o r t o f t h e W o r k s h o p o n E e l a n d S a lm o n D C F D a t a . I C E S C M /A C O M : 6 2 . 6 3 p p . I C E S . 2 0 1 2 b . R e p o r t o f t h e 2 0 1 2 S e s s i o n o f t h e J o in t E I F A A C /I C E S W o r k i n g G r o u p o n E e l s , C o - p e r f h a g e n , D e n m a r k , 3 - 9 S e p t e m b e r 2 0 1 2 ; I C E S C M 2 0 1 2 /A C O M : 1 8 , E I F A A C O c c a s io n a l P a p e r 4 9 , 8 2 8 p p . I C E S . 2 0 1 2 c . IC E S I m p l e m e n t a t i o n o f A d v i c e f o r D a t a - l i m i t e d S t o c k s i n 2 0 1 2 i n i t s 2 0 1 2 A d v i c e . IC E S C M 2 0 1 2 / A C O M 6 8 . 4 2 p p . I C E S . 2 0 1 2 d . R e p o r t o f t h e W o r k s h o p o n t h e D e v e l o p m e n t o f A s s e s s m e n t s b a s e d o n L IF E h i s t o r y t r a i t s a n d E x p lo i t a t i o n C h a r a c t e r i s t i c s (W K L I F E ), 1 3 - 1 7 F e b r u a r y 2 0 1 2 , L i s b o n , P o r t u g a l . IC E S C M 2 0 1 2 / A C O M : 3 6 .1 4 0 p p . I C E S . 2 0 1 3 a . R e p o r t o f t h e W o r k s h o p o n E v a lu a t io n P r o g r e s s E e l M a n a g e m e n t P l a n s (W K E P E M P ) , 1 3 - 1 5 M a y 2 0 1 3 , C o p e n h a g e n , D e n m a r k . I C E S C M 2 0 1 3 /A C O M - .3 2 . 7 5 7 p p . I C E S . 2 0 1 3 b . R e p o r t o f t h e J o in t E I F A A C /I C E S W o r k i n g G r o u p o n E e l s (W G E E L ) , 1 8 - 2 2 M a r c h 2 0 1 3 in S u k a r r ie t a , S p a in , 4 - 1 0 S e p t e m b e r 2 0 1 3 i n C o p e n h a g e n , D e n m a r k . I C E S C M 2 0 1 3 /A C O M : 1 8 . 8 5 1 p p . IC E S . 2 0 1 4 . I C E S G e n e r a l A d v i c e , B o o k 1 . J a c o b y , D . a n d G o l lo c k , M . 2 0 1 4 . T h e I U C N R e d L is t o f T h r e a t e n e d S p e c ie s . V e r s i o n 2 0 1 4 .3 . < w w w . i u c n r e d l i s t . o r g > . J e l ly m a n , D . J. a n d B . L . C h i s n a l l . 1 9 9 9 . H a b i t a t p r e f e r e n c e s o f s h o r t f i n n e d e e l s ( A n g u i l l a a u s tr a l i s ) , i n t w o N e w Z e a l a n d l o w l a n d la k e s . N e w Z e a l a n d J o u r n a l o f M a r in e a n d F r e s h w a t e r R e - s e a r c h 3 3 (2 ) : 2 3 3 - 2 4 8 . J o u a n í n C ., B r ia n d C ., B e a u la t o n L ., L a m b e r t L . 2 0 1 2 . E e l D e n s i t y A n a l y s i s ( E D A 2 .x ) . U n m o d é l e s t a t i s t i q u e p o u r e s t i m e r l ' é c h a p p e m e n t d e s a n g u i l l e s a r g e n t é e s (A n g u i l i a a n g u i l l a ) d a n s u n r é s e a u h y d r o g r a p h i q u e . C o n v e n t i o n O N E M A - C e m a g r e f . P a r t e n a r ia t 2 0 1 1 . D o m a i n e : E s - p é c e s a q u a t i q u e s c o n t i n e n t a l e s , A c t i o n 1 1 .1 . R a p p o r t d ' é t a p e . K e e k e n , V i s c o u n t , a n d W in t e r . 2 0 1 1 . B e h a v io u r o f e e l s a r o u n d a f i s h e x c l u s í o n s y s t e m w i t h s t r o b e l i g h t s a t p u m p i n g s t a t io n I j m u i d e n . D I D S O N m e a s u r e m e n t s . I M A R E S . K u o , L . a n d M a l l i c k , B . 1 9 9 8 . V a r ia b le s e l e c t i o n f o r r e g r e s s i o n m o d e l s . S a n k h y a B , 6 0 ( 1 ) : 6 5 - 8 1 . L a r s e n , B .M ., H e s t h a g e n , T ., T h o r s t a d , E .B . a n d D i s e r u d , O .H . 2 0 1 4 . I n c r e a s e d a b u n d a n c e o f E u - r o p e a n e e l ( A n g u i l l a a n g u i l la ) i n a c i d i f i e d N o r w e g i a n r i v e r s a f t e r l i m i n g . E c o l o g y o f F r e s h - w a t e r F i s h . I n p r e s s . L e T r e u t , H . L e s ím p a c t s d u c h a n g e m e n t c l im a t iq u e e n A q u i t a i n e . P r e s s e u n i v e r s i t a i r e d e B o r - d e a u x . 3 6 5 p p . L o b o n - C e r v ia , J. a n d T . I g l e s ia s . 2 0 0 8 . L o n g - t e r m n u m e r i c a l c h a n g e s a n d r e g u l a t i o n i n a r iv e r s t o c k o f E u r o p e a n e e l A n g u i l l a a n g u i l la . F r e s h w a t e r B i o l o g y 5 3 (9 ) : 1 8 3 2 - 1 8 4 4 . M a t t h e w s , M . A . , D . W . E v a n s , C . A . M c C l in t o c k a n d C . M o r ia r t y . 2 0 0 3 . A g e , g r o w t h , a n d c a t c h - r e la t e d d a t a o f y e l l o w e e l A n g u i l l a a n g u i l la (L .) f r o m la k e s o f t h e E r n e c a t c h m e n t , I r e la n d . A m e r i c a n F i s h e r i e s S o c i e t y S y m p o s i u m 2 0 0 3 ( 3 3 ) : 2 0 7 - 2 1 5 . http://www.iucnredlist.org Joint ElFAAC/ ICES/GFCM WCEEL REPORT 2014 I 147 M c C a r t h y , T . K ., P . F r a n k ie w i c z , P . C u l l e n , M . B l a s z k o w s k i , W . O ' C o n n o r a n d D . D o h e r t y . 2 0 0 8 . L o n g - t e r m e f f e c t s o f h y d r o p o w e r in s t a l l a t i o n s a n d a s s o c i a t e d r i v e r r e g u l a t i o n o n R iv e r S h a n n o n e e l p o p u l a t i o n s : M i t i g a t i o n a n d m a n a g e m e n t . H y d r o b i o l o g i a 6 0 9 (1 ) : 1 0 9 - 1 2 4 . M c C a r t h y , T .K ., N o w a k , D . , G r e n n a n , J ., B a t e m a n , A . , C o n n e e l y , B ., a n d M a c N a m a r a , R . 2 0 1 3 . S p a w n e r e s c a p e m e n t o f E u r o p e a n e e l ( A n g u i l l a a n g u i l la ) f r o m t h e R iv e r E r n e , I r e la n d . E c o l - o g y o f F r e s h w a t e r F is h : n / a - n / a . d o i: 1 0 .1 1 1 1 /e f f . l 2 0 9 1 . M c G in n i t y , P ., D e E y t o , E ., G i lb e y , J., G a r g a n , P ., R o c h e , W . , S t a f f o r d , T ., M c G a r r ig le , M ., Ó ’M a o i l é i d i g h , N . a n d P . M i l l s . 2 0 1 1 . A p r e d i c t i v e m o d e l f o r e s t i m a t i n g r i v e r h a b i t a t a r e a u s i n g G l S - d e r i v e d c a t c h m e n t a n d r i v e r v a r i a b l e s . F i s h e r i e s M a n a g e m e n t a n d E c o l o g y , V o l u m e 1 9 , I s s u e 1 , p a g e s 6 9 - 7 7 . M o r ia r t y , C ., E d . 1 9 9 6 . T h e E u r o p e a n e e l f i s h e r y in 1 9 9 3 a n d 1 9 9 4 . F i s h e r i e s B u l l e t in 1 4 . M u g g e o , V .M .R . 2 0 0 3 . E s t im a t in g r e g r e s s i o n m o d e l s w i t h u n k n o w n b r e a k - p o in t s . S t a t i s t i c s in M e d i c i n e , 2 2 : 3 0 5 5 - 3 0 7 1 . M u g g e o , V .M .R . 2 0 0 8 . S e g m e n t e d : A n R P a c k a g e t o F i t R e g r e s s i o n M o d e l s w i t h B r o k e n - L in e R e l a t i o n s h i p s . R n e w s 8: 2 0 - 2 5 . O e b e r s t , R . a n d F l a d u n g , E . 2 0 1 2 . G e r m a n E e l M o d e l ( G E M I I ) f o r d e s c r i b i n g e e l , A n g u i l l a a n g u i l la (L .) , s t o c k d y n a m i c s i n t h e r i v e r E lb e s y s t e m . I n f . F i s c h e r e i f o r s c h . 5 9 : 9 - 1 7 . P a l m , S ., D a n n e w i t z , J ., P r e s t e g a a r d , T ., W ic k s t r o m , H . 2 0 0 9 . P a n m ix i a i n E u r o p e a n e e l r e v i s i t e d : n o g e n e t i c d i f f e r e n c e b e t w e e n m a t u r i n g a d u l t s f r o m s o u t h e r n a n d n o r t h e m E u r o p e . H e r e d - i t y , 1 0 3 , 8 2 - 8 9 . P a n k h u r s t , N .W . 1 9 8 2 . R e la t i o n o f v i s u a l c h a n g e s t o t h e o n s e t o f s e x u a l m a t u r a t io n i n t h e E u r o - p e a n e e l , A n g u i l l a A n g u i l l a (L .) . J o u r n a l o f F i s h B i o l o g y 2 1 : 1 2 7 - 1 4 0 . P l u m m e r , M . 2 0 1 3 . P a c k a g e 'r ja g s '. T h e c o m p r e h e n s i v e R a r c h i v e n e t w o r k <h t t p : / / c r a n .r - p r o - j e c t .o r g /> . P o o l e , W .R ., R e y n o l d s , J .D .R . a n d M o r ia r t y , C . 1 9 9 0 . O b s e r v a t i o n s o n t h e s i l v e r e e l m i g r a t i o n s o f t h e B u r r i s h o o le r i v e r s y s t e m , I r e la n d . 1 9 5 9 - 1 9 8 8 . I n t . R e v u e G e s H y d r o b i o l . 7 5 (6 ); 8 0 7 - 8 1 5 . R e id , K . B . 2 0 0 1 . T h e d e c l i n e o f A m e r ic a n e e l ( A n g u i l l a r o s t r a ta ) i n L a k e O n t a r i o /S t L a w r e n c e R iv e r e c o s y s t e m : a m o d e l l i n g a p p r o a c h t o id e n t i f i c a t i o n o f d a t a g a p s a n d r e s e a r c h p r io r i t i e s . A n n A r b o r , M i c h ig a n , L a k e O n t a r i o C o m m it t e e , G r e a t L a k e s F i s h e r y C o m m i s s i o n . R ic k e r , W . E . 1 9 5 4 . S t o c k a n d R e c r u i t m e n t J o u r n a l o f t h e F i s h e r i e s R e s e a r c h B o a r d o f C a n a d a , 1 1 (5 ) : 5 5 9 - 6 2 3 . d o i : 1 0 .1 1 3 9 / f 5 4 - 0 3 9 . R o s e l l , R ., D . E v a n s a n d M . A l l e n . 2 0 0 5 . T h e e e l f i s h e r y i n L o u g h N e a g h , N o r t h e r n I r e la n d - A n e x a m p l e o f s u s t a i n a b l e m a n a g e m e n t ? F i s h e r i e s M a n a g e m e n t a n d E c o l o g y 1 2 (6 ) : 3 7 7 - 3 8 5 . R o s s i , R . 1 9 7 9 . A n e s t i m a t e o f t h e p r o d u c t i o n o f t h e e e l p o p u l a t i o n i n t h e V a l l i o f C o m m a c c h io ( P o D e l t a ) d u r i n g 1 9 7 4 - 1 9 7 6 . B o l l e t t in o d e Z o o l o g i a 4 6 , 2 1 7 - 2 2 3 . S c h u l z e , T ., U . K a h l , R . J. R a d k e a n d J. B e n n d o r f . 2 0 0 4 . C o n s u m p t i o n , a b u n d a n c e a n d h a b i t a t u s e o f A n g u i l l a a n g u i l l a i n a m e s o t r o p h i c r e s e r v o ir . J o u m a l o f F i s h B i o l o g y 6 5 (6 ) : 1 5 4 3 - 1 5 6 2 . S p a r r e , P . 1 9 7 9 . S o m e n e c e s s a r y a d j u s t m e n t s f o r u s i n g t h e c o m m o n m e t h o d s i n e e l a s s e s s m e n t s . In : E e l r e s e a r c h a n d m a n a g e m e n t . ( T h u r o w , F ., e d . ) , p a p e r s p r e s e n t e d t o a n E I F A C /I C E S S y m p o s i u m , H e l s i n k i , 9 - 1 1 J u n e 1 9 7 6 , R a p o r t s e t P r o c é s - V e r b a u x d e s R é io n s , C o n s e i l I n - t e m a t i o n a l p o u r T E x p lo r a t io n d e la M e r 1 7 4 , 4 1 - 4 4 . T e s c h F .W . 2 0 0 3 . T h e e e l - B i o l o g y a n d m a n a g e m e n t o f a n g u i l l i d e e l s , L o n d o n , C h a p m a n H a l l , 4 3 4 p p . T h o r s t a d , E .B ., L a r s e n , B .M ., F i n s t a d , B ., H e s t h a g e n , T ., H v i d s t e n , N .A . , J o h n s e n , B .O ., N æ s j e , T .F . a n d S a n d l u n d , O .T . 2 0 1 1 . K u n n s k a p s o p p s u m m e r i n g o m á l o g f o r s l a g t i l o v e r v á k i n g s s y s t e m i n o r s k e v a s s d r a g . N I N A R a p p o r t 6 6 1 : 1 - 6 9 . I n N o r w e g i a n . http://cran.r-pro-%e2%80%a8ject.org/ http://cran.r-pro-%e2%80%a8ject.org/ 148 1 Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 V a n D e W o l f s h a a r , K .E ., T ie n , N . , W in t e r , H .V . , D e G r a a f , M ., a n d B ie r m a n , S . 2 0 1 4 . A s p a t i a l a s s e s s m e n t m o d e l f o r E u o o p e a n e e l ( A n g u i l l a a n g u i l la ) i n a d e l t a , t h e N e t h e r l a n d s . K n o w l e d g s a n d M a n a g e m n t o f A q u a t i c E c o s y s t e m s , 4 1 2 , 0 2 . V o g t } ., S o i l l e P . , e t a l. 2 0 0 7 . A p a n - E u r o p e a n r i v e r a n d c a t c h m e n t d a t a b a s e . L u x e m b o u r g , J o in t R e s e a r c h C e n t r e - I n s t i t u t e f o r E n v ir o n m e n t a n d S u s t a in a b i l i t y : 1 2 0 . V o l l e s t a d , L . A . a n d J o n s s o n , B . 1 9 8 8 . A 1 3 y e a r s t u d y o f t h e p o p u l a t i o n d y n a m i c s a n d g r o w t h o f t h e E u r o p e a n e e l A n g u i l l a a n g u i l la i n a N o r w e g i a n R iv e r ; e v i d e n c e f o r d e n s i t y - d e p e n d a n t m o r t a l i t y , a n d d e v e l o p m e n t o f a m o d e l f o r p r e d i c t i n g y i e l d . J o u r n a l o f A n i m a l E c o l o g y , 5 8 ; 9 8 3 - 9 9 7 . V o l l e s t a d , L . A . 1 9 9 2 . G e o g r a p h i c v a r i a t io n i n a g e a n d l e n g t h a t m e t a m o r p h o s i s o f m a t u r i n g E u r o p e a n e e l : e n v i r o n m e n t a l e f f e c t s a n d p h e n o t y p i c p l a s t i d t y . J o u r n a l o f A n i m a l E c o l o g y , 6 1 : 1 . 4 1 - 4 8 . W a lk e r A .M . , A p o s t o l a k i P ., P a w s o n M ., W a l t o n } ., S c u t t - P h i l l ip s J. a n d M a r t i n T . 2 0 0 9 . D e v e lo p - i n g G u id e l in e s f o r b e s t p r a c t ic e in s to c k in g e e l f o r e n h a n c e m e n t p u r p o s e s . C e f a s P r o j e c t C 3 2 4 3 f u n d e d b y t h e F i s h e r i e s C h a l l e n g e F u n d , M a r in e & F i s h e r i e s A g e n c y , D e f r a , U K . 6 2 p p . W a lk e r , A . M ., E . A n d o n e g i , P . A p o s t o l a k i , M . A p r a h a m i a n , L . B e a u la t o n , D . B e v a c q u a , C . B r i- a n d , A . C a n n a s , E . D e E y t o , W . D e k k e r , G . A . D e L e o , E . D ia z , P . D o e r i n g - A r j e s , E . F l a d u n g , C . J o u a n i n , P . L a m b e r t , R . P o o l e , R . O e b e r s t a n d M . S c h ia v in a . 2 0 1 3 . L o t 2 : P i l o t p r o j e c t t o e s t i m a t e p o t e n t i a l a n d a c t u a l e s c a p e m e n t o f s i l v e r e e l . F in a l p r o j e c t r e p o r t , S e r v i c e c o n t r a c t S 1 2 .5 3 9 5 9 8 , S t u d i e s a n d P i lo t P r o j e c t s f o r C a r r y i n g o u t t h e C o m m o n F i s h e r i e s P o l i c y , B r u s - s e l s , E u r o p e a n C o m m i s s i o n , D ir e c t o r a t e - G e n e r a l f o r M a r i t im e A f f a i r s a n d F i s h e r i e s (D G M a r e ) : 3 5 8 p p . W a lt e r s , C . a n d K i t c h e l l J .F . 2 0 0 1 . C u l t i v a t i o n / d e p e n s a t i o n e f f e c t s o n j u v e n i l e s u r v í v a l a n d r e - c r u i t m e n t : i m p l i c a t i o n s f o r t h e t h e o r y o f f i s h i n g . C a n a d ia n J o u r n a l o f F i s h e r i e s a n d A q u a t i c S c i e n c e s 5 8 : 3 9 - 5 0 . W o o d w a r d , R . H . , a n d G o l d s m i t h , P . L . 1 9 7 0 . L e s s o m m e s c u m u l é e s . I n M a t h é m a t i q u e s e t s t a t i s - t i q u e s p o u r l ' in d u s t r i e . M o n o g r a p h i e s IC I , 3 -1 e t 3 - 8 , P a r is . Joint EiFAAC/ICES/CFCM WGEEL REPORT 2014 149 Annex 2: Participants list N a m e INSTITUTE PHONE/FAX E-MAIL Jan A n d e r s s o n M ír a n A p r a h a m ia n S v a g z d y s A r v y d a s L a u r e n t B e a u la to n C la u d e B e lp a ir e M e h r e z B e s ta J a n is B ir z a k s S w e d i s h U n iv e r s i t y o f A g r ic u l t u r a l S c ie n c e s D e p t . o f A q u a t ic R e s o u r c e s I n s t i t u t e o f C o a s ta l R e s e a r c h S im p e v a r p 1 0 0 S E -5 7 2 9 5 F ig e h o lm S w e d e n P h o n e + 4 6 10- 4 7 8 4 1 1 2 j a n .a n d e r s s o n @ s lu .s e E n v ir o n m e n t A g e n c y R ic h a r d F a ir c lo u g h H o u s e K n u t s fo r d R o a d W a r r in g to n W A 4 IH T U n i t e d K in g d o m F is h e r y S e r v ic e u n d e r M in is t r y o f A g r ic u l tu r e N a u jo j i U o s t o 8 A K la ip e d a L ith u a n ia O n e m a - p ð le O n e m a - In ra 6 5 r o u te d e S a in t B r ie u c 3 5 0 4 2 R e n n e s F r a n c e I N B O R e s e a r c h I n s t itu t e f o r N a t u r e a n d F o r e s t D u b o is la a n 14 1 5 6 0 G r o e n e n d a a l - H o e i la a r t B e lg iu m D ir e c t io n G é n é r a le d e la R lc h e e t d e F A q u a c u ltu r e M in is t é r e d e l 'a g r ic u ltu r e 3 0 r u e A la in S a v a r y 1 0 0 2 T u n is B e lv é d é r e T u n is ia I n s t itu t e o f F o o d S a fe ty , A n im a l H e a lth a n d E n v ir o n m e n t L e ju p e s 3 R ig a L a tv ia P h o n e + 4 4 1 9 2 5 5 4 2 7 1 3 m ir a n .a p r a h a m ia n # e n v ir o n m e n t - a g e n c y .g o v .u k P h o n e + 3 7 0 6 0 3 3 6 5 5 1 P h o n e + 3 3 6 8 1 4 7 5 2 7 1 P h o n e + 3 2 4 7 5 6 7 8 9 9 2 a r v y d a s r u s n e @ g m a il .c o m L a u r e n t .b e a u I a to n @ o n e m a .fr C la u d e .B e lp a ir e @ in b o .b e P h o n e + 2 1 6 7 1 8 9 0 5 9 3 F a x + 2 1 6 71 7 9 9 4 01 m e h r e z b e s t a @ g m a il .c o m P h o n e + 3 7 1 6 7 6 1 2 5 3 6 ja n is .b ir z a k s @ b io r .g o v .lv mailto:jan.andersson@slu.se mailto:arvydasrusne@gmail.com mailto:Laurent.beauIaton@onema.fr mailto:Claude.Belpaire@inbo.be mailto:mehrezbesta@gmail.com mailto:janis.birzaks@bior.gov.lv 150 Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 N a m e INSTITUTE P h o n e / F a x E-MAIL C e d r ic B r ia n d F a b r iz ío C a p o c c io n i E le o n o r a C ic c o tt i M im o z a C o b a n i M a r tin D e G r a a f W il le m D e k k e r I n s t i t u t io n d 'a m é n a g e m e n t d e la V ila ín e b d d e B r e ta g n e , B P l l 5 6 1 3 0 L a R o c h e B e m a r d F r a n c e C o n s ig i io p e r la r ic e r c a e la s p e r im e n t a z io n e in a g r ic o ltu r a (C R A ) C e n tr o d i r ic e r c a p e r la p r o d u z io n e d e l l e c a m i e i l m ig l io r a m e n t o g e n e t i c o (P C M ) V ia S a la r ia , 31 0 0 0 1 6 M o n t e r o t o n d o R o m a I ta ly D ip a r t a m e n t o d i B io lo g ia U n iv e r s i t á T o r V e r g a ta V ia d e l la R ic e r c a S c ie n t i f ic a 0 0 1 3 3 R o m e I ta ly F is h e r y & A q u a c u lt u r e s p e c ia i is t F is h e r ie s D ir e c to r a te M in is t r y o f E n v ir o n m e n t , F o r e s tr y a n d W a ter A d m in i s t r a t io n R m g a e D u r r e s it , N r .2 7 T ir a n a A lb a n ia I m a r e s H a r in g k a d e 1 1 9 7 0 A B I jm u id e n N e t h e r la n d s S w e d i s h U n iv e r s i t y o f A g r ic u l t u r a l S c ie n c e s D e p a r t m e n t o f A q u a t ic R e s o u r c e s I n s t it u t e fo r F r e s h w a te r R e s e a r c h S t á n g h o lm s v á g e n 2 1 7 8 9 3 D r o t t n in g h o lm S w e d e n P h o n e + 3 3 2 9 9 9 0 8 8 4 4 c e d r ic .b r ia n d @ e p tb -v i la in e .fr P h o n e + 3 9 ( 9 0 0 9 0 2 6 3 fa b r iz io .c a p o c c io n i@ e n te c r a .i t P h o n e + 39 0 6 7 2 5 9 5 9 6 9 c ic c o t t i@ u n ir o m a 2 .it P h o n e + 3 5 5 6 7 2 0 5 5 7 7 8 M im o z a .C o b a n i@ m o e .g o v .a l c o b a n im im i@ y a h o o .c o m P h o n e + 3 1 3 1 7 4 8 6 8 2 6 P h o n e + 4 6 7 6 1 2 6 8 1 3 6 m a r t in .d e g r a a f@ w u r .n l W il le m .D e k k e r @ s lu .s e mailto:cedric.briand@eptb-vilaine.fr mailto:fabrizio.capoccioni@entecra.it mailto:ciccotti@uniroma2.it mailto:Mimoza.Cobani@moe.gov.al mailto:cobanimimi@yahoo.com mailto:martin.degraaf@wur.nl mailto:Willem.Dekker@slu.se Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 N a m e INSTITUTE P h o n e / F a x E-MAIL E s t ib a liz A Z T I-T e c n a lia A Z T I D ía z S u k a r r ie ta T x a tx a r r a m e n d i u g a r te a z/g E -4 8 3 9 5 S u k a r r ie ta (B iz k a ia ) S p a in C o n o r A g r i- F o o d a n d B io - D o la n S c ie n c e s I n s t i t u t e fo r N o r t h e m I r e la n d , A F B I 1 8 a N e w f o r g e L a n e Belfast B T 9 5 P X U n i t e d K in g d o m I s a b e l C e n tr o d e D o m in g o s O c e a n o g r a f ia /F a c u ld a d e d e C ié n c ia s , U n i v e r s id a d e L is b o a I n s t i tu t o d e O c e a n o g r a f ia / F C U L , C a m p o G r a n d e 1 7 4 9 -0 1 6 L is b o n P o r t u g a l L F A - M V I n s t i t u te o f F is h e r ie s F is c h e r w e g 4 0 8 G e r m a n y I n s t i t u t e o f M a r in e R e s e a r c h 5 3 9 2 S to r e b o N o r w a y A g r i- F o o d a n d B io - S c ie n c e s I n s t i tu t e fo r N o r t h e r n I r e la n d , A F B I 1 8 a N e w f o r g e L a n e Belfast B T 9 5 P X U n i t e d K in g d o m E u r o p e a n C o m m is s io n R u e J o s e p h I I 9 9 B r u s s e ls B e lg iu m N a t io n a l M a r in e F is h e r ie s R e s e a r c h I n s t itu t e u l. K o lla ta ja 1 8 1 -3 3 2 G d y n ia P o la n d R e in h o ld T h i in e n I n s t i t u t e o f H a n e l F is h e r ie s E c o lo g y P a lm a i l l e 9 2 2 7 6 7 H a m b u r g G e r m a n y M a lte D o r o w C a r o lin e D u r if D e r e k E v a n s E v a n g e lia G e o r g it s i L u k a s z G ie d r o jc P h o n e + 3 4 6 6 7 1 7 4 4 1 2 F a x + 3 4 9 4 6 8 7 0 0 0 6 P h o n e + 4 4 2 8 9 0 2 5 5 6 8 9 e d ia z @ a z t i .e s C d o la n l0 @ q u b .a c .u k P h o n e + 3 5 1 21 7 5 0 0 9 7 0 id o m in g o s @ f c .u l ,p t P h o n e + 4 9 3 8 1 8 1 1 3 4 0 3 P h o n e + 4 7 9 7 6 2 7 2 6 9 P h o n e + 4 4 2 8 9 0 2 5 5 5 5 1 m .d o r o w @ lfa .m v n e t .d e c a r o lin e .d u r if@ im r .n o d e r e k .e v a n s @ a fb in i .g o v .u k P h o n e + 3 2 4 8 5 8 3 7 3 2 2 P h o n e + 4 8 5 1 5 9 2 0 7 1 1 E v a n g e lia .G E O R G I T S I @ e c .e u r o p a .e u lg ie d r o j c @ m ir .g d y n ia .p l lu k a s z .g ie d r o jc @ m ir .g d y n ia .p l P h o n e + 4 9 4 0 3 8 9 0 5 2 9 0 r e in h o ld .h a n e l@ t i .b u n d .d e mailto:ediaz@azti.es mailto:Cdolanl0@qub.ac.uk mailto:idomingos@fc.ul mailto:m.dorow@lfa.mvnet.de mailto:caroline.durif@imr.no mailto:derek.evans@afbini.gov.uk mailto:lgiedrojc@mir.gdynia.pl mailto:lukasz.giedrojc@mir.gdynia.pl mailto:reinhold.hanel@ti.bund.de 152 | Joint ElFAAC/ICES/CFCM WGEEL REPORT 2014 N a m e INSTITUTE P h o n e / F a x E-MAIL P ila r H e m a n d e z J a s o n G o d f r e y M e j d e d d in e K r a ie m E m m a n u i l (M a n o s ) K o u tr a k is P a tr ic k L a m b e r t C h ia r a L e o n e I n fo r m a t io n M a n a g e m e n t O ff ic e r G F C M S e c r e ta r ia t F o o d a n d A g r ic u l tu r e O r g a n is a t io n o f th e U n i t e d N a t io n s (F A O ) V ia V it to r ia C o lo n n a 1 R o m e I ta ly M a r in e S c o t la n d S c ie n c e F r e s h w a te r F is h e r ie s L a b o r a to r y F a s k a lly , P i t lo c h r y P e r th s h ir e P H 1 6 5L B U n i t e d K in g d o m D ir e c t e u r d u L a b o r a to ir e d 'A q u a c u I tu r e I n s t i t u t N a t ío n a l d e s S c ie n c e s e t T e c h n o lo g ie s d e la M e r 2 8 , r u e d u 2 M a r s 1 9 3 4 - S a la m m b ö 2 0 2 5 T u n is T u n is ia F is h e r ie s R e s e a r c h I n s t itu t e H e l le n ic A g r ic u l t u r a l O r g a n iz a t io n N e a P e r a m o s K a v a la G r e e c e N a t io n a l R e s e a r c h I n s t i tu t e o f S c ie n c e a n d T e c h n o lo g y fo r E n v ir o n m e n t a n d A g r ic u l t u r e Ir s te a 5 0 a v e n u e d e V e r d u n 3 3 6 1 2 C e s ta s C e d e x F r a n c e D ip a r t ím e n t o d i B io lo g ia U n iv e r s i t á d i R o m a T o r V e r g a ta V ia d e l la R ic e r c a S c ie n t i f ic a 0 0 1 3 3 R o m e I ta ly P h o n e + 39 0 6 5 7 0 5 4 6 1 7 p i la r .h e m a n d e z @ fa o .o r g P h o n e + 4 4 1 2 2 4 2 9 4 4 4 4 J a s o n .G o d fr e y @ s c o t la n d .g s i .g o v .u k P h o n e + 2 1 6 71 7 3 0 4 2 0 /5 4 8 F a x + 2 1 6 71 7 3 2 622 m e jd .k r a ie m @ in s tm .m r t .tn P h o n e + 3 0 2 5 9 4 0 2 2 6 9 1 m a n o s k @ in a le .g r P h o n e + 3 3 6 6 9 4 6 9 8 2 6 F a x + 33 5 5 7 8 9 0 8 0 1 p a tr ic k .la m b e r t@ ir s te a .fr P h o n e + 3 9 0 6 7 2 5 9 5 9 6 7 C h ia r a .le o n e @ u n ir o m a 2 .i t mailto:pilar.hemandez@fao.org mailto:Jason.Godfrey@scotland.gsi.gov.uk mailto:mejd.kraiem@instm.mrt.tn mailto:manosk@inale.gr mailto:patrick.lambert@irstea.fr mailto:Chiara.leone@uniroma2.it Joint EIFAAC/iCES/CFCM WCEEL REPORT 2014 153 N a m e i n s t i t u t e P h o n e / F a x e - m a i l T .K . N a t io n a l I n iv e r s i ty o f P h o n e tk .m c c a r th y @ n u ig a lw a y .ie M c C a r th y I r e la n d G a lw a y R y a n I n s t itu te , Z o o lo g y S c h o o l o f N a tu r a l S c íe n c e s , N U I G G a lw a y , I r e la n d + 3 5 3 8 6 4 0 1 8 2 2 3 D a n i lo U n iv e r s i t y o f P h o n e + 3 8 2 6 7 d a n i lo m r d a k @ g m a i l .c o m M r d a k M o n t e n e g r o F a c u l ty o f S c ie n c e s a n d M a t h e m a t ic s G .W a s h in g to n S tr e e t P O 5 4 5 5 M o n t e n e g r o 2 5 5 0 3 5 T o m a s z N a t io n a l M a r in e P h o n e n e r m e r @ m ir .g d y n ia .p l N e r m e r F is h e r ie s R e s e a r c h I n s t itu t e u l . K o lla ta ja 1 8 1 -3 3 2 G d y n ia P o la n d + 4 8 6 6 7 5 5 5 2 5 8 M ic h a e l D a n i s h T e c h n ic a l P h o n e m ip @ a q u a .d t u .d k I n g e m a n n P e d e r s e n U n iv e r s t i t y V e js o e v e j 3 9 8 6 8 0 S ilk e b o r g D e n m a r k + 4 5 3 5 8 8 3 1 0 0 C ia r a I n la n d F is h e r ie s I r e la n d P h o n e + c ia r a .o le a r y @ f is h e r ie s ir e la n d .ie O 'L e a r y 3 0 4 4 L a k e D r iv e C it y w e s t B u s in e s s C a m p u s D u b l i n 2 4 I r e la n d 3 5 3 1 8 8 4 2 6 0 0 § iik r a n Y a lg in Ö z d i le k A s s o c i a t e P r o fe s s o r F a c u l t y o f S c ie n c e a n d L ite r a tu r e (J a n a k k a le O n S e k iz M a r t U n iv e r s i t y T u r k e y y a lc in .o z d i le k @ g m a il .c o m R u s s e l l M a r in e I n s t itu t e P h o n e r u s s e l l .p o o le @ m a r in e .ie P o o le F u r n a c e , N e w p o r t C o u n t y M a y o I r e la n d + 3 5 3 8 7 6 2 9 6 3 9 2 R o b e r t A g r i - f o o d a n d P h o n e r o b e r t .r o s e l l@ a fb in i .g o v .u k R o s e l l B io s c i e n c e s I n s t itu t e (A F B I) A F B I H e a d q u a r te r s 1 8 a N e w f o r g e L a n e B T 9 5 P X B e lfa s t U n i t e d K in g d o m + 4 4 2 8 9 0 2 5 5 5 0 6 mailto:tk.mccarthy@nuigalway.ie mailto:danilomrdak@gmail.com mailto:nermer@mir.gdynia.pl mailto:mip@aqua.dtu.dk mailto:ciara.oleary@fisheriesireland.ie mailto:yalcin.ozdilek@gmail.com mailto:russell.poole@marine.ie mailto:robert.rosell@afbini.gov.uk 154 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 N a m e INSTITUTE P h o n e / F a x E-MAIL A r g y r is S a p o u n id is F is h e r ie s R e s e a r c h I n s t itu t e H e i le n i c A g r ic u l t u r a l O r g a n iz a t io n N e a P e r a m o s G r e e c e P h o n e + 3 0 2 5 9 4 0 2 2 6 9 1 a s a p o u n @ in a le .g r M a r c e llo S c h ia v in a P o l i t e c n ic o d i M i la n o v ia P o n z i o 3 4 /5 M ila n o 2 0 1 3 3 I ta ly P h o n e + 39 2 2 3 9 9 4 0 3 0 m .s c h ia v in a @ g m a il .c o m A y e s h a E n v ir o n m e n t A g e n c y P h o n e + 4 4 a y e s h a . ta y lo r @ e n v ir o n m e n t - T a y lo r R ic h a r d F a ir c lo u g h H o u s e K n u ts f o r d R o a d W a r r in g to n W A 4 Í IH T U n i t e d K in g d o m 1 9 2 5 5 4 2 1 6 9 a g e n c y .g o v .u k E va T h o r s ta d N o r w e g ia n I n s t itu t e fo r N a t u r e R e s e a r c h 7 4 8 5 T r o n d h e im N o r w a y P h o n e + 4 7 9 1 6 6 1 1 3 0 e v a .th o r s ta d @ n in a .n o A la n W a lk e r C h a ir C e n tr e fo r E n v ir o n m e n t , F is h e r ie s a n d A q u a c u lt u r e S c ie n c e (C e fa s ) L o w e s t o f t L a b o r a to r y P a k e f ie ld R o a d N R 3 3 O H T L o w e s t o f t S u f f o lk U n i t e d K in g d o m P h o n e + 4 4 (0 ) 1 5 0 2 5 6 2 2 4 4 a la n .w a lk e r @ c e fa s .c o .u k H á k a n W ic k s tr ö m S w e d i s h U n iv e r s i t y o f A g r ic u l t u r a l S c ie n c e s D e p t . o f A q u a t ic R e s o u r c e s I n s t it u t e o f F r e s h w a te r R e s e a r c h S t á n g h o lm s v á g e n 2 1 7 8 9 3 D r o t t n in g h o lm S w e d e n P h o n e + 4 6 7 6 - 1 2 6 81 3 4 F a x + 46 1 0 -4 7 8 4 2 6 9 h a k a n .w ic k s t r o m @ s lu .s e K la u s W y s u ja c k T h iin e n - I n s t i t u t e o f F is h e r ie s E c o lo g y W u lf s d o r f e r W e g 2 0 4 2 2 9 2 6 A h r e n s b u r g G e r m a n y P h o n e + 4 9 4 1 0 2 7 0 8 6 0 1 3 k la u s .w y s u ja c k @ t i.b u n d .d e T o m a s Z o lu b a s F is h e r ie s S e r v ic e u n d e r M in is t r y o f A g r ic u l tu r e N a u jo j i u o s t o 8° K la ip e d a L it h u a n ia P h o n e + 3 7 0 6 5 6 4 4 7 1 4 t o m a s .z o lu b a s @ z u v .l t mailto:asapoun@inale.gr mailto:m.schiavina@gmail.com mailto:eva.thorstad@nina.no mailto:alan.walker@cefas.co.uk mailto:hakan.wickstrom@slu.se mailto:klaus.wysujack@ti.bund.de mailto:tomas.zolubas@zuv.lt Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 155 Annex 3: Meeting agenda Sunday 2nd Nov Meeting of task leaders in the afternoon - 15:00-18.00 Monday 3rd 08.30 09.00-09.30 09:30-10:00 10:00-10:15 10.45-11.00 11.00-11.15 11.15-11.30 11.30-11.45 11.45-12.00 12.00-12.15 12.15-12.30 12.30-13:30 13:30-17:00 18:00-19:00 Tuesday 4th 08:30-09:00 09:00-17:00 17:00-18:00 19.00 Wednesday 5th 08:30-09:30 08:30-13:00 14.00-15.00 15:00-17:00 18:00 Thursday 6th 08:30-12:30 Arrival Introductions, ToR GFCM presentation on status of eel fisheries and aquaculture in Mediterranean Italian presentation on Eel escapement from Mediterranean la goons Country Report highlights (two slides, 5 minutes per Country) Norway, Sweden, Latvia, Lithuania, Poland, Denmark Germany, Netherlands, Belgium United Kingdom, Ireland, France Spain, Portugal, Italy Greece, Turkey, Albania Montenegro, Bosnia & Herzegovina, Tunisia Lunch All Task Groups breakout Sub-group/Task leaders co-ordination meeting Plenary All Task Groups breakout Sub-group/Task leaders co-ordination meeting WGEEL dinner Introduction to WGEEL (Russell Poole, Ethiopia Room) All Task Groups breakout Plenary - Tasks to present key results DEADLINE FOR DRAFT REPORT on SP Circulate Report for comments Reading draft chapters for content 156 Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 13:30-17:00 Friday 7th 08:30-11:00 11:00-17:00 17:00 17:00 Plenary - identify and discuss report issues Agree Advice drafts Task groups Revise Chapters Final documents on SharePoint\Report 2014\Friday 1700 Re port Close Working Group Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 I 157 Annex 4: WGEEL responses to the generic ToRs for Regional and Species Working Groups The Working Group was asked, where relevant, to consider the questions posed by ICES under their generic ToRs for regional and species Working Groups. This was the first time that WGEEL had directly considered these ToRs. WGEEL responses to the generic ToR are given in the table below. G e n e r ic T o R q u e s t i o n s WCEEL RESPONSE F or th e eco reg ion : a) C o n s id e r e co sy s tem o v e rv ie w s w h e re av a ilab le , a n d p ro p o s e a n d p o ss ib ly im p le m e n t in c o rp o ra tio n o f e co sy s tem d r iv e rs in th e b a s is fo r adv ice . b ) F o r th e e co reg io n o r fish e rie s (su g g est s e p a ra te fo r g lass , y e llow , s ilv e r eel f ish e rie s) c o n s id e re d b y th e W o rk in g G ro u p , p ro d u c e a b r ie f r e p o r t su m m a ris in g fo r th e s to ck s a n d f ish e rie s w h e re th e item is re le v an t: • M ix ed fish e rie s o v e rv ie w a n d co n sid e ra tio n s ; • S p ec ies in te ra c tio n e ffects a n d eco sy s tem d riv e rs ; • E co sy stem effec ts o f fishe rie s; • E ffects o f re g u la to ry ch an g e s in th e a ss e ss m e n t o r p ro jec- tio n s; Anguilla anguilla is a c a ta d ro m o u s sp ec ies a n d th e re fo re o ccu p ies m a rin e , tra n s itio n a l a n d f re s h w a te r e n v iro n m e n ts d u r in g its lifecycle. T h e e co sy s tem fu n c tio n (ro le) o f Anguilla anguílla in e ac h o f th e se e n v iro n m e n ts is n o t w e ll u n d e rs to o d . A b rie f e co sy s tem o v e rv ie w w ill b e p r o v id e d in th e in itia l W G EEL s to ck a n n ex th a t s h o u ld b e d e v e lo p e d in 2015 (see b e lo w ) a n d e n v iro n m e n ta l in f lu e n c e s o n th e s to ck a re in c o rp o ra te d in th e a n n u a l ad v ic e a n d m a y a d d re s s a w id e ra n g e o f fa c to rs a ffec tin g ee ls a t d iffe ren t s tag e s in th e ir life cycle. C o n s id e ra tio n h a s a n d w ill b e b e e n g iv en to p o ss ib le e co sy s tem d r iv e rs in b o th f r e s h w a te r a n d th e m a r in e e n v iro n m e n t, b u t a t p re s e n t i t is n o t p o ss ib le to in c o rp o ra te s u c h d riv e rs in th e a s s e s s m e n t p ro cess . i) M o st ee ls a re c a u g h t in ta rg e te d fish e rie s in c o asta l w a te rs , tra n s itio n a l (b rack ish ) a n d f re sh w a te r . Som e m ix e d fish e rie s d o o c cu r (e.g. G e rm a n f r e s h w a te r fyke n e t fisheries). Eels m a y b e c a p tu re d a s b y c a tch in co m m e rc ia l a n d rec re a tio n a l f ish e rie s (see C h a p te r 2). T h e re is l im ite d in fo rm a tio n o n n u m b e r o f eels c a p tu re d a s b y ca tch , o r o n th e ir su rv iv a l w h e n th e re a re re g u la tio n s re q u ir in g o b lig a to ry re le a se o f eel c a p tu re d in o th e r fish e rie s (for in s ta n c e b y re c re a tio n a l a n g lin g ). T h e re a re few d a ta o n b y c a tch o f o th e r sp ec ie s in ta rg e te d eel fish e rie s . ii) S pecies in te ra c tio n e ffec ts a n d eco sy s tem d r iv e rs s h o u ld b e s u m m a ris e d in th e in itia l s to ck a n n ex p ro p o s e d fo r 2015/2016 - see a n n e x b e lo w . iii) T h e c u rre n t f ish e ry p ro b a b ly h a s little d ire c t in flu en ce o n a q u a tic e co sy s tem s, w ith th e p o ss ib le e x œ p tio n o f loca l b y ca tch issu es . H o w e v e r, th e e e l is a n im p o r ta n t jm d fre q u e n tly d o m in a tin g sp ec ie s in th e eco sy stem , a n d its s u b s ta n tia l re d u c tio n , w h e th e r d u e to f ish e rie s o r o th e r c au se s m a y h a v e h a d a m o re p ro fo u n d effect. T h e re is lim ited k n o w le d g e o n th e m a g n itu d e o f th e se effects. iv ) In re c en t y ears , m a n y eel f ish e rie s h a v e b e e n sub jec t to m a n a g e m e n t c o n tro ls a n d c lo su res , w ith re s u ltin g re d u c tio n s in e x p lo ita tio n ra te s . T h is h a s re s u lte d in in c re a s in g sen s itiv ity o f a ss e ss m e n t p ro c e d u re s to th e se va lues. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 G e n e r ic T o R q u e s t io n s W G E E L RESPONSE For all stocks: c) If n o s to ck an n ex is a v a ilab le th is s h o u ld b e p re p a re d p r io r to th e m ee tin g , b a se d o n th e p re v io u s y e a r 's a s s e ss m e n t a n d fo rec a st m e th o d u s e d fo r th e a d v ice , in c lu d in g an a ly tic a l a n d d a ta - lim ite d m e th o d s . d ) A u d it th e a ss e ss m e n ts a n d fo recasts c a r r ie d o u t fo r e a c h s to ck u n d e r c o n s id e ra tio n b y th e W o rk in g G ro u p a n d w r i te a s h o rt re p o rt. e) P ro p o se sp ec ific a c tio n s to b e ta k e n to im p ro v e th e q u a lity a n d tra n s m is s io n of th e d a ta ( in c lu d in g im p ro v e m e n ts in d a ta co llection). f) P ro p o se in d ic a to rs o f s to ck s ize (o r of c h a n g e s in s to ck size) th a t c o u ld b e u s e d to d e c id e w h e n a n u p d a te a sse ssm e n t is r e q u ire d a n d su g g e s t th re s h o ld % (or a b so lu te ) c h an g e s th a t th e EG th in k s s h o u ld tr ig g e r a n u p d a te a sse ssm e n t o n a s to ck b y s to ck b asis . g) P re p a re p la n n in g fo r b e n c h m ark s n e x t y ea r , a n d p u t fo rw a rd p ro p o s a ls for b e n c h m a rk s o f in te g ra te d eco sy stem , m u lti o r s in g le sp ec ie s fo r 2016. h ) C h ec k th e e x is tin g s ta tic p a r ts o f th e p o p u la r a d v ic e a n d u p d a te a s re q u ire d . C o u n tr ie s p re p a re n a tio n a l re p o r ts a n n u a l ly fo r th e w o rk in g g ro u p . W G E E L h a s n o t y e t d ra f te d a s to ck an n ex to p ro v id e d e ta ils o f th e a sse ssm e n t. A s to ck an n ex fo r W G EEL s h o u ld b e in itia te d in 2015, in c lu d in g a p o ss ib le b e n ch m ark . W G EEL p ro p o s e s to e s ta b lis h a b e n c h m a rk -ty p e s tu d y g ro u p in 2015 th a t w ill d e v e lo p a n in itia l s to ck an n ex . B ased o n th is , a b e n c h m a rk w o rk s h o p c o u ld b e h e ld in 2016. T h e fin a l o u tp u t s h o u ld b e a b e n c h m a rk e d s to ck an n ex . A su g g e s te d S tock A n n ex te m p la te fo r W G EEL is g iv e n b e lo w . T h e W o rk in g G ro u p d o e s n o t ro u tin e ly a u d i t a sse ssm en ts . In p u t d a ta a n d o u tp u ts a re c h ec k ed b y a p p ro p r ia te c o u n try / re g io n re p re s e n ta tiv e s d u r in g e ac h m e e tin g . S om e m o d e l d e v e lo p m e n ts h a v e b e e n su b jec t to re v ie w b y th e W o rk in g G ro u p a n d th e m o d e llin g a p p ro a c h e s h a v e b e e n d e sc rib e d e ith e r in th e p e e r- re v ie w e d l i te ra tu re a n d /o r in th e SLIM E- a n d PO SE - pro jec ts . A n u m b e r o f m e m b e rs o f th e W o rk in g G ro u p h a v e a lso b e e n in v o lv e d in c o lla b o ra tiv e e ffo rts to ex p lo re fu r th e r m o d e l d e v e lo p m e n ts . F o r e x am p le , close lin k s h a v e b e e n e s ta b lish e d w ith th e E C O K N O W S pro ject. S tock an n ex a n d e le c tro n ic re p o r tin g a re p la n n e d to c o n tr ib u te to im p ro v e d a ta q u a li ty in fu tu re . F o r im p ro v e m e n ts to d a ta q u a lity , see C h a p te r 7 o f th is re p o rt. F o r im p ro v e m e n ts to d a ta tra n sm iss io n , see C h a p te r 8 o f th is re p o rt. T o ta l la n d in g s a n d e ffo rt d a ta a re in c o m p le te . T h e re is a g re a t h e te ro g e n e ity a m o n g th e tim e -se rie s o f la n d in g s b e ca u se o f in c o n sis te n c ies in re p o r tin g b y , a n d b e tw ee n , c o u n tr ie s a n d in c o m p le te re p o rtin g . C h a n g e s in m a n a g e m e n t p ra c tic es h a v e a lso a ffe c ted th e re p o r tin g o f n o n -c o m m e rc ia l a n d re c re a tio n a l f isheries. M an y E U M em b e r S ta te s h a v e n o t c o m p le te ly re p o r te d s to ck in d ic a to rs (22 o f 81 E M P s d id n o t r e p o r t all b io m a s s in d ic a to rs a n d 38 d id n o t re p o r t a ll m o r ta lity in d ic a to rs in 2012), a n d th e re a re in c o n sis te n c ies in th e a p p ro a c h e s u s e d to c a lcu la te re p o r te d s to ck in d ic a to rs . T h e d is tr ib u tio n a rea o f th e eel e x te n d s c o n s id e ra b ly b e y o n d th e EU, a n d d a ta fro m c o u n tr ie s in th e se o th e r re g io n s w e re n o t av a ilab le . A c o m p le te re p o r tin g o f in d ic a to rs co v er in g th e ra n g e o f th e E u ro p e a n eel is re q u ire d fo r a fu ll a s s e ss m e n t o f th e s tock . T o fac ilita te th is , d a ta co llection a n d an a ly s is s h o u ld be in te m a tio n a lly s ta n d a rd iz e d . See C h a p te r 2 o f th is re p o rt. R ep o r tin g to th e EU ta k e s p la c e e v e ry th re e y ears , see EU R eg u la tio n (2007-1100). B io m ass a n d m o rta li ty in d ic a to rs a re p ro p o s e d fo r th is p ro cess , 3Bs & A (F & H ). A b e n c h m a rk is n o t e n v isa g e d in 2015. See a n n ex on p ro p o s a l fo r a b e n c h m a rk - ty p e s to ck an n ex b e lo w . See C h a p te r 2 o f th is re p o r t a n d i t is a lso u n d e r ta k e n d u r in g th e a d v ic e d ra f t in g p ro cess . Joint EIFAAC/iCES/GFCM WGEEL REPORT 2014 I 159 G e n e r ic T o R q u e s t io n s WGEEL RESPONSE i) In th e a u tu m n , w h e re a p p ro p r ia te , check fo r th e n e e d to re o p e n th e a d v ic e b a se d o n th e s u m m e r s u rv e y in fo rm a tio n a n d th e g u id e lin e s in A G C R E FA (2008 rep o rt) . T h e r e le v a n t g ro u p s w ill re p o r t o n th e A G C R E FA 2008 p ro c e d u re o n re o p e n in g o f th e a d v ic e b e fo re 13 O c to b er a n d w ill r e p o r t o n re o p e n e d a d v ic e b e fo re 29 O c to b er . j) T ake in to a c c o u n t n e w g u id a n c e on g iv in g c a tch a d v ic e (A C O M , D e cem b er 2013). k) U p d a te , q u a lity c h eck a n d re p o r t r e le v a n t d a ta fo r th e stock: i) L o a d fish e rie s d a ta o n e ffo rt a n d catches ( la n d in g s , d is c a rd s , b y ca tch , in c lu d in g e s tim a te s o f m is re p o r tin g w h e n a p p ro p r ia te ) in th e IN T E R C A T C H d a ta b a s e b y fishe rie s/fle e ts , e i th e r d ire c tly or, w h e n re le v a n t, th ro u g h th e re g io n a l d a ta b ase . D a ta s h o u ld b e p ro v id e d to th e d a ta c o o rd in a to rs a t d e a d l in e s sp ec ified in th e T oR s o f th e in d iv id u a l g ro u p s . D ata s u b m itte d a f te r th e d e a d l in e s c a n be in c o rp o ra te d in th e a ss e ss m e n ts a t th e d ís c re t io n o f th e E x p e rt G ro u p chair; ii) A b u n d a n c e s u rv e y resu lts ; iii) E n v iro n m e n ta l d riv e rs . 1) P ro d u c e a n o v e rv ie w o f th e s a m p lin g ac tiv itie s o n a n a tio n a l b a s is b a se d o n th e IN T E R C A T C H d a ta b a s e o r, w h e re re lev a n t, th e re g io n a l d a ta b ase . For update advice stocks: m ) P ro d u c e a f irs t d ra f t o f th e ad v ice o n th e fish s to ck s a n d fish e rie s u n d e r c o n s id e ra tio n s acc o rd in g to A C O M g u id e lin e s a n d im p le m e n tin g th e g en eric in tro d u c tio n to th e ICES a d v ic e (Section 1.2). If n o c h an g e in th e a d v ic e is n e e d e d , o n e p a g e 's a m e a d v ic e a s la s t y eari s h o u ld b e d ra f te d . T h is is n o t re le v a n t to W G EEL. T h is is a d d re ss e d th ro u g h th e A d v ic e D ra ftin g G ro u p th a t c o n v en es a f te r th e W G EEL. See C h a p te r 2 o f th is re p o rt. Eei d a ta a re n o t c u rre n tly in ICES D a tab a ses . D a ta r e p o r te d u s in g a n n u a l C o u n try R ep o rts , a n d W G EEL m a in ta in s re le v a n t d a ta b a s e s u s e d c o n sis te n tly in th e a d v ice , s u c h a s re c ru itm e n t a n d s ilv e r ee! t im e se rie s a n d th e Eei Q u a lity D a tab ase . E n v iro n m e n ta l d r iv e rs a re re le v a n t a t th e loca l lev e l fo r in d iv id u a l c a tch m e n t a sse ssm e n ts , b u t th e se a re n o t re le v a n t a t th e in te m a tio n a l scale, w ith th e p o ss ib le e x ce p tio n o f ocean ic e n v iro n m e n ta l in f lu en c e s o n s p a w n in g s to ck a n d la rv a l m ig ra tio n s . G lobal e n v iro n m e n ta l d r iv e rs a re n o t c u rre n tly in c o rp o ra te d , o r m a y b e e v e n re le v a n t, to th e in te m a tio n a l a sse ssm en t. T h e In te rC a tc h d a ta b a s e is n o t u s e d b y W G EEL. F o r d a ta b a s e a n d re c o m m e n d a tio n s fo r fu tu re d a ta m a n a g e m e n t, see C h a p te r 8 o f th is re p o rt. N o n e o f th e q u e s tio n s p o s e d in th is sec tio n o f th e g e n eric T oR im p ly a ch a n g e in th e p ro c e d u re s th a t W G EEL n o rm a lly fo llo w s e v e ry y ear. T h e is su e s ra is e d in T oR 'n ' a re a d d re s s e d ro u tin e ly in th e W G E E L re p o rt. A d v ice is d ra f te d a n n u a l ly b y th e W G a n d re f in e d b y th e AD G EEL. A n in itia l s to ck a n n ex d e sc rib in g th e a sse ssm e n t m e th o d s u s e d s h o u ld be d e v e lo p e d in 2015 (see ab o v e a n d be low ). 160 | Joint EiFAAC/ICES/GFCM WCEEL REPORT 2014 G e n e r ic T o R q u e s t io n s __________________________ WGEEL r e sp o n se ___________________________ n ) F o r th e eel s tock , w h e n p o ss ib le p r io r to See a b o v e a n d C h a p te r 2 o f th is re p o rt. th e m ee tin g : i) U p d a te th e a ss e ss m e n t u s in g th e m e th o d (an a ly tica l, fo rec a st o r t re n d s in d ic a to rs ) as d e sc rib e d in th e s to ck annex . ii) P ro d u c e a b r ie f r e p o r t o f th e w o rk c a r r ie d o u t re g a rd in g th e stock, s u m m a ris in g fo r th e s to ck s a n d fishe rie s w h e re th e ite m is re lev an t: 1. In p u t d a ta (in c lu d in g in fo rm a tio n from th e f ish in g in d u s try a n d N G O th a t is p e r t in e n t to th e a ss e ss m e n ts a n d p ro jec tio n s); 2. W h ere m is re p o r tin g o f c a tch es is s ig n ific an t, p ro v id e q u a lita tiv e a n d w h e re p o ss ib le q u a n ti ta t iv e in fo rm a tio n a n d d e sc rib e th e m e th o d s u s e d to o b ta in th e in fo rm a tio n ; 3. S tock s ta tu s a n d c a tch o p tio n s fo r n e x t y ear; 4. H is to r ic a l p e rfo rm a n c e o f th e a sse ssm e n t a n d b r ie f d e sc rip tio n o f q u a lity is su e s w ith th e a sse ssm en t; 5. In c o o p e ra t io n w ith th e S ecre ta ria t, u p d a te th e d e sc r ip t io n o f m a jo r re g u la to ry c h a n g e s (tech n ica l m e a su re s , TACs, effo rt c o n tro l a n d m a n a g e m e n t p la n s) a n d c o m m e n t o n th e p o te n tia l e ffects o f su ch ch an g e s in c lu d in g th e effec ts o f n ew ly a g re e d m a n a g e m e n t a n d reco v ery p lan s . D e sc rib e th e flee ts th a t a re in v o lv e d in th e fish e ry . o) R ev iew th e o u tc o m e s o f W K M SR REF2 See C h a p te r 3 o f th is re p o rt. fo r th e sp ec ific s to ck s o f th e EG. C alcu la te re fe ren ce p o in ts fo r s to ck s w h e re the in fo rm a tio n ex ists b u t th e ca lcu la tio n s h a v e n o t b e e n d o n e y e t a n d re so lve in c o n sis te n c ies b e tw e e n M SY a n d p re c a u t io n a ry re fe ren ce p o in ts if p o ssib le . Benchmarking and development of a stock annex for European eel The goal of a benchmark is consensus on an assessment methodology that is to be used in future update assessments, laid down in a stock annex. This assessment methodol- ogy can be an analytical assessment, but can also be non-analytical, for instance based on trends in an assessment or in a selected set of (survey) indicators, with or without forecasts. The result will be the 'best available' method that ICES advice can be based on. ICES benchmark workshops are the normal way of benchmarking stock assessment methodology. Hence, the term benchmark refers to methodology for assessing a fish stock that is the result of an intense process to decide on the most appropriate scientif- ically defensible way of interpreting or using biological knowledge, available data, and models to address management needs. A Benchmark workshop is set up around a group of stocks with similar issues that need to be dealt with. Members consist of; • Stock assessment experts; Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 • Data collection experts; • Experts on ecosystem /environment /fisheries information; • Stakeholders; • External experts (invited by ICES on the basis of the issues at hand). The preparation of the actual workshop should be guided by an ICES convener, a stock expert from the ICES community. The technical chair during the workshop should be one of the external experts. The external experts are invited by ICES and are responsi- ble for guiding the meeting on a scientific level (also during the preparation) and in the end auditing the resulting stock annexes. The stock annex describes the methodology agreed by the benchmark workshop and the assumptions on which this is based; specifically: 1) the data used as basis for advice and procedures to raised data and to handle missing data; 2 ) the methodology and standard settings of the assessment model; 3 ) the assumptions for which these settings are valid; 4) the diagnostics that should be checked to validate the assumptions; 5) reference points. WGEEL has not yet drafted a stock annex to provide details of the assessment. As part of the international co-ordination and planning for a standardized assessment ap- proach for eel, a stock annex for WGEEL should be initiated in 2015, including a possi- ble benchmark, and WGEEL proposes to establish a benchmark-type study group in 2015 to undertake this task. Based on this, a benchmark workshop could be held in 2016. A suggested Stock Annex template for WGEEL is given below. Suggested Stock Annex template for WGEEL (additions or changes to the general ICES stock annex template are suggested and marked with yellow). A. General A.l. Stock definition A.2. Fishery A.3. Ecosystem aspects A.4. Non-fishery anthropogenic impacts B. Data B.l. Commercial catch B.2 Recreational catch B.3 Time -eries data (e.g. recruitment, silver eel) B.4 Other data (e.g. stocking, aquaculture) B.5 Local assessment data (e.g. WFD, DCF) \ 162 | Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 B.6. Biological B.7. Other relevant data (e.g. habitat, eel contaminants and parasites and diseases) C. Assessm ent: data and method Definition of stock indicators and EU-regulation and stock recovery objectives Description of local stock assessment models Stock indicators (see below*) Reference points Development of stock indicator/management advice framework (including risk analy- sis) D. B io log ica l Reference Points Biological reference points do not currently exist for eel, with the exception of the EU escapement target, and these are under development in the working group. The following table is an example for other species' template. Txpe 1 'alue Technical basis MSY Appioacli M S \ Bin22H X X X t Explaiu F msv Xxx Explaiu Precautionaiy Approacli Bum X X X t Explain Bp.i X X X t Explaiu Furn Xxx Explain Fpa Xxx Explaiu (Only include latest reference points, add some text if necessary) Intemational stock assessment and quality control of local outputs. E. O ther Issues H.l. Historical overview of previous assessment methods (optional subsection) F. References * Stock ind icators S ilver eel production (biomass) 1) Bo The amount of silver eel biomass that would have existed if no anthro- pogenic influences had impacted the stock; 2 ) Bcurrent The amount of silver eel biomass that currently escapes to the sea to spawn. N B - listed in the ICES template as Bpost; 3 ) Bbest The amount of silver eel biomass that would have existed if no anthro- pogenic influences had impacted the current stock, included re-stocking practices, hence only natural mortality operating on stock; 4) Wetted area habitat, by water type (lacustrine, riverine, transitional & la- goon, coastal); 5 ) Production values per unit area, e.g. kg/ha. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 Anth ropogen ic m orta lity (impacts) 6 ) EF The fishing mortality rate, summed over the age groups in the stock, and the reduction effected; 7) EH The anthropogenic mortality rate outside the fishery, summed over the age-groups in the stock, and the reduction effected (e.g. turbines, parasites, viruses, contaminants, predators, barriers, pumping stations, etc); 8 ) EA The sum of anthropogenic mortalities, i.e. EA = EF + EH. It refers to mortalities summed over the age groups in the stock. Restock ing requirements: 9 ) R(s*) The amount of eel (<20 cm) restocked into national waters annually. The source of these eel should also be reported, at least to originating Mem- ber State, to ensure full accounting of catch vs restocked (i.e. avoid 'double banking'). 164 | Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 Annex 5: Research needs As noted throughout the WGEEL 2014 report, there are many data and knowledge defidencies that hinder stock assessment (at local, national and international levels), identification and quantification of impacts (natural and anthropogenic), and the de- velopment and implementation of locally and internationally effective management measures. With the inclusion of the GFCM countries into the WGEEL, the need for international co-ordination and stock assessment now extends far beyond the EU and covers the whole range of eel. Mortality based indicators and reference points routinely refer to mortality levels as- sessed in (the most) recent years. ICES (2011) noted that the actual spawner escapement will lag behind, because cohorts contributing to recent spawner escapement have ex- perienced earlier mortality levels before. As a consequence, stock indicators based on assessed mortalities do not match with those based on measured spawner escapement. There is therefore, a need for both biomass and mortality reference points. The diverse range of data collection and analysis methods used by countries to estimate their stock indicators, and the uncertainties associated with extrapolating from local to national stock assessments mean that there are inevitable but so far unquantifiable lev- els of uncertainty in the national and stock-wide assessments. These uncertainties need to be addressed at local, national and intemational levels, either through standardiza- tion of methods, setting minimum standards for data and methods (cf Data Collection Framework (DCF)), or both. To undertake the International Stock Assessment there are a number of components, outlined below. These are all interrelated and will need to be addressed in a systematic manner to maximise standardization across countries. The programme has two main objectives; estimation of spawning-stock biomass and mortality, in the case of the latter this has been separated into an assessment of anthropogenic and natural mortality. 1. Spawning-Stock Biomass assessment • An intemational calibration and standardization of the methods used to es- timate silver eel escapement from eel standing stock estimates. Calibration between electro-fishing streams, catch per unit effort in lakes, estuaries, and other large waterbodies; validation, and intercalibration between methods. Links to DCF, WFD and EU Regulation. • A coordinated programme of work should be undertaken to address the as- sessment of densities or standing stock of eels in large open waterbodies, such as lakes, deep rivers, transitional and coastal waters. This should in- clude a cross-calibration of yellow eel catch per unit of effort with density data across a variety of habitats. Links to SGAESAW, DCF, WFD and EU Regulation; • Spatially model the life-history traits used in the assessment models (growth, mortality, maturation schedule, sex ratio) to transport parameters from data-rich to data-poor EMUs; • An international pilot study under the auspices of the new DCF is required to establish minimum standards for data collection on the basis of current expert judgement; to analyse achieved precision levels where adequate da- tabases exist; and to stimulate further analysis when and where more data become available within the framework of the DCF. Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 165 • Intemational surveys at sea of eel in the spawning area in the Sargasso Sea. Links to DCF. 2. Mortality assessment • The stock response to implemented management actions, in terms of silver biomass, will be slow and difficult to monitor. There is a need for developíng methods of quantifying anthropogenic mortalities and their sum Tifetime mortality' and estimating the same across the entire distribution of the eel. WKESDCF recommends that the new DCF should include support for the collection of data necessary to establish the mortality caused by fisheries and non-fisheries anthropogenic factors. Links to DCF, WFD, EU Regulation. • A whole eel distribution approach to assessing stocking and determining net benefit to the stock, including an evaluation of the mortality of the stocked fish in relation to the mortality the fish would have experienced if left in situ. Links to EU traceability, CITES, EU Regulation and ICES advice. • It is recommended that research to investigate factors that cause Natural Mortalíty (M) to vary in space and time be given the high priority. Thus, further data collection and research should be encouraged to support and improve the knowledge of this difficult research topic in order to obtain more reliable stock assessments. This will need to include an assessment of density-dependent influences (DD) on eel population dynamics that occur at the local level and whether DD will play a role at the continental scale in the decline/recovery of the eel stock. 166 ! Joint EiFAAC/ICES/GFCM WGEEL REPORT 2014 Annex 6: Forward Focus of the WGEEL This report is a further step in an ongoing process of documenting stock and fisheries of the eel (A n g u i l l a a n g u i l l á ) and developing methodology for giving scientific advice on management to effect a recovery in the international, panmictic stock. The focus of the WGEEL in the coming years will be on the following key areas: 1) Source the appropriate assessment data from across the range of the Euro- pean eel, by working with the EU, EIFAAC, ICES and GFCM members; 2 ) Complete development of eel-specific stock assessment methods, working with ACOM; 3 ) Contribute to the development of a standardization and unification of the assessment process across the entire distribution of the European eel, work- ing with EU, EIFAAC, ICES and GFCM members; 4 ) Develop the focus of management advice on the pragmatic use of mortality indicators (immediate impact) as intermediate or short-term goals, leaving biomass indicators (long-term impact) for the longer-term goals, working with ACOM and the EU Commission; 5 ) Develop an advice process for managing stock recovery and achieving sus- tainable anthropogenic impact, by working with ACOM. 6.1 Complete data coverage 6.1.1 The contribution of GFCM countries and the Secretariat to WGEEL 2014 and fu- ture work is welcomed and the WGEEL anticipates having new data covering a greater distribution of eel in the near future. The GFCM has informed that a proposal to include eel in the list of priority species within the new GFCM Data Collection Reference Framework (DCRF) will be formu- lated to the Scientific Advisory Committee (SAC) and relevant bodies December 2014 and March 2015. The WGEEL will be informed regularly of the outcomes of these dis- cussions and will be consulted on the frequency of collection of biological data so these can be aligned those in other EU countries. The GFCM experts participating at the WGEEL 2014 agreed on a plan of action during 2014-2015 to fill some information gaps and to be in the position to provide the mini- mum necessary set of data to be incorporated to the 2015 full international stock as- sessment of European eel. The primary objective of this action plan is to collect current and historical data under the guidance of WGEEL experts. These data will be gathered by the GFCM in a standardised database. The Italian team who have some previous experience of eel data collection and assessment in coastal lagoons will lead these ac- tions, in consultation with some other WGEEL experts. The French experience on Med- iterranean rivers could be also taken into account for the inland systems. A first regional stock assessment exercise with the most suitable models could be carried out in a two day (back-to-back) Mediterranean workshop immediately preceding the 2015 meeting of WGEEL. Details of the action plan will be proposed to the SAC and agreed actions will be exe- cuted in the 2014-2015 period in collaboration with ICES and EIFAAC. Joint EiFAAC/ICES/CFCM WCEEL REPORT 2014 All these actions are subject to the approval of the SAC and the Commission and to the allocation of funds to cover a consultant on a part-time basis and the travel expenses to the 2015 WGEEL including the two day regional workshops preceding WGEEL 2015. 6.1.2 The WGEEL will seek data and participation from other countries, e.g. the Russian Federation, where European eel is of interest. 6.1.3 New data from within the EU may also become available through national imple- mentation of the EU - Multi-annual Plan (EU-MAP - the follow-on to the EU Data Collection Framework, DCF). However, this regulation may not be implemented until 2017 or 2018 at least. Most of the recommendations of the ICES WKESDCF for the better alignment of eel (and salmon) data collection with international and national stock as- sessment, have been accepted but it is uncertain whether and when these might be adopted into European fisheries legislation. The WGEEL will continue to monitor these developments and contribute scientific expertise wherever required. 6.2 Improved methods of whole-stock assessment The WGEEL has developed three approaches (tiers) to the international stock assess- ment: an index based assessment (recruitment; possibly older yellow and/or silver eel in future); the modified Precautionary Diagram derived from EU limits (the 40% bio- mass 'target'); and, eel-specific reference points based on a tentative stock-recruitment relationship. All three approaches have been approved in principle by the RGEEL and ACOM in 2013, although some issues over the specifics of the stock indicator and S-R approaches meant that the ICES Advice 2013 was based on the recruitment trend stock assessment alone. The data gaps in the EU limits approach remain to be filled, but it is anticipated that the next round of national EMP Progress Reports in 2015 along with the new data from GFCM countries will contribute substantial improvements in data coverage. There were also some questions about the form of management advice on mortality limits, both when eel biomass (escapement, a proxy for spawning stock) was below or above the EU's limit reference point of 40% Bo. These questions must be resolved as a matter of urgency. The stock-recruitment relationship was (is) based on tentative data relationships and assumptions about historic exploitation rates. The use of these extra data allows the derivation of eel-specific reference points, but at the costs of uncertainties in data and processes. The working group was not able to improve upon these source data in 2014 but will continue to pursue this. 6.3 Standardizatlon and quality assurance There is an urgent requirement to test, and where necessary improve, the quality of data and analyses used in deriving these stock indicators (independent review). A full international stock assessment should include data from all parts of the natural range of European eel. There is an urgent requirement, therefore, to support the devel- opment of suitable assessment data in the remainder of the productive range of the European eel. This ICES standard approach could be developed for the European eel, adopting a standardized international data collection (e.g. based on WFD fish monitoring of fresh and transitional waters but modified to be eel-spedfic; see Chapter 7) and analysis to support the intemational stock assessment. Note this international data collection and analysis would not replace the local stock assessment (which is necessary to support 168 ! Joint EIFAAC/iCES/GFCM WCEEL REPORT 2014 local management). There is an urgent need for planning (data exchange and method- ologies), and for tuning expectations and opportunities. The urgency of this require- ment and the size of the task are such that it should be pursued outside the normal annual cycle of the WGEEL. WGEEL 2014 has made proposals for study groups and workshops to progress these actions. 6.4 Management advice based on interim mortality-based indicators The Eel Regulation specifies a limit reference point (40% Bo) for the biomass of the es- caping silver eel. Due to the long lifespan of eel, however, it will take at least 5-10 years before the first effect of a management measure impacting on the glass eel or yellow eel stage would be expected to be visible in estimates of escapement biomass. In con- trast, the impact of management actions on mortality indicators should be apparent almost immediately. It will be in line with the conventional ICES procedure and the modified Precautionary Diagram to focus on immediate effects (mortality indicators A, F and H), ignoring the inherent time lag in spawner escapement (biomass indicator). Defining mortality targets and trajectories to reduce mortality to achieve standard ICES targets within a defined time period would improve the chance of recovering the eel stock. 6.5 Management advice for stock recovery If the recent increase in recruitment indices continues, then everyone will face a new challenge of how to manage and sustain a recovery of the productive stock, and asso- ciated sustainable exploitation. Annex 7: Formal recommendations of WGEEL 2014 Joint EiFAAC/ICES/CFCM WGEEL REPORT 2014 169 N u m b e r R e c o m m e n d a t io n T o 1 I n t e m a t io n a l c o o r d in a t io n w i t h c o u n t r ie s o u t s i d e th e E u r o p e a n U n io n p u r s u e d to a c h ie v e c o m p le t e s p a t ia l c o v e r a g e o f d a ta fo r e e l s t o c k a s s e s s m e n t . IC E S S e c r e ta r ia t ; E U ; G F C M ; E IF A A C 2 A s W G E E L c o n s id e r s th e e e l a l o n g - l i v e d s p e c ie s in t e r m s o f h a r v e s t c o n tr o l r u le s , a n d p e n d i n g a n im p r o v e m e n t o f th e a n a ly s i s o f s to c k -a n d -r e c r u it d a ta , W G E E L r e c o m m e n d s th a t IC E S p r o v id e s a d v ic e o n th e b a s i s o f th e h a r v e s t c o n tr o l m l e fo r q u a n t i ta t iv e a s s e s s m e n t s ( c a t e g o r y 1 ), i .e . a p r o p o r t io n a l r e d u c t io n in EAiim b e l o w Biim, d o w n t o ZAiim = 0 a t B c ira t = 0 . A C O M 3 A n I n te r n a t io n a l p r o g r a m m e o f r e s e a r c h b e u n d e r t a k e n to s t a n d a r d iz e a n d c r o s s c a l ib r a te th e a s s e s s m e n t m e t h o d s u s e d to e s t im a t e s i lv e r e e l e s c a p e m e n t t h r o u g h o u t th e d is t r ib u t io n o f th e E u r o p e a n e e l . S C I C O M , G F C M , E U , E I F A A C (a l l w o r k in g w i t h W G E E L ); s e e d r a ft R e s o lu t io n e n c lo s e d 4 A n e x i s t i n g o r n e w w o r k s h o p i s r e q u e s t e d to c o m p il e a n d m a k e a v a i la b le t im e - s e r ie s o f in d ic e s o f e e l q u a l it y , p r e fe r a b ly f r o m 1 9 5 0 fo r w a r d . S C I C O M 5 A w o r k s h o p o n o c e a n c l im a t e in d ic e s r e le v a n t to th e e e l (W K O C R E ), in c o o p e r a t io n w i t h W G O H c o m p i l e s a n d m a k e s a v a i la b le t im e - s e r ie s o f in d ic e s th a t m ig h t r e la te to th e m ig r a t o r y s u c c e s s o f s p a w n e r s a n d /o r la r v a e in th e o c e a n . S C I C O M 6 A w o r k s h o p / s t u d y g r o u p i s e s t a b l is h e d to a n a ly s e th e s t o c k - r e c r u i t m e n t r e la t io n (W K E S R ) fo r t h e E u r o p e a n e e l , t a k in g in t o a c c o u n t t h e p o t e n t ia l e f f e c t s o f s p a w n e r q u a l i t y a n d o c e a n c l im a t e in d ic e s . A C O M , S C IC O M 7 A S t u d y G r o u p o n E s ta b l is h in g a n E e l S to c k A n n e x (S G E E S A ), c h a ir e d b y N N , c o u n tr y , w i l l b e e s t a b l is h e d a n d w i l l m e e t in C o u n tr y A , x x - y y O c to b e r 2 0 1 5 a n d in C o u n tr y B , x x - y y m o n th 2 0 1 6 to d e v e l o p a n in i t ia l s to c k a n n e x in t w o s te p s : a ) d e f in e th e s to c k , a n t h r o p o g e n ic im p a c t s a n d d a ta a v a ila b le fo r a s s e s s m e n t s ; b ) d e s c r ib e th e a s s e s s m e n t m e t h o d a n d r e q u ir e d d a ta , in c lu d in g b io lo g ic a l r e fe r e n c e p o in t s . IC E S S e c r e ta r ia t 170 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 Recommendations from WGEEL to itself N u m b e r R e c o m m e n d a t io n In th e in t e r e s t o f lo n g - t e r m p la n n in g a n d in t e m a t i o n a l c o - o r d in a t io n , w e r e c o m m e n d d a ta o n l i f e - h is t o r y c h a r a c te r is t ic s b e c o l la t e d a t th e s p a t ia l s c a le o f th e e e l m a n a g e m e n t u n i t (E M U ) a s p a r t o f t h e d e v e l o p m e n t o f th e E u r o p e a n E e l S to c k A n n e x . W G E E L m a k e s a v a ila b le t im e - s e r ie s o f ( r e c o n s tr u c te d ) s p a w n e r e s c a p e m e n t a n d d o c u m e n t s h o w t h is t im e - s e r i e s h a v e b e e n d e r iv e d ; c o n s id e r s i lv e r e e l r u n r e c o n s t r a c t io n s t o b e b a s e d o n e i t h e r s i lv e r e e l la n d in g s d a ta , y e l l o w e e l la n d in g s d a ta , o r o t h e r h is t o r ic a l s o u r c e s o f in fo r m a t io n It i s p r o p o s e d th a t a l l c o u n t r y r e p o r t a u t h o r s w i l l a d o p t t h e d ig i t a l t e m p la t e c r e a t e d in W G E E L 2 0 1 3 , to e n s u r e th e e f f i c ie n t o p e r a t io n o f th e w o r k in g g r o u p . T h is e f f i c ie n t h a n d l in g a n d p r o c e s s in g o f d a ta h a s b e e n r e c o m m e n d e d in s e v e r a l p r e v io u s r e p o r ts ( in c lu d in g IC E S , 2 0 0 1 ; IC E S , 2 0 1 0 a , IC E S , 2 0 1 3 b ) . C o n c e r te d a c t io n i s r e q u ir e d in 2 0 1 5 b y k e y m e m b e r s o f th e w o r k in g g r o u p in c o o p e r a t io n w i t h th e IC E S D a t a c e n t r e , t o e n s u r e t h e s e r e c o m m e n d a t io n s a r e n o t r e i t e r a te d n e x t y e a r . A n in t e m a t i o n a l p r o g r a m m e o f r e s e a r c h b e u n d e r t a k e n t o s t a n d a r d iz e a n d c r o s s c a l ib r a te th e a s s e s s m e n t m e t h o d s u s e d to e s t im a t e s i lv e r e e l e s c a p e m e n t t h r o u g h o u t t h e d is t r ib u t io n o f th e E u r o p e a n e e l . ToR FOR FUTURE (LETTER CODE INDICATES TOR 2 0 1 4 ) b ) R e v ie w t h e l i f e - h is t o r y tr a i t s a n d m o r t a l i t y fa c to r s b y e c o r e g io n e ) F u r th e r d e v e l o p th e s t o c k - r e c r u i t m e n t r e la t io n s h ip a n d a s s o c ia t e d r e fe r e n c e p o in t s , u s i n g th e la t e s t a v a i la b le d a ta f ) ( ii) w o r k w i t h IC E S D a t a C e n tr e t o d e v e l o p a d a t a b a s e a p p r o p r ia t e t o e e l a lo n g IC E S s t a n d a r d s (a n d w id e r g e o g r a p h y ) f ) (i) E x p lo r e th e s t a n d a r d iz a t io n o f m e t h o d s fo r d a ta c o l le c t io n , a n a ly s i s a n d a s s e s s m e n t Joint EiFAAC/ICES/CFCM WGEEL REPORT 2014 | 171 Annex 8: WGEEL responses to the Technical Review Group minutes, 2013 ....................................................................................................................... The Working Group considered and responded to the Technical Review Group minutes on the 2013 WGEEL Report. Typographical and editorial changes were made in the 2013 report and indicated [DONE] in the Technical Minutes and won't be ad- dressed here. Responses in this table will either indicate where the issue is addressed in the report or a response will be made directly on the table. No. T e c h n ic a l M in u te WGEEL response GENERAL COMMENTS OVERVIEW 1 T h e W o r k in g G r o u p (p . 1 8 0 ) h a s a s k e d IC E S to a d v i s e o n w h i e h o f th e th r e e a s s e s s m e n t a p p r o a c h e s (a n a ly s is o f r e c r u it m e n t tr e n d s , u s e o f s to c k in d ic a t o r s b y c o u n t r y o r E M U , a n d s in g le in t e r n a t io n a l a s s e s s m e n t ) s h o u l d b e p u r s u e d , a l t h o u g h i t g iv e s n o in d ic a t io n o f i t s o w n v i e w s . T h e a n s w e r i s a ll th r e e . 2 T h e W o r k in g G r o u p s h o u l d c la r ify w h a t d a ta n e e d t o b e o b t a in e d in o r d e r to d e v e l o p s u c h a n in t e m a t i o n a l s p e c ie s - w i d e a s s e s s m e n t in t h e fu tu r e . a n t h r o p o g e n ic m o r t a l i t y ( im p a c ts ) ; 6 ) £ F T h e f i s h in g m o r t a l i t y r a te , s u m m e d o v e r th e a g e - g r o u p s in t h e s to c k , a n d th e r e d u c t io n e f f e c t e d ; 7) T h e a n t h r o p o g e n ic m o r t a l i t y r a te o u t s i d e th e f is h e r y , s u m m e d o v e r th e a g e - g r o u p s in t h e s to c k , a n d th e r e d u c t io n e f f e c t e d ( e .g . t u r b in e s , p a r a s i t e s , v ir u s e s , c o n ta m in a n t s , p r e d a to r s , b a r r ie r s , p u m p i n g s t a t io n s , e tc ); 8 ) L A T h e s u m o f a n t h r o p o g e n ic m o r ta l i t ie s , i .e . Z A = L F + L H . It r e fe r s to m o r t a l i t ie s s u m m e d o v e r th e a g e - g r o u p s in th e s to c k . r e s t o c k in g r e q u ir e m e n ts : 7 ) R (s* ) T h e a m o u n t o f e e l (< 2 0 c m ) r e s t o c k e d in t o n a t io n a l w a t e r s a n n u a l ly . T h e s o u r c e o f t h e s e e e l s h o u l d a l s o b e r e p o r te d , a t le a s t to o r ig in a t in g M e m b e r S ta te , to e n s u r e fu l l a c c o u n t in g o f c a t c h v s r e s t o c k e d ( i.e . a v o id ' d o u b le b a n k in g ') . T h e R e v ie w G r o u p s e e m s to r e fe r t o th e s e n t e n c e "A d e c i s io n n e e d s to b e m a d e a s to w h e t h e r IC E S a c c e p t s a n y o r a l l o f th e th r e e a s s e s s m e n t a p p r o a c h e s p r e s e n t e d " . In o u r v i e w , th e r e i s n o d o u b t th a t a ll th r e e m e t h o d s h a v e th e ir p r o s a n d c o n s . T h e q u e s t io n r a is e d , h o w e v e r , i s w h i c h o f th e th r e e i s c o n s id e r e d to b e b e s t fo r p r o v id in g a d v ic e - n o t in g th a t th e m e t h o d s d if fe r c o n s id e r a b ly in d e t a i l , in c r e d ib i l i t y a n d in s p e c i f i c i t y t o e e l . S o fa r , a d v ic e w a s e s s e n t ia l l y b a s e d o n th e r e c r u itm e n t tr e n d s , w h i c h d o e s in f o r m a b o u t t h e w o r r y in g s t a t u s o f t h e s to c k , b u t d o e s n o t in d ic a t e w h e t h e r th e im p le m e n t a t io n o f th e E e l R e g u la t io n h a s r e s u lt e d in a d e q u a t e p r o t e c t io n o r n o t . T h e s e w e r e d e v e l o p e d b y t h e W o r k in g G r o u p in 2 0 0 9 -2 0 1 1 a n d in c o r p o r a t e d in th e E U R e p o r t in g T e m p la t e fo r 2 0 1 2 r e p o r t in g a s f o l lo w s : s i lv e r e e l p r o d u c t io n (b io m a s s ) : 1) Bo T h e a m o u n t o f s i lv e r e e l b io m a s s th a t w o u l d h a v e e x i s t e d i f n o a n t h r o p o g e n ic in f lu e n c e s h a d im p a c t e d th e s to c k ; 2 ) Bcurrcnt T h e a m o u n t o f s i lv e r e e l b io m a s s th a t c u r r e n t ly e s c a p e s to th e s e a to s p a w n . N B - l i s t e d in th e IC E S t e m p la t e a s B p o s t; 3 ) Bbest T h e a m o u n t o f s i lv e r e e l b io m a s s th a t w o u l d h a v e e x i s t e d i f n o a n t h r o p o g e n ic in f lu e n c e s h a d im p a c t e d th e c u r r e n t s to c k , in c l u d e d r e - s t o c k in g p r a c t ic e s , h e n c e o n ly n a t u r a l m o r ta l i t y o p e r a t in g o n s to c k ; 4 ) W e t te d a r e a h a b ita t , b y w a te r t y p e ( la c u s t r in e , r iv e r in e , t r a n s it io n a l & la g o o n , c o a s ta l) ; 5 ) P r o d u c t io n v a lu e s p e r u n i t a r e a , e .g . k g /h a . 172 Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 T h e W o r k in g G r o u p h a s a ls o r a is e d th e i s s u e o f w h e t h e r a n n u a l a s s e s s m e n t s , b e t w e e n t h o s e r e q u ir e d fo r r e p o r t in g u n d e r th e E e l R e g u la t io n , a r e n e c e s s a r y ; t h e y a r e s a id to b e u s e f u l fo r m o n it o r in g th e tr e n d in s t a t u s , b u t n o s t r o n g c a s e i s m a d e f o r c o n d u c t in g t h e m . W h ile l i m i t in g t h e a s s e s s m e n t s t o e v e r y th ir d y e a r m ig h t p r o v id e m o r e t im e to d e v e l o p n e w m e t h o d s , c o n s id e r a t io n s h o u l d b e g i v e n to t h e d i f f ic u l t y o f m a in t a in in g a n d p o p u l a t in g th e d a t a b a s e s u s e d t o u n d e r t a k e th e a s s e s s m e n t s i f t h e y a r e n o t u n d e r ta k e n a n n u a l ly . S in c e a r e b u i ld in g o b j e c t iv e h a s a lr e a d y b e e n d e f in e d f o r t h e E u r o p e a n e e l , th e r e i s n o n e e d t o d e v e l o p a l t e m a t e r e fe r e n c e p o in t s . T h e o b j e c t iv e o f e x c e e d in g 40% o f p r is t in e s p a w n in g b io m a s s h a s b e e n t a k e n to c o r r e s p o n d t o th e te r m u s e d b y th e W o r k in g G r o u p o f BMSYwgger (b u t s e e c o m m e n t s b e lo w ) . A lt e r n a te o b je c t iv e s , b a s e d o n r e c r u itm e n t tr e n d in d ic a t o r s (Rtarget a n d Rdown) a r e n o t u s e f u l fo r in f o r m in g m a n a g e m e n t d e c i s i o n s a s t h e y c a n n o t b e m e a s u r e d d ir e c t ly a g a in s t s i lv e r e e l b io m a s s o r r e m o v a l r a te o b je c t iv e s . T h e d e v e l o p m e n t o f t h e r e la t io n s h ip b e t w e e n s t o c k ( p r o x y v a lu e fo r s i lv e r e e l b io m a s s ) a n d r e c r u itm e n t ( in d e x o f g la s s e e l s f r o m E ls e w h e r e E u r o p e ) i s t o o p r e l im in a r y to j u s t i f y p r o v id in g a l t e m a t i v e , m o r e p r e c a u t io n a r y , r e fe r e n c e p o in t s ( B s » P a n d B s to PPa ) t o th e 40 % o f p r i s t in e b io m a s s v a lu e . T h e P r e c a u t io n a r y D ia g r a m fo r e e l s h o w s Bcorrent o n th e x - a x is , a n d it w o u l d b e m o r e a p p r o p r ia t e t o s h o w Bscst ( th e e x p e c t e d b io m a s s in t h e a b s e n c e o f a n t h r o p o g e n ic im p a c t s ) . In a d d i t io n , th e P r e c a u t io n a r y D ia g r a m s h o w s t h e m a x im u m r e m o v a l ra te , 60% ( c o r r e s p o n d in g t o L A = 0 .9 2 ) , b e in g a p p l i e d a t BMsytrigger, b u t t h i s r e m o v a l r a te c a n o n ly b e s u s t a in e d a t o r a b o v e th e p r is t in e b io m a s s (Bo) w it h o u t r e d u c in g e s c a p e m e n t b e l o w 40% o f Bo. A g r e e d . C o o r d in a t io n o f d a ta , th e ir s t o r a g e a n d a p p l ic a t io n a re n o w d i s c u s s e d in C h a p te r s 7 a n d 8 . T h is c o m m e n t i s d e a lt w i t h in C h a p te r 3 . T h is c o m m e n t i s d e a lt w i t h in C h a p te r 3. T h is c o m m e n t i s d e a lt w i t h in C h a p t e r 3 . Bb«t i s a c t u a l ly s h o w n in th e d ia g r a m s , a s t h e s i z e o f t h e b u b b le s . T h e r e la t io n t o Bo i s r e le v a n t , in r e la t io n to th e m a n a g e m e n t ta r g e t t o r e s to r e s p a w n e r e s c a p e m e n t to 40% o f th e p r is t in e b io m a s s . A g r e e d . Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 173 8 W e s u g g e s t th a t e e l i s a c t u a l ly m o r e a k in to a 's h o r t l iv e d s to c k w i th p o p u la t io n s iz e e s t im a te s ' (IC E S 2 0 1 3 a ) b e c a u s e th e a n t h r o p o g e n ic m o r t a l i t y i s c a lc u la t e d a s a s in g le l i f e t im e v a lu e (E A ), a n d th a t m o r t a l i t y o c c u r s b e f o r e th e f i s h s p a w n . F o r s u c h s to c k s , th e IC E S M S Y a p p r o a c h is a im e d a t a c h ie v in g a ta r g e t e s c a p e m e n t (M S Y Bescapemem) w h ic h w o u l d a c c o r d w i t h t h e 40% o f Bo r e fe r e n c e p o in t s e t b y th e E U . 9 IC E S ( 2 0 1 3 a ) h a s a l s o p r o p o s e d th a t c a t c h e s s h o u l d b e l im i t e d t o th e s t o c k b io m a s s in e x c e s s o f t h e ta r g e t e s c a p e m e n t , a n d th a t n o c a tc h s h o u l d b e a l l o w e d u n l e s s t h e e s c a p e m e n t c a n b e a c h ie v e d e a c h y e a r . O n th is b a s is , F ig u r e 6 -1 m ig h t ta k e th e f o r m o f F ig u r e 1 (T ec h M in u t e s ) . 1 0 D e p e n s a t i o n i s a g a in h ig h l ig h t e d b y th e W o r k in g G r o u p a s a p r o c e s s w h ic h m a y b e a f f e c t in g E u r o p e a n e e l . T h e e v id e n c e p u t f o r w a r d to s u p p o r t t h e d e p e n s a t io n h y p o t h e s i s i s a s to c k a n d r e c r u itm e n t (S - R ) r e la t io n s h ip th a t i s b a s e d o n a p a r t ia l in d e x o f s i lv e r e e l s p a w n in g e s c a p e m e n t a n d a r e la t iv e in d e x o f g la s s e e l r e c r u itm e n t . I n th e IC E S r e v ie w o f th e 2 0 1 2 W G E E L r e p o r t (IC E S 2 0 1 2 , A n n e x 1 1 ) , a lt e r n a te h y p o t h e s e s fo r t h e p a t t e m in g la s s e e l in d ic e s a n d s i lv e r e e l in d ic e s w e r e d e s c r ib e d . T h e s e a l t e m a t iv e h y p o t h e s e s a r e s t i l l w o r t h y o f c o n s id e r a t io n . D e p e n s a t i o n i s d e f in e d in S -R a n a ly s i s a s r e c r u it s p e r s p a w n e r th a t in c r e a s e f r o m th e o r ig in a n d th e n d e c l in e a t a n in t e r m e d ia t e s p a w n e r a b u n d a n c e . T h e c a u s a l m e c h a n is m s o f d e p e n s a t i o n a r e p r im a r i ly a s s o c ia t e d w i t h A l l e e e f f e c t s , b y w h i c h s p a w n in g s u c c e s s i s c o m p r o m i s e d b y l o w s p a w n e r a b u n d a n c e . T o d e m o n s t r a t e d e p e n s a t io n , th e r e c r u it s a n d s p a w n e r s m u s t b e in s im ila r u n i t s . P r o d u c t io n o f g la s s e e l th a t i s l o w r e la t iv e t o h is to r ic a b u n d a n c e i s n o t s u f f i c ie n t to d e m o n s t r a t e d e p e n s a t io n . T h is c o m m e n t i s d e a lt w i t h in C h a p t e r 3 . T h is c o m m e n t i s d e a lt w i t h in C h a p te r 3 . T h is c o m m e n t is d e a lt w i t h in Q i a p t e r 3 .T h e t e n t a t iv e s to c k - r e c r u itm e n t - r e la t io n b a s e d o n th e a v a i la b le d a ta in d ic a t e s th a t a m u c h m o r e p r e c a u t io u s m a n a g e m e n t a p p r o a c h i s r e q u ir e d to r e s to r e th e s t o c k , th a n w o u l d b e e x p e c t e d fo r a n o n - d e p e n s a t o r y r e la t io n . T h e R e v ie w G r o u p a p p e a r s t o r e v e r s e th e b u r d e n o f p r o o f . 174 Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 IX It c o u ld b e th a t th e l o w v a lu e s o f th e g la s s e e l in d ic e s s in c e th e 1 9 9 0 s a r e th e r e s u l t o f l e s s f a v o u r a b le s u r v iv a l c o n d i t io n s o f t h e e a r ly l i f e s t a g e s ( p o s s ib l y d u e t o a r e g im e s h if t ) p e r h a p s e x a c e r b a te d b y r e d u c e d s p a w n e r q u a l i t y a s s o c ia t e d w i t h c o n t a m in a n t s o r o t h e r fa c to r s in fr e s h w a te r . T h e r e m a y b e s u b s e q u e n t c o m p e n s a t o r y r e s p o n s e s in t h e s p a w n e r p r o d u c t io n in th e c o n t in e n t a l p h a s e o f t h e l i f e c y c le th a t r e s u l t s i n a s p a w n e r to s p a w n e r r a t io w h i c h i s g r e a te r th a n o n e , b e fo r e p o t e n t ia l s p a w n e r s a r e k i l l e d in c o n t in e n t a l a r e a s . E v id e n c e i s p r o v id e d in t h e r e p o r t o f s o m e o f th e s e , in c lu d in g in c r e a s e d s i z e a n d p r o p o r t io n f e m a le s a m o n g s i lv e r e e l s a s a b u n d a n c e h a s d e c l in e d ( s e e S e c t io n s 9 .1 1 .1 a n d 9 .1 1 .2 ) . I t i s n o t a b le th a t m a r in e m o r ta l i t y o f A t la n t ic s a lm o n , w h i c h i s m o s t u n l ik e ly to d e m o n s t r a t e d e p e n s a t i o n d u r in g th e m a r in e p h a s e , a l s o s h o w s s ig n s o f h a v in g b e e n a f f e c t e d b y a r e g im e s h i f t a r o u n d 1 9 9 0 (IC E S 2 0 1 3 b ) 1 2 T h e m a n a g e m e n t a d v ic e i s th e s a m e r e g a r d le s s o f w h e t h e r th e S -R d y n a m ic i s d u e t o n o n - s t a t io n a r i t y ( d e n s i t y in d e p e n d e n t o r d e n s i t y d e p e n d e n t p h e n o m e n o n a s s o c ia t e d w i t h r e d u c e d r e s o u r c e s ) o r d e p e n s a t io n ; to m a in ta in a n d in c r e a s e r e c r u it m e n t , t h e s p a w n e r b io m a s s m u s t b e in c r e a s e d . 13 T h e c o m b in e d r e p o r t o f th e M a r c h a n d S e p t e m b e r m e e t i n g s e x c lu d e s a n y in f o r m a t io n o n t h e w o r k u n d e r t a k e n to a d d r e s s T o R 'd ' t o 'g ' . T h e W K E P E M P r e p o r t (IC E S 2 0 1 3 c ) c o n t a in s s o m e o f th e in f o r m a t io n c o l la t e d d u r in g th e M a r c h m e e t in g . T h e s u m m a r y ta b le s o f t h e k e y s to c k ín d ic a t o r s b y E M U , r e fe r r e d to a s th e 3 B s & E A -a p p r o a c h , w h i c h are s u m m a r iz e d la te r in th e P A s u m m a r y p lo t s o f s t a t u s b y E M U a n d c o u n t r y in S e c t io n 6 .5 o f th is r e p o r t , a r e p r o v id e d i n IC E S (2 0 1 3 c ) a n d a s im ila r ta b le s h o u l d h a v e b e e n in c l u d e d in th is r e p o r t , a s a r e s p o n s e to T o R 'e ' a n d 'f '. G i v e n th a t t h e s e s t o c k in d ic a to r s a r e p r o p o s e d a s k e y in d ic a t o r s o f s to c k s t a t u s a n d p r o g r e s s b y s t a t e s in a c h ie v in g s t o c k r e b u i ld in g o b je c t iv e s , r e a d e r s o f t h is r e p o r t w o u l d h a v e b e n e f i t e d i f a s e c t io n d e s c r ib in g t h e s e s t o c k in d ic a t o r s , th e ir o r ig in , a n d h o w t h e y a r e u s e d t o a s s e s s s to c k s t a t u s h a d b e e n p r o v id e d . A s p o in t 10 . A g r e e d , a n d fu r th e r d e a l t w i t h in C h a p te r 3 . A g r e e d , b u t i t w a s d e s ig n e d th a t w a y a t th e t im e t o k e e p s o m e r o le s e p a r a t io n b e t w e e n t h e t e c h n ic a l r e v i e w o f t h e E M P s (W K E P E M P ) a n d th e w o r k o f th e W G . C o m m e n t n o t e d fo r fu t u r e r e fe r e n c e . Joint ElFAAC/iCES/CFCM WGEEL REPORT 2014 175 14 T h e W o r k in g G r o u p h a s a d i f f ic u l t ta s k to p u l l t o g e t h e r d a ta f r o m a la r g e a n d d iv e r s e g r o u p o f c o u n t r ie s a n d to d e v e l o p u n i f i e d a s s e s s m e n t s o f th e e e l s to c k . H o w e v e r , th e r e p o r t i s n o t c le a r ly s t r u c tu r e d , a n d s e c t i o n s n e i t h e r f u l ly a d d r e s s s p e c i f i c T o R ( e .g . T o R 'j' i s a d d r e s s e d in S e c t io n s 4 , 5 , 6 , 9 , 1 0 a n d 1 1 ) n o r p r o v id e c o m p le t e a n s w e r s to s p e c i f i c a d v is o r y q u e s t io n s 15 T h r o u g h o u t t h e r e p o r t , r e fe r e n c e p o in t s a r e f r e q u e n t ly r e fe r r e d t o a s 'ta r g e ts ' w h e n t h e y a r e a c t u a l ly ' l im it s ' . T h is is a n im p o r t a n t d is t in c t io n w h i c h h a s s íg n i f ic a n t im p l i c a t io n s fo r m a n a g e m e n t . 1 6 T h e r e a r e s e v e r a l s e c t io n s in w h ic h f ig u r e n u m b e r s h a v e b e e n d u p l ic a t e d . T h is i s d i f f i c u l t t o a v o id w h e n c o m p i l in g a la r g e r e p o r t q u ic k ly , b u t it c o u ld b e r e d u c e d b y e m p lo y i n g th e n o r m a l IC E S c o n v e n t io n fo r n u m b e r in g f ig u r e s a n d ta b le s Sections 1 -3 , Opening, Agenda & Introduction 1 7 T h e T o R w o u l d b e e a s ie r t o f in d i f t h e y w e r e p la c e d in a s t a n d - a lo n e s e c t io n a t th e s ta r t o f th e r e p o r t . It w o u l d a l s o b e h e lp f u l t o in d ic a t e w h i c h m a n a g e m e n t b o d y ( i e s ) a r e r e q u e s t in g th e a d v ic e (S e e T e c h n ic a l R e v ie w 2 0 1 2 ) . It i s h e lp f u l th a t s o m e s e c t io n s o f t h e r e p o r t a r e p r e fa c e d b y th e T o R w h i c h t h e y a d d r e s s ; i t w o u l d a l s o b e h e lp f u l i f t h e l i s t o f T o R a t th e b e g in n in g o f t h e r e p o r t s h o w e d th e s e c t i o n in w h i c h e a c h T o R is c o n s id e r e d 1 8 A n n e x 3 a p p e a r s to in d ic a t e t h a t th e T o R a r e p r o p o s e d b y t h e W o r k in g G r o u p i t s e l f , b u t c la r if ic a t io n is r e q u ir e d o n th e c u s t o m e r ( s ) fo r th e a d v ic e a n d th e p r e c i s e m a n a g e m e n t n e e d s . I t m ig h t b e h e lp f u l i f fu t u r e T o R r e f le c t th e u l t im a t e a d v i s o r y n e e d (e .g . a n a s s e s s m e n t o f th e s t a t u s o f th e e e l s to c k a c r o s s i t s r a n g e ) r a th e r th a n th e p r o c e s s f o r a c h ie v in g t h a t n e e d ( e .g . c o m p ila t io n o f d a ta ) . 1 9 T h e R e v ie w G r o u p r e c o m m e n d s th a t in f u t u r e th e W o r k in g G r o u p p r o v id e s a n A n n e x l i s t i n g th e R e v ie w G r o u p 's c o m m e n t s a n d e i t h e r p r o v id e s a r e s p o n s e o r in d ic a t e s w h e r e in th e r e p o r t th a t r e s p o n s e c a n b e fo u n d . D o n e - th e r e p o r t s tr u c t u r e h a s b e e n r e d e s i g n e d t o la r g e ly f o l l o w t h e r e c o m m e n d a t io n s o f th e R G E E L 2 0 1 3 , a n d c h a p t e r t i t l e s a n d c o n t e n t la r g e ly o r g a n is e d t o a d d r e s s in d iv id u a l T o R s . It i s r e fe r r e d t o a s a 'ta r g e t ' in th e R e g u la t io n ; w i l l b e r e fe r r e d t o a s a T im it ' in W G E E L . A g r e e d . D o n e - T h e T o R , t h e b o d i e s r e q u e s t in g th e A d v i c e , a n d d e t a i l o f w h i c h r e p o r t c h a p te r a d d r e s s e s w h i c h T o R , a r e a ll p r o v id e d in th e I n tr o d u c t io n to th e r e p o r t (C h a p te r 1 ). T h e c h a p t e r t i t le s i n c l u d e t h e T o R to w h i c h t h e y a r e a d d r e s s e d . D o n e - th e T o R fo r 2 0 1 4 w e r e d e s ig n e d t o r e f le c t th e a d v is o r y n e e d . D o n e 176 Joint ElFAAC/iCES/CFCM WCEEL REPORT 2014 20 21 22 2 3 In th e a b s e n c e o f a S to c k A n n e x a l l d a ta a n d m e t h o d s u s e d s h o u ld (a s fa r a s p r a c t ic a b le ) b e p r o v id e d in th e r e p o r t; it i s n o t r e a s o n a b le to e x p e c t th e r e a d e r to l o o k t h r o u g h m o r e th a n 1 5 E x p e r t G r o u p r e p o r ts to f in d th e r e le v a n t in f o r m a t io n . W h e r e t h e v o lu m e o f d a ta is t o o g r e a t t o b e in c l u d e d in t h e r e p o r t , th e in f o r m a t io n s h o u l d b e s u m m a r iz e d a n d s o u r c e s g iv e n . p . i i i , S e c t io n B , C h a p te r 1 0 , l s t p a r a . U n c le a r w h a t 'e x p o r t s ' m e a n s ; i s i t e x p o r t s o u t o f th e E U , o r e x p o r t s o u t o f th e f i s h in g c o u n tr y ? p .2 0 : I m p le m e n t a t io n o f th e E M P s h a s n o w in t r o d u c e d d is c o n t in u i t ie s in d a ta t r e n d s ( e .g . f i s h e r i e s d e p e n d e n t r e c r u itm e n t s e r ie s ) ; th e W o r k in g G r o u p s h o u ld c o n s id e r th e im p l i c a t io n s a n d r e v ie w th e n e e d t o s h i f t f r o m f is h e r ie s - b a s e d to s c ie n t i f ic s u r v e y - b a s e d a s s e s s m e n t s . S to c k A n n e x p la n n e d in F u tu r e F o c u s . S e e u n d e r r e s p o n s e to G e n e r ic T o R s A n n e x Section 4, In troduction to stock assessm ent, reference po in ts and stock status In S e c t io n 4 .2 , th e W o r k in g G r o u p p r e s e n t s a n a r r o w v i e w o f w h a t a re t e r m e d 's t a n d a r d s t o c k a s s e s s m e n t t e c h n iq u e s ' a n d s u g g e s t s th a t , i f t h e s e t e c h n iq u e s w e r e a p p l i e d to e e l , th e a s s e s s m e n t w o u l d b e m e a n in g le s s . H o w e v e r , t h e p r o b le m i s n o t w i t h e e l b i o lo g y o r e c o lo g y , i t r e s id e s w i t h th e la c k o f a d e q u a t e b a s ic s to c k a s s e s s m e n t d a ta fo r E u r o p e a n e e l , i n c l u d in g c a tc h d a ta , b io lo g ic a l d a ta in c l u d in g le n g t h a n d w e i g h t a t a g e a n d s t a g e ( y e l lo w v s s i lv e r e e l ) a n d e s t im a t e s o f e x p lo i t a t io n r a te s a c r o s s th e s p e c ie s r a n g e . I f t h e s e d a ta w e r e a v a ila b le , th e E u r o p e a n e e l c o u ld v e r y w e l l l e n d i t s e l f to s ta n d a r d a s s e s s m e n t a p p r o a c h e s , s u c h a s s ta t is t ic a l c a t c h a t a g e o r c o h o r t a n a ly s e s . I f s u c h in f o r m a t io n w a s c o l la t e d a n d in t e g r a t e d o v e r a l l r e g io n s , t h is w o u l d c o n s t i t u t e a n in t e m a t io n a l a s s e s s m e n t to w h i c h W G E E L a s p ir e s . T h e r e fe r e n c e s to p r e v i o u s W G E E L r e p o r ts , w h i c h a r e th e s o u r c e o f t h e t e x t in th is s e c t io n , do not provide scientific support for discounting standard assessm ent procedures. I n th e m e a n t im e , th e r e r e m a in s a n u r g e n t n e e d t o in t r o d u c e fu r th e r q u a l i t y c o n tr o l in to t h e s e p a r a t e r e g io n a l a s s e s s m e n t s u n d e r ta k e n . O u t o f th e f i s h in g c o u n tr y T h e n e e d t o s h i f t to s c ie n t i f ic s e r ie s a n d t h e r is k o f l o s in g th e f i s h e r y b a s e d s e r ie s h a s b e e n a d d r e s s e d b y t h e W G E E L b e fo r e t h e im p le m e n t a t io n o f th e m a n a g e m e n t p la n . T h e W G E E L h a s r e p e a t e d ly m a d e r e c o m m e n d a t io n s t o tr y to a d d r e s s th is p r o b le m , S e e S G IP P E E '1 1 , W G E E L , '0 9 &: 1 0 & 11 & '1 2 , a n d W K E S D C F S e c t io n 4 .2 a c t u a l ly in d ic a t e d th a t a s t a n d a r d , c e n t r a l is e d , a g e - b a s e d a p p r o a c h c o u ld i n d e e d b e f o l l o w e d ; w e d o n o t d is a g r e e o n th a t . T h e p o in t m a d e i n S e c t io n 4 .2 ( h ig h l ig h t e d b y a n e x a m p le o f a g e 5 y e a r o ld e e l s , c o m b in in g r e c r u it in g y e l l o w e e l s f r o m S c a n d in a v ia w i t h e s c a p in g s i lv e r e e l f r o m t h e M e d i t e r r a n e a n ) i s th a t th e r e s u lt s (e .g . m o r t a l i t y a t a g e 5 ) w o u l d b e d i f f i c u l t to in t e r p r e t , a n d w o u l d h a r d ly r e la te t o a n y m a n a g e m e n t a c t io n . T h e a s s e s s m e n t i s f e a s ib le , b u t w o u l d h a v e s e v e r e ly r e s tr ic te d a p p l ic a t io n . Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 177 2 4 p .2 3 , S e c 4 .3 : I t w o u l d b e h e lp f u l to c le a r ly p r e s e n t th e m a n a g e m e n t o b j e c t iv e s (e .g . th e E U R e g u la t io n ) a g a in s t w h i c h th e th r e e a s s e s s m e n t m e t h o d s d e s c r ib e d in S e c t io n 4 .3 a re c o n d u c t e d 2 5 p .2 3 , S e c 4 .3 , p a r a 2: th e r e fe r e n c e s to D L S G u id a n c e a r e u n c le a r ; th e n a m e s h o u l d b e s p e l t o u t ín fu l l t h e f ir s t t im e i t i s m e n t io n e d a n d t h e c o r r e c t r e fe r e n c e s h o u l d b e in c lu d e d . F u r th e r m o r e th e r e fe r e n c e s t o M e t h o d s 1 .1 .2 ( I fe s t im a te d s to c k b io m a ss in th e in te r m e d ia te y e a r ís less th a n M S Y Btr,sgrr) a n d 5 .3 ( l f c a tc h e s h a ve d e c lin e d s ig n i f ic a n t ly o v e r a p e r io d o f t i m e a n d th is is co n s id e re d to be r e p r e s e n ta t iv e o f a s u b s ta n tia l r e d u c t io n in b io m a ss , a r e c o v e ry p la n a n d p o s s ib ly z e r o ca tch is a d v ise d ) d o n o t a p p e a r t o m a t c h th e te x t . 2 6 p .2 4 , p a r a 1 , l i n e 3: th e r e p o r t r e fe r s to 'a d is c u s s io n o n h o w to d ea l w i th a (rea l o r p e r c e iv e d ) b rea k in a h i th e r to c o n s is te n t, m u ltid e c a d a l d e c lin e ( fo r w h ic h D L S C u id a n c e d o es n o t p r o v id e a m e th o d ) '; th is s t a t e m e n t i s u n c le a r ; th e r e i s n o t a b r e a k , i t i s a n u p t u m . 2 7 p .2 4 , p a r a 1, l in e 5 -6 : t h e r e p o r t s ta te s , 'F in a lly , th e a va ila b le d a ta in d ic a te th a t r e c r u i tm e n t h a s d e c lin e d m o re r a p id ly th a n th e ( r e c o n s tr u c te d ) s p a w n e r e sc a p e m e n t, w h ic h m a y in d ic a te a. a n in a p p r o p r ia te r e c o n s tr u c t io n o f t h e t r e n d in s p a w n e r e s c a p e m e n t , o r b. a n o n -s ta b le s to c k - r e c r u i t r e la t io n s h ip (e .g . c h a n g e in ocean c o n d i t io n s ) , o r c. a d e p e n s a to n / s to c k - r e c r u i tm e n t r e la t io n s h ip .'. H o w e v e r th is i s t o b e e x p e c te d ; in a c o m p e n s a t o r y S -R r e la t io n s h ip s , r e c r u itm e n t (R ) w i l l d e c l in e fa s te r th a n s p a w n e r e s c a p e m e n t (S ) w h e n S i s l e s s th a n t h e s p a w n e r s r e q u ir e d to a c h ie v e M S Y (Smsy). (R w i l l d e c l in e l e s s r a p id ly th a n S w h e n S > S msy) 2 8 p .2 4 , S e c 4 .4 , p a r a 2: I t i s s u g g e s t e d , ' th e n e t e f fe c t o f t h e a c t io n s ta k e n in 2 0 0 9 o n th e to ta l 2 0 0 9 s i lv e r ee l e s c a p e m e n t is p ro b a b ly s m a l l , f a r b e lo w th e ta r g e ts o f t h e E M P s a n d /o r th e u l t im a te l y s u s ta in a b le le v e l. ' T h e s e c o n c l u s io n s a r e n o t j u s t i f ie d w it h o u t a l i s t o f t h e a c t io n s ta k e n a n d th e l i f e s t a g e s l ik e ly a f f e c t e d T h is c o m m e n t i s d e a l t w i t h in C h a p te r 3 . D o n e . T h is c o m m e n t i s d e a lt w i t h in C h a p te r 3 . T h is c o m m e n t ís d e a l t w i t h in C h a p t e r s 2 a n d 3 . T h is c o m m e n t is d e a lt w i t h in C h a p t e r 3 . B o th a B e v e r to n & H o l t - t y p e a n d R ic k e r - t y p e r e la t io n a re c o n c a v e b e t w e e n M S Y a n d t h e o r ig in , t h a t is : s p a w n in g s to c k d e c r e a s e s fa s t e r t h a n th e r e s u lt in g r e c m it m e n t . T h e e e l d a ta a p p e a r to in d ic a t e th e o p p o s i t e . IC E S -W K E P E M P 2 0 1 3 p r o v id e d th a t l i s t . C h a p t e r 4 i s in t e n d e d to s k e tc h th e f r a m e w o r k fo r s to c k a s s e s s m e n t a n d r e fe r e n c e p o in t s , w h i l e d e d ic a t e d c h a p t e r s p r o v id e f u l l d e t a i l . D O N E Section 5, Trend based assessm ent and reference po in ts 178 | Joint ElFAAC/ICES/GFCM WGEEL REPORT 2014 2 9 L it t le in f o r m a t io n is p r o v id e d o n th e d e r iv a t io n o f t h e r e c r u itm e n t in d ic e s u s e d in t h i s a s s e s s m e n t ; T a b le 5 -1 r e fe r s to ' th e tw o r e c r u i tm e n t se r ie s p r e s e n te d in C h a p te r 9 ', b u t th a t s e c t io n d e a ls w i t h th r e e l i f e s t a g e s ( g la s s , y e l l o w a n d g la s s + y e l lo w ) a n d t w o a r e a s ( N o r th S e a a n d E ls e w h e r e ) . (N B C o m m e n t s o n th e t im e s e r ie s a n a ly s i s a r e p r e s e n t e d fo r S e c t io n 9 b e lo w .) 3 0 C h o ic e o f t h e b a s e l in e p e r io d i s a k e y e l e m e n t o f t h e s e a n a ly s e s , a n d th is i s n o t e x p la in e d e i t h e r h e r e o r in th e g e n e r a l d i s c u s s i o n o f d a ta c o m p ila t io n (C h a p te r 9 ) . T h e p e r io d 1 9 6 0 -1 9 7 9 is c h o s e n a s a b a s e l in e b e c a u s e 'th e s to c k w a s co n s id e re d to be 'h e a l th y ' d u r in g th is p e r io d ', b u t e l s e w h e r e th e r e p o r t s a y s th a t y e l l o w e e l r e c r u it s h a v e b e e n d e c l in in g s in c e th e 1 9 6 0 s (p . i) A g r e e d , th e t a b le s 4 .3 4 .4 a n d 4 .5 d e s c r ib e t h e c u r r e n t s ta t e o f s e r i e s u s e d ( w h ic h a r e u p d a t e d , w h i c h a r e n o t ) . W e n o w e x p la in th a t th e g la s s e e l t r e n d i s b a s e d o n b o t h g la s s e e l a n d g la s s e e l + y e l lo w e e l (C h a p te r 2 ). T h e f u l l d e s c r ip t io n o f th e s e r i e s a v a ila b le a n d th e ir p o s s ib l e w e a k n e s s e s i s d e s c r ib e d in a n E -ta b le a c c o m p a n y in g th a t c h a p t e r . T h is d e s c r ip t io n c o m p r i s e s th e f ir s t y e a r , la s t y e a r , d u r a t io n , m is s in g y e a r s , a n d th e e x p e r t i s e o f a p o s s ib l e c h a n g e in t h e tr e n d o v e r th e y e a r s . N o s e le c t io n w a s d o n e th is y e a r o n th e s e r ie s , b u t t h e w g e e l a c k n o w le d g e s th e n e e d t o w o r k o n t h e w e ig h in g o f t h o s e s e r ie s . T h e r e m ig h t b e u p to 3 s e r i e s in t h e s a m e p la c e , a n d g e o g r a p h ic a l , w i t h r e s p e c t to a b s o l u t e r e c r u itm e n t , s o m e s e r ie s w i l l h a v e m u c h m o r e w e ig h t t h a n o th e r s . T h is i s n o w a n s w e r e d i n C h a p te r 2 . T h e W G E E L a c k n o w le d g e s th a t th e p e r io d o f r e fe r e n c e le a d s t o a d i f f i c u l t y in th e in t e r p r e t a t io n , b u t c h o o s in g a d i f f e r e n t p e r io d m ig h t le a d far f e w e r s e r ie s a v a ila b le . F ig u r e 4 .2 a n d 4 .3 p r e s e n t s th e r a w d a ta in a w a y th a t i s c o n s i s t e n t w i t h p r e v i o u s r e p o r ts f r o m 2 0 0 2 . A I s o 3 1 32 p .2 6 , T a b le 5 -1 : th e c a p t io n r e fe r s t o a r e fe r e n c e p e r io d o f 1 9 6 0 -8 0 ; s h o u ld th is b e 1 9 6 0 -7 9 (o r i t i s in c o n s i s t e n t w i t h th e r e fe r e n c e p e r io d u s e d e l s e w h e r e ) ? T h e r e p o r t d r a w s a f ir m c o n c lu s ío n f r o m th e tr e n d a n a ly s i s th a t ' th e s to c k r e m a in s in th e c r it ic a i z o n e . ' T h is i s b a s e d o n th e c h o s e n b a s e l in e , a n d a d d i t io n a l a n a ly s e s s h o u l d b e p r e s e n t e d t o c o n f ir m w h e t h e r th e r e p o r t 's c o n d u s i o n o n t r e n d s i s u p h e l d u s i n g a lte r n a te b a s e l in e s . T h e e x t e n t t o w h i c h th e r e c r u it m e n t in d e x v a r ie s w i t h b a s e l in e c h o ic e w o u l d a l s o h e lp in t h e e v a lu a t io n o f th e r o b u s t n e s s o f th is m e t h o d . T h e c o n c e p t o f a 'b a s e l i n e / a p e r io d w h e n th e p o p u l a t io n w a s 'h e a l th y ' , h a s a r e le v a n c e th a t g o e s b e y o n d C h a p te r 5 . T h e a n a ly t ic a l a p p r o a c h o f C h a p te r 6 i s b a s e d o n a h y p o t h e t i c a l p o p u l a t io n th a t i s u n a f f e c t e d b y a n t h r o p o g e n ic a c t iv i t ie s , w h i c h i s a n o t h e r w a y o f s a y in g a b a s e l in e p o p u la t io n . T h e s e b a s e l in e s s h o u l d b e c o n s is t e n t . T h e W G E E L h a s c o n s id e r e d i n c l u d in g d a ta b e fo r e 1 9 6 0 . T h e u n b i a s e d d a ta b e f o r e 1 9 6 0 a r e n o t n u m e r o u s e n o u g h to p r o v id e a tr e n d th a t w e c o u ld b e c o n f id e n t in . A s a r e s u lt , th e g r a p h s w e r e a d a p t e d w i t h s h a d i n g fo r d a ta b e f o r e 1 9 5 0 a n d o n ly th e v a lu e s a f te r 1 9 6 0 a r e p r e s e n t e d in th e W G E E L r e c r u it m e n t in d e x . T h e y e l lo w e e l s e r i e s i s b a s e d o n fo u r u n b ia s e d s e r i e s a f te r 1 9 4 6 , a n d t h e r e fe r e n c e p e r io d fo r t h o s e s e r ie s h a s n o t b e e n c h a n g e d . T h e b a s e l in e i s c h o s e n a s f o l l o w i n g : 1 980 : b r e a k p o in t in r e c r u itm e n t 1 960 : b e fo r e w e d o n ' t h a v e e n o u g h d a ta . Joint EiFAAC/ICES/GFCM WGEEL REPORT 2014 179 3 4 35 3 3 It i s n o t c le a r th a t th e p r e s e n t a t io n o f th e r e c r u itm e n t t r e n d s in F ig u r e 5 -3 a d d s s ig n i f íc a n t ly t o F ig u r e s 5 -1 a n d 5 -2 , p a r t ic u la r ly g i v e n th a t th e 5 -y e a r e x p o n e n t ia l tr e n d a p p e a r s to b e q u it e s e n s i t i v e t o r e la t iv e ly s m a l l a n n u a l f lu c t u a t io n s in R a n d m a n y o f th e d a ta p o in t s a r e s u p e r im p o s e d . T h e r e fe r e n c e p o in t s u s e d in t h e s e a n a ly s e s a r e n o t r e fe r e n c e p o in t s fo r m a n a g e m e n t , a n d m a n a g e r s m a y b e c o n f u s e d b y th e in t r o d u c t io n o f t h e n e w s t a t u s t e r m in o lo g y ; th e u s e o f a 'h ig h c a u t io u s ' z o n e i s c o n f u s in g , a n d th e d is t in c t io n w i t h t h e 'c a u t io u s ' z o n e s m a y a l s o b e m is l e a d i n g ( fo r e x a m p le , a s t r o n g ly d e c r e a s in g tr e n d w h e n R/Rtarga i s m a r g in a l ly g r e a te r th a n 1 .0 ( c a u t io u s z o n e ) w o u l d a p p e a r t o p o s e m u c h g r e a te r r is k to t h e s t o c k th a n a s t r o n g ly p o s i t iv e t r e n d w i t h R / R t a r Sc t m a r g in a l ly l e s s t h a n 1 .0 ( h ig h c a u t io u s z o n e ) ) . F o r a p a n m ic t ic s p e c ie s , a d e c l in e in r e c r u itm e n t to n o r t h e m a r e a s b u t n o t in s o u t h e m a r e a s i s n o t c o n s i s t e n t w i t h d e p e n s a t io n . O v e r a l l , t h e tr e n d a n a ly s e s c o n f ir m th e c o n t in u in g s e v e r e ly d e p le t e d s t a t e o f th e r e c r u it m e n t , a n d th is i s c le a r ly d e s c r ib e d . A n u m b e r o f c o m m e n t s a r e m a d e a b o u t t h e r e c e n t u p t u m in th e r e c m it m e n t in d ic e s , a n d t h is r a is e s th e i s s u e o f d e t e r m in in g w h e n t h e s e c h a n g e s s h o u l d b e c o n s id e r e d s ig n if ic a n t . 3 6 T h e W o r k in g G r o u p m ig h t c o n s id e r w h e t h e r e x a m in a t io n o f p r e v i o u s y e a r - t o - y e a r v a r ia t io n in t h e in d ic e s (e .g . a n n u a l c h a n g e s , s e q u e n c e s o f in c r e a s e /d e c r e a s e s , e tc ) c o u ld b e u s e d to e v a lu a t e th e s ig n if ic a n c e o f r e c e n t c h a n g e s . A s in d ic a t e d , i t w o u l d b e d e s ir a b le to b e a b le t o p r e s e n t s im ila r t r e n d s in y e l l o w a n d /o r s i lv e r a b u n d a n c e , e v e n i f t h e s e t r e n d s m a y r e f le c t lo c a l d i f f e r e n c e s in p o p u la t io n d y n a m i c s a n d a n t h r o p o g e n ic im p a c t s . 3 7 p . 2 6 , S e c 5 .2 : Rdown i s b a s e d o n th e 5% q u a n t i le o f r e c r u itm e n t . S in c e th e r e a r e 2 0 y e a r s b e t w e e n 1 9 6 0 a n d 1 9 7 9 , it a p p e a r s th a t R d ow n s h o u l d b e th e r e c m it m e n t d u r in g th e p o o r e s t r e c r u itm e n t y e a r b e t w e e n 1 9 6 0 a n d 1 9 7 9 . I f th is i s c o r r e c t , i t s h o u l d b e s t a t e d in t h e te x t . A g r e e d . A d d r e s s e d in C h a p te r 3 . W e n o w k e e p o n ly th e F ig u r e 5 .3 . A s s a id in th e r e p o r t , d if f e r e n t p e r io d to c a lc u la t e th e tr e n d h a v e s b e e n t e s t e d a n d 5 y e a r s s e e m s to th e b e s t c o m p r o m is e . T h e f ig u r e s h a s b e e n e n la r g e d T h e E U h a s a g r e e d o n a b io m a s s l im i t r e fe r e n c e p o in t , b u t h a s n o t a d o p t e d a n y m o r t a l i t y r e fe r e n c e p o in t . IC E S a d v ic e s o far h a s e s s e n t ia l ly b e e n b a s e d o n t h e tr e n d in r e c m it m e n t o n ly . T h a t is: m a n a g e m e n t a n d a d v ic e a d d r e s s d i f f e r e n t d im e n s io n s . T h e r e fe r e n c e p o in t s d i s c u s s e d in t h i s s e c t io n c a n b e a p p l ie d fo r m a n a g e m e n t , a s e x e m p l i f ie d b y th e ir a p p l ic a t io n b y D F O in C a n a d a . In o r d e r to h e lp t o a l i g n IC E S a d v ic e w i t h E U p o l ic ie s o n e e l , C h a p te r 3 d i s c u s s e s t h e th r e e d if f e r e n t a s s e s s m e n t a p p r o a c h e s . E la b o r a t io n o f th e t r e n d - b a s e d a s s e s s m e n t a n d d e r iv a t io n o f c o r r e s p o n d in g r e fe r e n c e p o in t s is o n e o p t io n ; a d v i s in g E U o n b io m a s s a n d m o r t a l i t y r e fe r e n c e p o in t s a n o th e r . T h e d e c l in e h a p p e n s e v e r y w h e r e . W e n o t e th a t i t m ig h t n o t b e c o n s is t e n t w i t h o t h e r h y p o t h e s e s e i th e r . T h is i s n o w a d d r e s s e d in C h a p te r 2 . T h is is d o n e fo r r e c r u itm e n t . N o a n a ly s i s w a s d o n e t h is y e a r o n th e y e l l o w a n d s i lv e r e e l t r e n d s , a s i t i s f e l t th a t t h o s e m ig h t o n ly r e f le c t lo c a l c h a n g e . F ig u r e s 5 .1 a n d 5 .2 c a n c e l le d in th is y e a h s r e p o r t 180 | Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 3 8 p .2 6 , l i n e 5: th e r e fe r e n c e t o u s i n g tr e n d a n a ly s i s in th e d e v e l o p m e n t o f th e P A b y F is h e r ie s a n d O c e a n s , C a n a d a is u n c le a r . 3 9 p . 2 9 , F ig u r e 5 -3 : T h e y - a x is s h o u ld in d ic a t e t h a t R / R i a r g « i s e x p r e s s e d a s a %. T h e r e a s o n fo r u s i n g a f iv e y e a r e x p o n e n t ia l c h a n g e fo r th e x - a x is s h o u ld b e e x p la i n e d in th e te x t . Section 6, Quantitative assessm ent app ly ing generic reference points 4 0 S e c t io n 6 .2 p r o v id e s a n im p o r ta n t d e s c r ip t io n o f th e m a n a g e m e n t o b j e c t iv e s a n d s h o u l d b e t h e b a s i s fo r th e m a n a g e m e n t a d v ic e . H o w e v e r , th e E U 's r e fe r e n c e p o in t o f 40 % o f p r is t in e b io m a s s i s r e fe r r e d to a s a 'ta r g e t ' ( l in e s 3 a n d 9 ) b u t a l s o a s a t r ig g e r p o in t ( l in e 9 ) a n d a s a ' l im it ' r e fe r e n c e p o in t ( l in e 15); í t i s im p o r t a n t t o b e c le a r w h e t h e r t h is i s a t a r g e t o r a l im it . 4 1 S e c t io n 6 .3 r e fe r s t o ' s t o c k in d ic a to r s 3 B s & E A ' b u t i t i s n o t im m e d i a t e ly c le a r w h i c h b io m a s s r e fe r e n c e p o in t s a re b e i n g r e fe r r e d to ( th e g lo s s a r y d e f in e s s e v e n b io m a s s r e fe r e n c e p o in t s ) . 4 2 It w o u l d b e h e lp f u l t o p r o v id e a d e f in i t i o n o f t h e r e le v a n t in d ic a t o r s (Bo, Bmrrait Bbest a n d E A ? ) in a t e x t t a b le a n d r e la t e t h e s e t o t h e IC E S r e fe r e n c e p o in t s (e .g . BMSY-tTÍgger). T h e r e fe r e n c e i s s u p p l i e d a f e w i i n e s f u r th e r d o w n th e p a g e , in t h e s e c t io n th a t e la b o r a t e s o n th is . F ig u r e c o r r e c te d . A c k n o w le d g e d ; c o r r e c t e d in t h i s y e a r 's r e p o r t. C o r r e c t . It a p p e a r s th a t v a lu e s a r e n o t p r o v id e d D o n e - th e m is s in g v a lu e s fo r t h e s e s t o c k in d ic a t o r s fo r E U fo r a l l E M U s a n d th e r e a s o n fo r th is c o u n t r ie s h a v e b e e n h ig h l ig h t e d a g a in in C h a p te r 4 . S o lu t io n s n e e d s t o b e d i s c u s s e d a n d s o lu t io n s f i l l t h e s e g a p s h a v e b e e n c o n s id e r e d t h r o u g h C h a p t e r s 4 a n d e x p lo r e d . [N B : H o w e v e r , in r e la t io n to 7- th is a n d f o l l o w i n g c o m m e n t s o n S e c t io n 6 , s e e t h e ' O v e r v i e w - G e n e r a l c o m m e n t s ' r e g a r d in g t h e P r e c a u t io n a r y D ia g r a m .] Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 I 181 4 3 4 4 4 5 4 6 47 T h e a s s e s s m e n t r e s u lt s p r e s e n t e d a p p e a r to h a v e b e e n ta k e n d ir e c t ly fr o m M e m b e r S ta te s ' 2 0 1 2 p r o g r e s s r e p o r ts o n t h e ir E M P s, a n d n o n e w a n a ly s is s e e m s to h a v e b e e n u n d e r t a k e n b y th e W o r k in g G r o u p . T h e r e i s c le a r ly a n e e d f o r s o m e d e g r e e o f q u a l i t y /c o n s i s t e n c y r e v ie w . I t i s n o t p o s s ib l e to p r o v id e fu l l d e t a i l s o f t h e s e a s s e s s m e n t s w i t h in r e a s o n a b le l im i t s o f s p a c e , b u t s o m e k e y p o in t s n e e d t o b e e x p la i n e d to a l l o w r e a d e r s t o j u d g e th e s t r e n g t h o f th e a p p r o a c h a n d t h e l im it s to i t s in t e r p r e ta t io n . P lu s b u l le t p o in t s ................ T h e im p a c t o f t h e s e g a p s o n th e o v e r a ll a s s e s s m e n t m a y v a r y w i t h th e t y p e o f g a p . D a t a f r o m P o r t u g a l a r e m is s in g , b u t d a ta f r o m a d j o in in g E M U s o n th e I b e r ia n P e n in s u la m a y p r o v id e a v a lid p r o x y . G a p s in b r o a d r e g io n s a r e m o r e p r o b le m a t ic . T h e M e d i t e r r a n e a n b a s in m a y b e a s im p o r t a n t a s th e A t la n t ic fo r E u r o p e a n e e l p r o d u c t io n , b u t th e r e a re n o d a t a f o r a b o u t 3 /4 o f th e M e d it e r r a n e a n c o a s t l in e . I f w e c a r m o t a s s e s s e e l s t a t u s th e r e , i t l e a v e s a la r g e g a p in th e p ic t u r e fo r t h e s p e c ie s a s a w h o l e . C a n t e n t a t iv e o r p r e l im in a r y c o n c l u s io n s b e d r a w n o n th e b a s i s o f r e p o r te d la n d in g s fo r th is r e g io n ? R e p o r t e d e e l la n d in g s in n o n - E U M e d i t e r r a n e a n c o u n t r ie s (p a r t ic u la r ly E g y p t ) a r e v e r y la r g e , p e a k in g a t > 4 0 0 0 1 in 2 0 0 6 (F ig u r e 9 - 1 0 ) , w h i c h e x c e e d e d to ta l r e p o r te d E u r o p e a n la n d in g s a t th a t t im e . D o m a n y o r m o s t E M U s h a v e s u b s t a n t ia l e e l p r o d u c t io n a r e a s in s a l in e w a t e r s th a t a r e n o t f i s h e d a n d la c k b io lo g i c a l d a ta ? If s a l in e a r e a s a re p o o r ly c o v e r e d o r n o t c o v e r e d in m o d e i s , w h a t i s t h e e f f e c t o n th e a s s e s s m e n t s ? W o u ld in c l u s io n o f u n f i s h e d s a l in e w a t e r s in m o d e l s b o o s t s i lv e r e e l p r o d u c t io n a n d r a is e th e m o d e l l e d Boim.-nt f o r th a t E M U ? E e l g r o w t h i s m o r e r a p id ín s a l in e th a n f r e s h w a t e r (IC E S 2 0 0 9 ); d o m o d e ls ta k e th is in t o a c c o u n t? T h e W G E E L a r e w e l l a w a r e o f t h is p r o b le m a n d th e i s s u e h a s b e e n r a is e d w i t h A C O M a n d t h e E U . D i s c u s s e d in M a r c h 2 0 1 3 a n d i n W K E P E M P . B e in g p a r t ly a d d r e s s e d i n th e 2 0 1 4 W G E E L T o R s , b u t p e e r - r e v ie w o f th e E M P a s s e s s m e n t s r e m a in s a t e c h n ic a l a n d r e s o u r c e s i s s u e b e y o n d th e t im e r e s o u r c e a v a ila b le w i t h in t h e W G E E L . I n c o m p le t e r e p o r t in g b y E IF A A C /IC E S m e m b e r s i s c le a r ly a n o n g o in g p r o b le m , a n d th e W o r k in g G r o u p s h o u l d c le a r ly s p e l l o u t in T a b le s th e d a ta / in d ic a to r s th a t h a v e b e e n p r o v id e d b y E M U o r c o u n t r y ( d i s t in g u i s h i n g E U -M S s) . L a c k o f d a ta f r o m la r g e a r e a s i s a h u g e p r o b le m in e e l a s s e s s m e n t . H o w e v e r , th e s e v e r i t y o f t h e p r o b le m d if fe r s , d e p e n d i n g o n th e f o c u s . F o r e v a lu a t in g l o c a l /n a t io n a l / r e g io n a l /E U - w id e m a n a g e m e n t , b io m a s s a n d m o r ta l i t y in d ic e s a n d th e ir p o s i t i o n r e la t iv e t o c o r r e s p o n d in g r e fe r e n c e p o in t s p r o v id e s m e a n in g f u l a n d r e l ia b le in f o r m a t io n fo r th e a r e a s th a t d o p r o v id e d a ta . F o r a n a ly s in g s t o c k - w id e r e la t io n s , s u c h a s th e s to c k - r e c r u i t - r e la t io n , la c k o f d a ta fr o m m a n y a r e a s i s a s e r io u s p r o b le m . N o t e , h o w e v e r , th a t t r e n d s in r e c r u itm e n t a n d t r e n d s in la n d in g s h a v e s h o w n o n ly l i t t le d if f e r e n t ia t io n b e t w e e n a r e a s in t h e p a s t (D e k k e r 2 0 0 4 ) - th e l a n d in g s - b a s e d a n a ly s i s o f t h e s t o c k -r e c r u i t - r e la t io n w o u l d b e v a l id , e v e n o n a s u b s e t o f th e d a ta . G iv e n th e e x t r e m e v a r ia t io n b e t w e e n n e a r b y h a b ita t s (e .g . r iv e r s v e r s u s la g o o n s ) , b u t a l s o b e t w e e n l i k e w i s e h a b ita t s in n e a r b y c o u n tr ie s , w e s e e l i t t le p o in t in t e n t a t iv e f i l l in g in . D u p l i c a t in g in f o r m a t io n f r o m s o m e a r e a s t o f i l l th e g a p fo r n e a r b y a r e a s w o u l d b o i l d o w n to r a i s in g t h e s t a t is t ic a l w e ig h in g fa c to r fo r th e k n o w n a r e a s , w h i l e th e q u a l i t y o f t h o s e d a t a is o f t e n n o t b e y o n d d o u b t . E e ls d o o c c u r ín m a n y s a l in e w a te r s , a n d s e v e r a l c o u n t r ie s h a v e in c l u d e d t h e ir s a l in e / c o a s t a l a r e a s in th e ir m a n a g e m e n t p la n s a n d a s s e s s m e n t s . O t h e r a r e a s a r e u n c o v e r e d , b u t t h e s e h a v e m a in ly b e e n id e n t i f i e d in o u r r e s u l t s (e .g . w e e p i n g f a c e s in F ig 6 -2 ) . T h e c o n tr a s t s ín l i f e h i s t o r y c h a r a c te r is t ic s b e t w e e n f r e s h a n d s a l in e w a t e r s i s n o t f u n d a m e n t a l ly d i f f e r e n t f r o m th e c o n tr a s t s b e t w e e n o th e r a r e a s . A s in d ic a t e d in th e r e p o r t , t h e in t e m a t i o n a l a s s e s s m e n t t a k e s a s i t s p r im e in p u t s t h e 3 B & E A in d ic e s f r o m E e l M a n a g e m e n t U n it s , a n d th e a s s e s s m e n t s fo r e a c h o f t h o s e u n i t s is c o n s id e r e d t o h a v e u s e d th e a p p r o p r ia t e p a r a m e te r s . T h is w a s ta b u la t e d in th e M a r c h m e e t i n g a n d r e p o r t in th e W K E P E M P 2 0 1 3 . I t i s a l s o t a b u la t e d in C h a p t e r 4 , o f t h is r e p o r t in c l u d in g t h e c o u n t r ie s o u t s i d e o f t h e E U . 182 Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 4 8 p. 3 2 , S e c 6 .5 , l i n e 1 & F ig u r e 6 -1 s ta t e s th a t t h e P r e c a u t io n a r y D ia g r a m s p lo t th e 3 B s & £ A . In fa c t t h e y a p p e a r to p lo t B c u r r e n t / B o ( % ) a g a in s t £ A . T h e b o u n d a r i e s b e t w e e n th e c o lo u r e d z o n e s in F ig u r e 6 -1 s h o u l d b e d e f in e d in th e t e x t a n d /o r t h e f ig u r e c a p t io n . 4 9 p .3 5 - 3 6 , F ig u r e s 6 .1 a n d 6-2 : i t i s n o t c le a r h o w t h e o v e r a l l s u m f o r £ A ( fr o m th e E M U o r c o u n t r y d a ta ) i s d e r iv e d . T h e o v e r a l l r a t io fo r t h e b io m a s s in d ic a t o r c o u ld b e e s t im a t e d a s EBeumnt / £Bo f o r r e p o r t in g ju r is d ic t io n s . F o r Z A , d o e s th e r e p o r t c a lc u la t e th e o v e r a ll V a l u e a S : ( C B b e s t — £ B c u r r e n t ) / £ B b e s t ? 5 0 p .3 5 : In F ig u r e 6 -1 , s c a l in g th e b u b b le s b y Bbest c o n f u s e s t h e p r o d u c t iv e c a p a c i t y ( I a r g e a r e a s c a n p r o d u c e lo t s o f e e ls ) w it h th e r e a l iz e d p r o d u c t io n . 5 1 F o r c o m m u n ic a t i o n t o m a n a g e r s , it m ig h t b e b e t t e r to n o t u s e Bbest t o s c a le th e b u b b le s b u t r a th e r u s e s im ila r s iz e d s y m b o l s fo r a ll E M U s o r c o u n t r ie s b u t w it h t w o c o lo u r s r e p r e s e n t in g th e f o l l o w i n g c o n d it io n s : a w h i t e s y m b o l to in d ic a t e Bbest/Bo < 40%Bo ( i .e . fa i lu r e to m e e t t h e ta r g e t e v e n in th e a b s e n c e o f a ll a n t h r o p o g e n ic m o r ta l it y ) a n d a s o l id s y m b o i to in d ic a t e Bbcst/Bo > = 40%Bo ( p o t e n t ia l to a t t a in t h e t a r g e t in th e a b s e n c e o f m o r ta l i t y ) . T h is w o u l d s h o w w h e t h e r th e fa i lu r e o f a n E M U o r c o u n t r y t o a c h ie v e i t s o b j e c t iv e (Bcurrent/Bo < 40%Bo) i s d u e to in s u f f i c ie n t m a n a g e m e n t in t e r v e n t io n in th e g iv e n y e a r v e r s u s fa i lu r e to m e e t th e ta r g e t d u e to l o w p o t e n t ia l p r o d u c t io n in th a t y e a r . 5 2 T h e in f o r m a t io n th a t n e e d s t o b e c o m m u n ic a t e d to m a n a g e r s i s w h e r e Bcurrcnt i s r e la t iv e t o 40%Bo a n d £ A ( th e th r e e c o lo u r s ) a n d w h e r e Bbcsi w o u l d b e r e la t iv e to Bo. In th is c a s e , u s i n g t h e s a d o r h a p p y fa c e s y m b o l s c o u ld b e u s e d to c o m m u n ic a t e th is in f o r m a t io n ( s a d fa c e m e a n s Bbest w a s b e l o w 40%Bo, h a p p y f a c e m e a n s Bbest > = 40%Bo) w i t h th e s a m e c o io u r s c h e m e o f r e d , y e l lo w , a n d g r e e n t o d e s c r ib e th e c u r r e n t s ta t e o f th e s to c k , a n d th e w h i t e s y m b o l s t o in d ic a t e n o in f o r m a t io n . T h is s c h e m e w o u l d a v o id p la c i n g t h e la r g e r e d s y m b o l fo r F r a n c e a s i t c u r r e n t ly a p p e a r s in F ig u r e 6 .2 . In fa c t , l in e s 3 -6 o f th a t p a r a g r a p h d id th a t . T h e f u n c t io n a l r e la t io n b e t w e e n £ A a n d % S P R w a s d i s c u s s e d in IC E S -S G IP E E (2 0 1 0 ) , in th e w id e r s e t t in g o f d e v e l o p i n g th e r e q u ir e d m e t h o d o lo g y . T h e 2 0 1 3 r e p o r t e x p la i n e d m e t h o d o lo g y in c o m m o n w o r d s , a n d r e fe r r e d b a c k to th e s o u r c e s , in o r d e r to p u t p r im e f o c u s o n th e r e s u lt s . B b e s t n o t n e c e s s a r i ly r e la t e s to p r o d u c t io n a re a ; t h e m a jo r p a r t o f Bbest i s d e r iv e d f r o m a s in g le c o u n tr y ! S c a l in g t h e b u b b le s b y Bcurrentt w o u l d m ix t h e in f o r m a t io n o n t h e s i z e /p r o d u c t iv i t y w it h th a t o n £ A . W e d is a g r e e . T h e s c a l in g o f t h e b u b b le s d o e s h ig h l ig h t t h e r e la t iv e im p o r ta n c e o f d i f f e r e n t a r e a s /c o u n t r ie s , w h i l e th e in f o r m a t io n o n w h e t h e r a im s h a v e o r n o t b e e n a c h ie v e d is a d e q u a t e ly r e p r e s e n t e d in th e b a c k g r o u n d c o lo u r . T h e s u g g e s t e d c h a n g e w o u l d r e d u c e th e in f o r m a t io n c o n t e n t o f th e p lo t , a n d w o u l d n o t s im p l i f y th e in t e r p r e ta t io n . T h e R e v ie w G r o u p s u g g e s t s r e p la c in g c o lo u r s b y s a d / h a p p y s y m b o l s , w h i l e l o s in g th e in f o r m a t io n o n th e r e la t iv e im p o r t a n c e o f a r e a s . T h e la r g e r e d b u b b le fo r F r a n c e d o m in a t e s th e p lo t , r e f le c t in g t h e d o m in a t in g s h a r e o f t h e to ta l s t o c k b e in g lo c a t e d in F r a n c e . W e d o n o t u n d e r s t a n d w h a t th e R e v ie w G r o u p w a n t s t o a c h ie v e , b y r e m o v i n g e s s e n t ia l in f o r m a t io n . Joint EiFAAC/ICES/CFCM WCEEL REPORT 2014 183 53 p .3 6 , S e c 6 .6 : th e f ir s t p a r a g r a p h s ta t e s , T h is i s e d it in g . 'T h e a n th r o p o g e n ic m o r ta l i t y L A is e s t im a te d to be j u s t a t (a vera g ed o ve r r e p o r t in g E M U s ) o r fa r a b o ve (a vera g ed o v e r r e p o r t in g c o u n tr ie s ) th e p r e c a u tio n a r y le v e l th a t w o u ld be in a cc o rd a n ce w i th IC E S g e n e ra l p o l ic ie s fo r re c o v e r in g s to ck s (fo r E M U su rn s: L A = 0 .4 1 w i th ta r g e t 0 .4 2 ; f o r c o u n t r y s u m s : L A = 1 .4 0 w i th ta r g e t 0 .1 4 ) . ' It i s d i f f ic u l t t o u n d e r s t a n d t h e v a lu e s f o r t h e t a r g e t Z A s . In r e fe r e n c e to F ig u r e 6 .1 , t h e s u m o f t h e b io m a s s in d ic a t o r o v e r a ll E M U s ( to p p a n e l o f F ig u r e 6 -1 ) s h o w s th e BcunWBo a t a v a lu e o f 18% w h i c h w o u l d g í v e a m a x im u m £ A o f 0 .4 1 a c c o r d in g t o t h e r u le (0 .9 2 * Bcurren,/40%Bo = 0.92 * 18%Bo / 40%Bo). F o r t h e c o u n t r y s u m , B curroi t/Bo e q u a ls 6% w h i c h w o u l d g i v e a m a x im u m E A o f 0.14 (0.92 * 0.06/0.40). P e r h a p s th e f o l l o w i n g w o u l d b e c le a r e r to th e r e a d e r : ‘ T h e b io m a ss o fe s c a p in g s i lv e r eel CBcurrmt) e s t im a te d o v e r a ll E M U s r e p o r tin g w a s 1 8 % o fB o . T h e m a x im u m L A f o r th a t le v e l o f s p a w n e r p r o d u c tio n eq u a ls 0 .41 (i.e. 0 .9 2 * 0 .1 8 /0 .4 0 ) . T h e e s t im a te d rea lize d £ A w a s 0 .4 2 , a t th e m a x im u m leve l. T h e b io m a ss o fe s c a p in g s i lv e r ee l e s t im a te d o v e r a ll r e p o r t in g c o u n tr ie s w a s 6 % o fB o . T h e m a x im u m L A f o r th a t le v e l o f s p a w n e r p r o d u c tio n e q u a ls 0 .1 4 (i.e . 0 .9 2 * 0 .0 6 /0 .4 0 ) . T h e e s t im a te d r e a lize d L A w a s 1 .4 0 , g r e a t ly a b o ve th e L A l i m i t / A n d B u t t h i s c o m m e n t s h o u l d b e c o n s id e r e d i n th e l i g h t o f w h a t w a s m e n t io n e d a b o v e r e g a r d in g £ A = 0 .9 2 fo r Bbcs, = Bo r a th e r t h a n fo r Bcuncnt = 40% Bo. Section 7, Eel spec ific reference po in ts based on the S-R re la tionsh ip 5 4 T h e d e v e l o p m e n t o f t h e a p p r o p r ia t e t im e s e r i e s h a s p r o v e n t o b e x h e W G E E L in t e n d s to d e v e l o p a S to c k A n n e x in t h e f u tu r e to c h a l l e n g in g . E f fo r t s o f E U M e m b e r a d d r e s s t h is i s s u e - s e e A n n e x 4: R e s p o n s e t o G e n e r ic T o R s S ta te s to p r o v id e e s t im a t e s o f e x p lo i t a t io n r a te s w i t h w h i c h to d e r iv e e s t im a t e s o f t o t a l a b u n d a n c e a n d o f s p a w n e r s i s a n im p o r t a n t s t e p . H o w e v e r , t h e W o r k in g G r o u p n e e d s to d o c u m e n t t h e in p u t d a ta , t h e m e t h o d s fo r a g g r e g a t in g f r o m lo c a l s c a le s to e c o r e g io n a n d e v e n t u a l l y t h e s p e c ie s s c a le , a n d to b e c le a r e r o n th e l im i t a t io n s o f t h e d a ta a n d th e m o d e ls u s e d . A s p r e s e n t e d , th e r e r e m a in m a jo r i s s u e s w i t h h o w th e c a t c h e s a r e c o l le c t e d , c o l la t e d a n d p a r t i t i o n e d in t o l i f e s t a g e , a n d h o w m is s in g d a ta a r e___________________________________________________________________________________ 184 | Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 t r e a te d . T h e r e c o n s t r u c t io n o f c a tc h e s b a c k in t im e fo r a l l c o u n t r ie s i s n o t c u r r e n t ly a c c e p ta b le b a s e d o n th e in f o r m a t io n p r o v id e d b y th e W o r k in g G r o u p . I f t h is c o m p o n e n t o f th e r e c o n s t r u c t io n i s f la w e d , th e n a ll s u b s e q u e n t a n a ly s e s a n d d is c u s s i o n s a r e p r e m a tu r e . 5 5 I d e a l ly , o n e w o u l d w a n t t o u n d e r t a k e t h e S -R a n a ly s i s w i t h a b io m a s s e s t im a t e f o r th e e n t ir e p a n m ic t ic s to c k , b u t th e r e i s c le a r ly s u b s t a n t ia l s i lv e r e e l p r o d u c t io n w h i c h i s o u t s i d e th e s c o p e c o v e r e d in th e a n a ly s is . F o r e x a m p le , s i lv e r e e l f i s h e r i e s a r e g e n e r a l ly d ir e e t e d a t p r o d u c t io n f r o m r iv e r s y s t e m s , w h e r e s i lv e r e e l s c a n b e r e a d i ly c a u g h t b y in t e r c e p t o r y g e a r a t p r e d ic t a b le t im e s o f t h e y e a r . S i lv e r e e l s p r o d u c e d in s a l in e a r e a s c a n n o t b e r e a d i ly c a u g h t b y in t e r c e p t o r y g e a r a n d a r e g e n e r a l ly n o t s u b je c t t o t a r g e t e d f is h e r ie s (w d th th e e x c e p t i o n o f th e B a lt ic S e a ) . In a d d i t io n , in th e e a s t e m a n d s o u t h e m M e d it e r r a n e a n S e a , th e r e a r e e e l f i s h e r i e s w h i c h m a y r iv a l in s i z e t h o s e o f E u r o p e a n c o u n t r ie s (F ig . 9 -1 0 ) , b u t la n d in g s f r o m t h e s e c o u n t r ie s a r e n o t in c l u d e d in th e a n a ly s is , p e r h a p s b e c a u s e th e r e a r e in s u f f i c ie n t h a r v e s t d a ta . The question therefore arises as to how robust the approach is without these data. If th e b io m a s s v a lu e u s e d in th e m o d e l u n d e r e s t im a t e s t h e tr u e s to c k b io m a s s b u t i s l in e a r ly r e la t e d to it , it m a y b e r e g a r d e d a s a b io m a s s in d e x r a th e r t h a n a n e s t im a t e . H o w e v e r , th e r e i s a n e e d t o d e t e r m in e w h e t h e r th e in d e x m a y b e b ia s e d a n d w h e t h e r t h e S - R a n a ly s i s w o u l d b e v a l id i f th is b io m a s s in d e x w a s 90% , 50% , 25% e tc o f t h e t r u e b io m a s s v a lu e . 5 6 N o e v i d e n c e h a s b e e n p r e s e n t e d in t h is r e p o r t t o r e in fo r c e th e d e p e n s a t io n a r g u m e n t , a n d s u c h a c o n c lu s io n is p r e m a tu r e . I f t r u e b io m a s s is g r e a te r th a n c a lc u la t e d b io m a s s , w o u l d th e p r o p o s e d c o n c lu s io n s r e g a r d in g s to c k d y n a m i c s a t l o w r e c r u itm e n t r e m a in v a lid ? E g y p t d a ta d o e s n o t s e e m r e l ia b le ( s e e c a t c h d a ta C h a p t e r 2 ). W e a r e w o r k in g to o b t a in d a ta fo r m is s in g c o u n t ie s , b u t in th e m e a n t im e s o m e a r e s t i l l m is s in g . T h u s o u r S S B s e r ie s a re in c o m p le t e a n d ta k e t h e a s s u m p t io n th a t m is s in g d a ta a r e p r o p o r t io n a l to d o c u m e n t e d d a ta a n d t h u s th a t m is s in g S SB a r e p r o p o r t io n a l to d o c u m e n t e d SSB . U n d e r e s t im a t e o f S S B t r a n s la t e s th e c u r v e to t h e r ig h t , a n d d o e s n o t c h a l l e n g e th e Bstoppa c o n c e p t . H o w e v e r d e e p e r a n a ly s i s i s n e e d e d to ta c k le t h is p o in t . S e e C h a p te r 3 a n d c o m m e n t 10 Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 185 5 7 T h e m a n a g e m e n t a d v ic e fo r E u r o p e a n e e l i s t h e s a m e w h e t h e r th e d e c l in e s in i n d ic e s o f r e c r u itm e n t a r e d u e to d e p e n s a t i o n , d e c l in e s in th e s u r v iv a l o f th e e a r ly l i f e s t a g e s a t s e a o r d e c l in e s in s i lv e r e e l s p a w n e r q u a l i t y a s s o c ia t e d w ít h c o n t in e n t a l fa c to r s . R e g a r d le s s o f th e m e c h a n is m , th e o n ly a c t io n th a t c a n b e ta k e n to in c r e a s e r e c r u itm e n t is to in c r e a s e s p a w n in g e s c a p e m e n t b y r e d u c in g a n t h r o p o g e n ic m o r ta l i t y o n th e c o n t in e n t a l s t a g e s o f E u r o p e a n e e l . T h e r e i s n o g u a r a n t e e th a t r e d u c in g m o r t a l i t y a t t h o s e s t a g e s w i l l r e s u lt in in c r e a s e d r e c r u it m e n t , b u t i t i s m o r e l i k e ly th a t r e c r u itm e n t w i l l c o n t in u e to b e l o w o r d e c l in e fu r th e r i f a n t h r o p o g e n ic m o r ta l i t y r a t e s r e m a in h ig h , a s e s t im a t e d in th is a s s e s s m e n t . 5 8 T h e d e t a i l e d d i s c u s s i o n in S e c t io n 7 is n o t e s s e n t ia l fo r p r o v id in g m a n a g e m e n t a d v ic e . H ig h e r p r io r i ty f o r th e W o r k in g G r o u p is i m p r o v i n g t h e c a tc h d a ta , b io lo g i c a l s a m p l in g a n d t h e in d ic e s o f a b u n d a n c e f r o m t h is p o in t fo r w a r d . 5 9 S e c t io n 7 .7 (p .5 3 ) c o n s id e r s th e e s t im a t i o n o f Biim. H o w e v e r , i f Bo i s 1 9 3 k t ( n o t m i l l i o n t o n s - s e e e d ito r ia l c o m m e n t s ) th e n th e l im it r e fe r e n c e p o in t in t h e E U E e l R e g u la t io n (40% o f Bo) is a b o u t 7 7 k t , w h i c h i s >70% g r e a te r th a n a n y Bmrrent in th e h is to r ic a l t im e s e r ie s . T h is w o u l d im p ly th a t th e s t o c k h a s n o t b e e n s u s t a in a b ly m a n a g e d fo r m o r e th a n 6 0 y e a r s , w h i c h t h e n c a s t s d o u b t o n u s i n g th e 1 9 6 0 -7 9 p e r io d a s a b a s e l in e fo r a s s e s s m e n t . T h e r e a re c le a r ly v a r io u s p o s s ib l e e x p la n a t io n s fo r t h e s e a n o m a l ie s ( in c o r r e c t e s t im a t io n o f Bo, (3 su , e tc ) a n d t h e y n e e d t o b e e x p lo r e d . 6 0 In t h e a b s e n c e o f a S to c k A n n e x , a l l th e p a r a m e t e r s u s e d in th e e q u a t io n s a n d th e ir s u f f i x e s n e e d to b e d e f in e d a n d p a r a m e t e r v a lu e s u s e d in th is m o d e l ( r e fe r r e d t o in S e c t io n s 7 .4 a n d 7 .5 ) s h o u l d b e p r o v id e d in t h e r e p o r t. D a ta a r e p r o v id e d fo r 6 7 o f th e 81 E M U s b u t m o r e in f o r m a t io n s h o u ld b e p r o v id e d o n w h e r e th e d a t a h a v e c o m e fr o m a n d f l a w s a s s o c ia t e d w i t h th e m . D is c u s s e d in C h a p te r 3 . A n d s e e # 1 2 a ls o D o n ' t a g r e e . E s s e n t ia l fo r a d d r e s s in g th e m a n a g e m e n t r e s p o n s e to v e r y l o w s to c k a n d r e c r u itm e n t . W e r e r e q u e s t e d to f o l l o w u p t h is l in e o f t h in k in g b y A C O M . S e e C h a p te r 3 . W G E E L in t e n d s t o d e v e l o p a S to c k A n n e x in th e f u tu r e to a d d r e s s th is i s s u e - s e e A n n e x 4: R e s p o n s e t o G e n e r ic T o R s 186 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 6 1 p .3 8 . S e c 7 .2 , l i n e 2: th e t e x t s u g g e s t s th a t th e b e s t a v a i la b le p r o x y fo r S SB is th e e s c a p e m e n t th a t e x i s t s a f te r a l í o f th e f i s h e r i e s a n d o t h e r m o r t a l i t ie s (b o th n a tu r a l a n d a n t h r o p o g e n ic ) in c o n t in e n t a l a n d li t to r a l w a te r s h a v e o c c u r r e d . H o w e v e r t h is in f o r m a t io n is a ls o u n a v a i la b le , s o th e r e a l p r o x y is r e p o r te d la n d in g s . 6 2 p .4 0 , p a r a 2: th e r e p o r t s t a t e s th a t th e c a t c h e s w e r e fu r th e r d iv id e d b y s t a g e ( y e l lo w a n d s i lv e r e e l ) b a s e d o n c o l le c t e d s e r i e s m a d e a v a ila b le to W G E E L o r b y e x p e r t k n o w le d g e . T h is in f o r m a t io n s h o u l d b e in c l u d e d in a t a b le . 6 3 p .4 0 , S e c 7 .1 1 .1 : (N B S e c t io n n u m b e r is in c o r r e c t .) A l l t h e p a r a m e t e r s u s e d in th e e q u a t io n s a n d th e ir s u f f ix e s n e e d to b e d e f in e d : s a p p e a r s to r e fe r t o s i lv e r e e l s b u t i s n o t r e a l ly r e q u ir e d ; H a p p e a r s to b e t h e in s t a n t a n e o u s r a te o f a n t h r o p o g e n ic m o r ta l i t y b u t i s la te r s e t a t 0 s o c o u ld b e o m it t e d ; 't ' i s u n d e f in e d b u t i s s h o w n t o r e fe r to y e a r in S e c 7 .5 a n d , a s s u c h , s h o u l d b e s h o w n a s a s u f f ix (a t p r e s e n t i t a p p e a r s to b e a v a r ia b le ) . F o r c la r ity , a s y m b o l o th e r t h a n P s h o u l d b e u s e d fo r e x p lo i t a t io n r a te , a s i t i s e a s i l y c o n f u s e d w i t h th e b io m a s s s y m b o l . 6 4 p .4 0 , S e c 7 .4 : T h e u s e o f e x p e r t o p in io n to d e r iv e s t a r t in g v a lu e s fo r e x p lo i t a t io n r a te s i s a g o o d b e g in n in g in th e e f f o r t to d e v e l o p e s t im a t e s o f s i lv e r e e l e s c a p e m e n t . H o w e v e r , th e r e is in s u f f i c ie n t in f o r m a t io n to a l l o w th e r e a d e r to u n d e r s t a n d h o w th e e x p e r t o p in io n s o n e x p lo i t a t io n r a te w e r e d e v e l o p e d , w h y t h e a g g r e g a t io n fo r IC E S e c o r e g io n s a t t h is s t a g e , a n d h o w t h e e x p lo i t a t io n r a te s fo r a n e c o r e g io n a n d t im e p e r io d w e r e d e t e r m in e d 6 5 p .4 7 , b e l o w F ig u r e 7 .6 , l in e 3: a r e fe r e n c e is g iv e n t o ' e q u a t io n (0 ) ', b u t o n ly o n e e q u a t io n is n u m b e r e d (p .4 1 ) s o th is is n o t v e r y h e lp f u l . 6 6 p .4 9 , F ig u r e 7-8 : th e r e a p p e a r s to b e a l e v e l i n g o r u p t u m o f e s c a p e m e n t in th e B a lt ic , N o r t h S e a a n d C e lt ic S e a b u t n o t B a y o f B is c a y a n d M e d ite r r a n e a n ; c a n th is b e a t t r ib u te d t o t h e m a n a g e m e n t m e a s u r e s ? 6 7 p .5 1 , F ig u r e 7 -10 : n e e d to m a k e c le a r in c a p t io n th a t c a t c h e s a r e s i lv e r e e l s o n ly . S e c 7 .4 .1 f r o m W G E E L 2 0 1 3 e x p l i c i t l y e x p la in s h o w w e a s s e s s e s c a p e m e n t a f te r a n t h r o p o g e n ic m o r t a l i t ie s in th e c o n t in e n ta l p h a s e . M o r e o v e r m e m b e r s t a t e s a r e r e q u ir e d b y th e e e l r e g u la t io n to d e l iv e r e s c a p e m e n t f ig u r e (a r t ic le 9 .1 .a ) W G E E L in t e n d s to d e v e l o p a S to c k A n n e x in th e f u t u r e to a d d r e s s th is i s s u e - s e e A n n e x 4: R e s p o n s e to G e n e r ic T o R s S e c t io n d e le t e d in th is y e a r 's r e p o r t W G E E L in t e n d s t o d e v e l o p a S to c k A n n e x in th e f u tu r e to a d d r e s s t h is i s s u e - s e e A n n e x 4: R e s p o n s e t o G e n e r ic T o R s S e c t io n d e le t e d in t h is y e a r 's r e p o r t T h e f ig u r e 7 -8 s h o w s m o r e v a r ia t io n f r o m y e a r t o y e a r a n d n o c le a r u p t u m . S e e a l s o C h a p te r 3. W G E E L in t e n d s t o d e v e l o p a S to c k A r tn e x in th e f u tu r e to a d d r e s s th is i s s u e - s e e A n n e x 4: R e s p o n s e t o G e n e r ic T o R s Joint EIFAAC/iCES/CFCM WGEEL REPORT 201 4 187 6 8 p .5 1 , S e c 7 .6 , p a r a 2: L in e s 2 - 5 p r o v id e a n a w k w a r d a n d in c o r r e c t d e s c r ip t io n o f S - R r e la t io n s h ip s . T h e B e v e r t o n - H o l t f u n c t ío n h a s m a x im u m r e c r u itm e n t o c c u r r in g a t in f in i t e s p a w n e r a b u n d a n c e , n o t c o m p e n s a t io n f o r h ig h r e c r u itm e n t . B o th R ic k e r a n d B e v e r t o n -H o lt h a v e m a x im u m r e c r u its p e r s p a w n e r a t th e o r ig in , d e c l in in g m o n o t o n i c a l l y w i t h in c r e a s in g s p a w n e r a b u n d a n c e , a n d r e c r u itm e n t in c r e a s e s f a s te r t h a n S S B fo r S S B l e s s t h a n th e v a lu e fo r m a x im u m g a in . 6 9 p .5 3 , s e c o n d F ig u r e 7 -9 : y - a x is la b e l s h o u l d b e 'B io m a s s / Bo (% )' a n d th is s h o u l d b e r e f le c t e d in t h e c a p t io n . 70 p .5 4 , S e c t io n 7 .8 , p a r a 5: T h is p a r a g r a p h p r o v id e s a c o n f u s i n g (o r in c o r r e c t ) e x p la n a t ío n o f th e r e p la c e m e n t l in e ; in th e a b s e n c e o f d e n s i t y - d e p e n d e n t p r o c e s s e s t h e p o t e n t ia l fo r s p a w n in g s t o c k p r o d u c t io n s h o u l d d e f in e d b y th e g r a d ie n t o f th e S -R r e la t io n s h ip n o t b y th e r e p la c e m e n t l in e . 71 F ig u r e 9 -9 , s h o w i n g 'T o ta l la n d in g s (a ll li fe s ta g e s ) fr o m 2 0 1 3 C o u n tr y R e p o r ts ( n o t a ll c o u n tr ie s rep o r ted ); th e co rrec ted tr e n d h a s m is s in g d a ta f i l i e d b y G L M . ' s h o u ld b e m o v e d t o th is s e c t io n o f th e r e p o r t a s t h i s i s th e f ig u r e fo r m o d e l l e d la n d in g s . F ig u r e 9 -9 s h o u l d n o t a p p e a r in S e c t io n 9 a s i t g iv e s th e im p r e s s io n to th e r e a d e r th a t l a n d in g s a r e r e p o r te d fo r a ll t h o s e c o u n t r ie s b a c k t o 1 9 4 5 . Section 8, D iscussion o f assessm ent m ethods and resu lts Section 9, Data and trends 72 S e c t io n 9 .1 d e s c r ib e s t h e t im e - s e r ie s o f d a t a o n g la s s a n d y e l lo w e e l r e c r u it m e n t . T h e s e le c t io n o f t ím e s e r ie s a n d th e m e t h o d u s e d to c o m b in e th e m n e e d m o r e e x p la n a t io n ( s e e a ls o e d i t o r ia l c o m m e n t s ) . T h e fa c t th a t s o m e t im e s e r i e s h a v e b e e n te r m in a te d b e c a u s e o f la c k o f r e c r u it s (e .g . E m s a n d V id a a ) s u g g e s t s th a t th e u s e o f t im e s e r i e s s t a r t in g a n d e n d in g a t d if f e r e n t t im e s m a y in t r o d u c e b ia s e s . I t is r e c o g n is e d th a t e f f o r t s m u s t b e m a d e to m a k e th e b e s t u s e o f a v a i la b le d a ta , b u t t h e d a t a c a n b e t e s t e d to s e e w h e t h e r s u c h b ia s e s e x i s t . F o r e x a m p le , i f th e r e w e r e t w o g r o u p s o f t im e s e r i e s w i t h g r o u p 1 s p a n n in g th e p e r io d fr o m 1 9 8 0 t o 2 0 0 0 a n d g r o u p 2 th e p e r io d fr o m 1 9 8 0 to t h e p r e s e n t , th e g r o u p s c o u ld b e c o m p a r e d o v e r th e in i t i a l p e r io d t o s e e _________ w h e t h e r th e i o s s o f g r o u p 1 m ig h t _________ D e s c r ip t io n r e v i s e d C h a p te r 3 . S e e # 5 9 S in c e w e h a v e c o n c e r n a b o u t Bo e s t im a t e , t h e b io m a s s i n th e s t o c k - r e c r u i t m e n t g r a p h a r e k e p t in t o n n e s P a r a g r a p h r e m o v e d in th is y e a r 's r e p o r t S in c e th e c h a p t e r h a s b e e n r e s t r u c tu r e d , th e r e i s n o m o r e r e a s o n t o m o v e th is f ig u r e None T h e W G E E L 2 0 1 0 c o n s id e r e d s p a t ia l s tr u c tu r e o f th e r e c r u itm e n t . T a b le 2 .1 p l 5 , fo r th e s e r i e s d i s c o n t in u e d in F r a n c e , t h e c lu s t e r s a r e d if f e r e n t , g r o u p s l ( A d o u r 2 s e r ie s , G ir o n d e 2 s e r ie s ) , 3 L o ir e , 5 V ila in e . P le a s e a l s o lo o k a t f ig u r e 2 .1 6 p a g e 43: T h e B is c a y s e r ie s a r e in r e d o n t h e r ig h t , t h e y h a v e th e s a m e tr e n d a s t h o s e in B r i t is h I s l e s o r t h e M e d ite r r a n e a n . 188 I Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 in t r o d u c e a b ia s in th e la t e r y e a r s . 7 3 L im it e d in f o r m a t io n i s p r o v id e d o n th e t im e s e r i e s th a t a r e e x c lu d e d fr o m th e a n a ly s i s a n d t h e r e a s o n s . I t w o u l d b e h e lp f u l to in c l u d e in T a b le s 9 -1 to 9 -3 ( A n n e x 7 ) t h e s ta r t a n d e n d d a t e o f th e t im e s e r ie s , th e n u m b e r o f y e a r s fo r w h i c h e s t im a t e s a r e a v a ila b le , a n d a n y c o m m e n t s a b o u t p o t e n t ia l u n c e r ta in ty in t h e d a ta , e .g . i f s a m p l in g i s c o n d u c t e d u p s t r e a m o f a f is h e r y . M o r e e x p la n a t io n i s r e q u ir e d o n th e f lu c t u a t in g n a t u r e o f t h e r e c r u itm e n t s e r i e s in F ig u r e s 9 -3 , 9 -4 a n d 9 -5 . 7 4 S e c t io n 9 .2 d e s c r ib e s t r e n d s in y e l lo w e e l a n d s i lv e r e e l a b u n d a n c e f r o m a s m a l l n u m b e r o f m o n it o r in g p r o g r a m m e s . T h e d a ta a r e n o t p r e s e n t e d in ta b u la r f o r m a n d a re d i f f ic u l t t o in t e r p r e t f r o m F ig u r e 9 -7 . T h e d a ta a r e l im i t e d b u t s u f f i c ie n t to s u g g e s t th a t th e r e la t io n s h ip b e t w e e n r e c r u it m e n t a n d y e l lo w / s i l v e r a b u n d a n c e c a n b e c o m p le x . T h e s e c o m p le x i t i e s p r o v id e a n o t h e r r e a s o n fo r s u g g e s t i n g n o n - s t a t io n a r i t y in a n y S - R r e la t io n s h ip s . 7 5 T h e c o n v e r s io n o f s t o c k ín g n u m b e r s to g la s s e e l e q u iv a le n t s s h o u l d a t t e m p t to i n c l u d e a l l m o r t a l i t y b e t w e e n c a p tu r e a n d r e le a s e (p .1 0 4 ) . I t i s n o t c le a r w h y t h is h a s n o t b e e n m o d e l l e d . 7 6 S to c k ín g r e m a in s a n im p o r ta n t , a n d c o n t e n t io u s , i s s u e fo r e e l m a n a g e m e n t a n d s o m o r e s h o u l d b e m a d e o f t h e s e d a ta . I t m a y b e p o s s ib l e , f o r e x a m p le , to a s s e s s t h e p r o p o r t io n a l lo s s o r g a in o f g la s s e e l e q u iv a le n t s in d i f f e r e n t a r e a s to a s s e s s t h e e x t e n t th a t s t o c k in g c o u ld b e im p a c t in g s t o c k a b u n d a n c e . 7 7 p .6 2 , S e c 9 .1 1 .1 a n d F ig u r e 9 -1 : It is u n c le a r w h a t t h e f ig u r e i s s h o w in g ; th e n u m b e r o f a v a i la b le t im e s e r ie s s h o u ld n e v e r d e c r e a s e , s o i s t h i s th e n u m b e r o f 'a c t iv e ' t im e -s e r ie s ? D o e s th is ig n o r e g a p s in th e t im e s e r ie s ? N o n e a r e e x c lu d e d , s e r ie s a r e n o w s c a le d t o t h e ir a v e r a g e v a lu e b e fo r e t h e G L M . T h e s e r ie s th a t a r e e x c lu d e d f r o m s c a le d g r a p h s a r e d e s c r ib e d n o w T h e W G E E L h a s r e m o v e d th e y e l lo w e e l a n d s i lv e r e e l tr e n d s e r i e s g r a p h , t h o s e s h o u l d n o t b e c o n s id e r e d a s r e p r e s e n ta t iv e o f th e tr e n d in s to c k s iz e . T h e r e la t io n b e t w e e n r e c r u it s a n d s u b s e q u e n t y e l lo w e e l a b u n d a n c e h a s n o r e la t io n t o th e s t o c k - r e c r u it - r e la t io n . A n t h r o p o g e n ic m o r t a l i t y o n y e l lo w a n d s i lv e r e e l in te r fe r e . A n a s s u m e d a n d r e a s o n a b le M w a s a p p l ie d a n d th a t m o s t ly in o r d e r to fa c i l i t a t e c o m p a r i s o n s b e t w e e n d if f e r e n t s i z e s o f e e l s u s e d fo r s to c k in g . T h e p o s s ib l e m o r t a l i t ie s w h e n u s i n g d if f e r e n t m e t h o d s t o c a tc h g la s s e e l s i s a t o ta l ly d i f f e r e n t i s s u e th a t h a s n o t h in g t o d o w i t h t h i s s im p le w a y o f " e q u a l is a t io n " , a n d h a s t o b e a d d r e s s e d in a n o t h e r c o n te x t . T h is i s tr u e a n d a n e t b e n e f i t i s a p r e r e q u is i t e f o r s t o c k in g . T h is i s s u e h a s b e e n d e a l t w i t h in r e c e n t W G E E L R e p o r ts , e .g . in th e c h a p te r o n S T O C K E E L in th e W G E E L R e p o r t f r o m 2 0 1 1 1 . Y es a c t iv e s e r ie s , c o r r e c te d in t h e c a p t io n n o w . Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 189 7 8 p .6 2 , f in a l p a ra : i t a p p e a r s th a t t im e s e r i e s a r e o n ly u s e d in th e a n a ly s i s i f t h e y e x c e e d a c e r ta in n u m b e r o f y e a r s , a n d i t w o u l d b e h e lp f u l i f th is w a s e x p la i n e d h e r e r a th e r th a n in S e c t io n 9 .1 1 .3 ; h o w la r g e a g a p i s a c c e p ta b le ? T h e t im e s e r i e s a r e s c a le d to th e 1 9 7 9 -9 4 m e a n , b u t it i s n o t c le a r w h e t h e r d a ta m u s t b e a v a i la b le fo r th a t fu l l p e r io d o r fo r a c e r ta in n u m b e r o f y e a r s w i t h in it; th i s i s a p o t e n t ia l s o u r c e o f b ia s . It a p p e a r s th a t a n y t im e s e r ie s s p a n n ín g th e 1 9 7 9 -9 4 p e r io d m ig h t b e u s e d ; s o h o w w a s th e 3 5 y e a r l im i t d e t e r m in e d ? 7 9 p .6 4 , p a r a 2: t o a id r e a d in g in f u tu r e y e a r s , s p e c i f i c y e a r s s h o u l d b e r e fe r e n c e d , i .e . 'In 2 0 1 2 , . . . ' , e tc . r a th e r t h a n 'L a s t y e a r , . . . ' . 8 0 Is a n y la g (n e g a t iv e ) a p p l i e d to th e y e l l o w e e l t im e s e r ie s to c o m p a r e t h e m w it h t h e g la s s e e l s - o r s h o u l d it b e ? T h e y - a x i s c a p t io n in d ic a t e s a r a t io , b u t th e d a ta s h o w %; th is s h o u l d b e th e s a m e a s F ig u r e 9 -4 . Y es in 2 0 1 3 th e s e r ie s h a d to h a v e d a t a in th e 1 9 7 9 -1 9 9 4 p e r io d f o r th e c a lc u la t io n o f t h e W G E E L r e c r u it m e n t in d e x , n o t in 2 0 1 4 . 3 5 y e a r s l im it w a s o n ly u s e d t o l i m it th e n u m b e r o f s e r ie s s h o w n in g r a p h 4 .3 a n d 4 .4 p r e s e n t in g th e r a w d a ta . T h e o n ly l im it a t io n n o w i s o f c o u r s e h a v in g d a ta in th e b a s e l in e p e r io d . N o t e d 81 8 2 8 3 p .6 5 : F ig u r e 9 -4 i s n o t r e fe r r e d t o in th e t e x t a n d h a s a c o n f u s i n g c a p t io n ; th e t im e s e r i e s o f g la s s a n d y e l lo w e e l a r e n o t s h o w n in th e f ig u r e a s s u g g e s t e d ; in a d d i t io n th e d i f f e r e n c e b e t w e e n th e 'm e a n v a lu e s ' s h o w n in F ig u r e s 9 -2 a n d 9 -4 i s u n c le a r (o r a r e t h e y t h e s a m e ? ) . p .6 6 , p a r a 4: t h e f ir s t t w o s e n t e n c e s s a y th e s a m e th in g ; n o in d ic a t io n i s g iv e n o f th e s ta t e o f th e r e c r u itm e n t in d ic e s b e t w e e n 2 0 0 6 a n d 2 0 1 2 ( i.e . w h e r e th e in d ic e s h a v e in c r e a s e d .) p .6 8 , F ig u r e 9 -5 : i t s h o u ld b e p o s s ib l e to a d d c o n f id e n c e l im it s fo r t h e G L M e s t im a t e s . N o , a n d n o i t w o u l d b e d i f f ic u l t t o h a v e a n id e a o f t h e a g e s t r u c tu r e o f t h e d if f e r e n t s e r i e s w h i c h in c lu d e B a lt ic s e r i e s a n d s o m e o th e r p la c e s in E u r o p e . T h e s c a l i n g i s d o n e o n t h e s a m e p e r io d a s t h e g la s s e e l s e r ie s , t h o u g h i t c o u ld h a v e s p a n n e d a lo n g e r p e r io d a s m o r e th a n fo u r r e l ia b le s e r i e s w e r e a v a ila b le a f te r 1 9 4 6 . B u t w e h a v e c h o s e n t o b e c o n s i s t e n t b e t w e e n th e t w o t im e t r e n d s . N o t e th a t f ig u r e s 4 .5 4 .6 a n d th e t a b le s 4 .1 4 .2 c o n s i s t e n t ly e x p r e s s th e r e c r u itm e n t a s a p e r c e n ta g e o f th e b a s e l in e p e r io d 1 9 6 0 -1 9 8 0 . W e d o n o t u n d e r s t a n d th is c o m m e n t . T h e f ig u r e d o e s s h o w th e a v e r a g e o f t h e g la s s e e l ( in b lu e ) a n d y e l l o w e e l ( in b r o w n ) s e r ie s . S o m e t e x t h a s b e e n a d d e d to c la r if y w h y t h is f ig u r e is d r a w n . T h e v a lu e i s t h e s a m e a s in f ig u r e 4 .3 a n d th is h a s b e e n e x p la in e d b y a f o o t n o t e r e fe r e n c e . N o t e d 8 4 p .6 9 , F ig u r e 9 -6 : in d ic a t e s th a t th e r e i s a s m o o t h e d tr e n d w i t h c o n f id e n c e in t e r v a ls b u t th e r e i s n o d e s c r ip t io n o f h o w th e s m o o t h i n g w a s p e r fo r m e d . 8 5 p . 6 9 -7 0 : It i s d i f f ic u l t to c o n c lu d e a n y t h i n g f r o m th e d e s c r ip t io n o f th e y e l l o w e e l t im e s e r ie s . T h e r e i s n o r e fe r e n c e to F ig u r e 9 -7 in t h e te x t , a n d it i s n o t c le a r w h a t c o n c lu s io n i s d r a w n f r o m t h e s e d a ta . N o . W e w o u l d t h e n h a v e to d o th e a v e r a g e o f th e c o n f id e n c e in t e r v a ls o f th e p r e d ic t io n s o f a l l s i t e s . A n d th is w o u l d n o t b e m e a n in g f u l . P o in t t a k e n , s m o o t h i n g r e m o v e d N o o v e r a l l c o n c lu s io n s , f ig u r e d e le t e d f r o m t h e r e p o r t Y e llo w e e l a b u n d a n c e 190 | Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 8 6 T a b le 9 -6 ( A n n e x 7): I t w o u l d b e h e lp f u l t o c la r ify th e d i f f e r e n c e b e t w e e n y e a r s fo r w h i c h th e r e a r e n o d a ta , y e a r s w h e n th e f i s h e r y w a s c lo s e d a n d y e a r s w i t h a f i s h e r y b u t n o c a tc h ( if th is o c c u r s ) . 8 7 p .7 1 a n d F ig u r e 9 -8 : t h e t e x t r e fe r s to th r e e S c o t t is h d a ta s e r ie s b u t o n ly o n e is s h o w n in th e f ig u r e . A d d i t i o n a l d a ta s e r i e s f r o m S w e d e n a n d F r a n c e a r e d e s c r ib e d b u t a r e n o t p r e s e n t e d in t a b le s o r f ig u r e s . W h y n o t? 8 8 p p 7 2 - 7 6 : S e c t io n s 9 -3 a n d 9 -4 b o th d e s c r ib e la n d in g s d a ta f r o m th e C o u n t r y R e p o r t s a n d it i s u n c le a r w h y th e r e a r e t w o s e c t io n s . 8 9 p .7 3 , S e c 9 .3 : th e r e i s n o s p e c i f i c d e s c r ip t io n o f th e r e p o r te d /e s t im a t e d [W G E E L : W H A T I S M I S S I N G H E R E ?] in t h is s e c t io n a n d m o r e in f o r m a t io n is p r o v id e d e l s e w h e r e in t h e r e p o r t; m o r e in f o r m a t io n is r e q u ir e d o n h o w d if f e r e n t p a r ts o f th e f i s h e r i e s h a v e c h a n g e d ( i.e . g la s s , y e l l o w . s i lv e r e e l) . H o w h a s th e E U R e g u la t io n a f f e c t e d th e d a ta , i .e . n a t io n a l c lo s u r e s a n d o th e r m e a s u r e s ? 9 0 p .7 3 , F ig u r e 9 -9 : T h is f ig u r e s h o u ld n o t b e p r e s e n t e d in S e c t io n 9 a s it g iv e s th e im p r e s s io n th a t l a n d in g s a r e r e p o r te d fo r a l l t h o s e c o u n t r ie s b a c k t o 1 9 4 5 . If s u c h m o d e l l in g r e s u lt s a r e p r e s e n t e d , m in im a l ly , a n a c c o m p a n y in g p a n e l s h o u l d s h o w th e to ta l r e p o r te d la n d in g s , t h e m o d e l l e d p r e d ic t e d la n d in g s , a n d th e p r o p o r t io n o f th e p r e d ic t e d la n d in g s w h ic h a r e r e p o r te d ; F ig u r e 2 s h o w s a n e x a m p le d e v e l o p e d u s i n g th e d a ta in T a b le 9 .6 . It is s tr ik in g th a t th e r e p o r te d la n d in g s d u r in g 1 9 4 5 t o a b o u t 1 9 9 2 t o t a l le d a b o u t 1 0 0 0 0 t a n n u a l ly . 9 1 p .7 3 , p a r a 3: ( t h e r e fe r e n c e t o F ig u r e 8 - 1 0 s h o u l d b e F ig u r e 9 -1 0 .) I t w o u l d b e m o r e h e lp f u l to c o m p a r e th e m e a n c a tc h o v e r a n u m b e r o f y e a r s in c o u n t r ie s r e p o r t in g t o W G E E L a n d c o u n t r ie s n o t r e p o r t in g t o W G E E L r a th e r th a n h ig h l ig h t i n g 2 0 0 6 . 9 2 p .7 8 , T a b le 9 -7 a n d 9 -8 : It i s u n c le a r w h a t c a n b e d r a w n f r o m T a b le 9 -7 a n d n o e x p la n a t io n is p r o v id e d in th e te x t . S im ila r ly , n o c o n c l u s io n s a r e d r a w n f r o m T a b le 9 -8 . I n fo r m a t io n i s g i v e n in th e m a in t e x t ( c o l le c t io n o f la n d in g s s t a t is t ic s b y c o u n tr y ) D o n e , f ig u r e 9 -8 d e le t e d f r o m t h e r e p o r t , t a b le m o v e d t o th e a c c o m p a n y in g e l e c t r o n ic a n n e x . S e c t io n 9 -3 d e s c r ib e c o m m e r c ia l la n d in g s , s e c t io n 9 -4 is d e d ic a t e d to r e c r e a t io n a l c a tc h e s . T h is s e c t io n d e a ls o n ly w i t h la n d in g s t a t is t ic s a n d t y p e o f r e p o r t in g A g r e e d ; a s w a s d o n e in o u r p r e v i o u s r e p o r ts . T h e r e m a r k a b le l e v e l o f u n d e r r e p o r t in g h a s b e e n a n a ly s e d /d is c u s s e d b y D e k k e r (2 0 0 3 ) . T h e a p p a r e n t s ta b i l i t y f r o m 1 9 4 5 to 1 9 9 2 i s v e r y m is le a d in g . D e t a i l e d in fo r m a t io n , c o m p a r a b le o v e r t im e , f r o m a r e a s w i t h c o n s i s t e n t d a ta , d o s h o w th e d e c l in e . G r a p h d e le t e d f r o m t h e r e p o r t . N o t e d I n fo r m a t io n f u l f i l l e d Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 191 93 94 95 96 97 98 99 p .8 1 : S e c t io n s 9 .5 d e a l s w i t h th e c o m p ila t io n o f d a ta o n s t o c k in g a n d S e c t io n s 9 .6 e v a lu a t e s th e s í z e a n d o r ig in o f s t o c k e d f i s h a n d th e d e v e l o p m e n t o f 'g la s s e e l e q u iv a le n t s ' . T h e s e S e c t io n s s e e m o u t o f p la c e in th is s e q u e n c e , a s s e c t io n 9 .7 i s a b o u t f i s h in g e f fo r t . S e c t io n 9 .5 , 9 .6 , a n d 9 .8 d e s e r v e th e ir o w n m a in s e c t io n , g iv e n th e q u e s t i o n a n d th e a m o u n t o f d e ta il . p .8 1 : i t w o u l d b e h e lp f u l to c la r ify th a t th e d a ta p r e s e n t e d in F ig u r e s 9 -1 1 a n d 9 -1 2 a r e d e r iv e d f r o m T a b le s 9 -9 a n d 9 - 1 0 r e s p e c t iv e ly ; w h i l e in f o r m a t io n is p r o v id e d o n t h e s t o c k in g p r o g r a m m e s in e a c h c o u n tr y , i t w o u l d b e h e lp f u l to p r o v id e a s u m m a r y th a t e x p la in s th e o v e r a l l t r e n d s in t h e d a ta . A r e th e r e d i f f e r e n c e s in th e r e g io n a l tr e n d s ? W h a t c a u s e d t h e d e c l in e in g la s s e e l s to c k in g f r o m a r o u n d 1 9 9 0 a n d th e in c r e a s e in y e l l o w e e l s t o c k in g a r o u n d th e s a m e t im e ? F ig u r e 9 -1 3 p r e s e n t s t h e r a t io o f y e l l o w t o g la s s e e l s t o c k in g , b u t i s n o t r e fe r r e d to in t h e te x t . S e c t io n 9 .6 d e le t e d f r o m th e r e p o r t . p . 1 0 2 , l i n e 6: A n a n n u a l m o r t a l i t y o f 0 .1 3 8 fo r g la s s e e l s s e e m s u n l ik e ly . If th e tr u e m o r t a l i t y i s h ig h e r th a n th is , t h e n th e e s t im a t e o f t h e n u m b e r o f ' g l a s s e e l e q u iv a le n t s ' s t o c k e d w i l l b e u n d e r e s t im a t e d . p .1 0 6 - 1 0 7 , F ig u r e s 9 -1 3 & 9 -14 : T h e c a p t io n s r e fe r to U n i t e d K in g d o m (G B ); N o r t h e r n I r e la n d i s p a r t o f U K b u t n o t p a r t o f G B , s o e i th e r U K o r G B s h o u ld b e r e fe r r e d to . N B : w i t h r e fe r e n c e to o t h e r s e c t io n s , G B i s n o t a n E U M e m b e r S ta te , U K is . p .1 0 7 : S e c t io n 9 .7 d e a ls w i t h e f fo r t , w h i c h p o t e n t ia l ly p r o v id e s a m e a n s fo r a s s e s s in g t r e n d s in e x p lo i t a t io n u s e d in r u n - r e c o n s t r u c t io n a p p r o a c h , b u t n o r e fe r e n c e is m a d e to t h e s e d a ta in S e c t io n 7 . p .1 0 9 : S e c t io n 9 .8 p r e s e n t s d a ta o n a q u a c u l t u r e f r o m th r e e s o u r c e s , w h ic h s h o w e s s e n t ia l l y th e s a m e tr e n d s . N o e x p la n a t io n i s p r o v id e d fo r t h e d e c l in e i n e e l a q u a c u l t u r e p r o d u c t io n , a l t h o u g h t h is a p p e a r s s u r p r is in g a t a t im e w h e n a v a i la b i l i t y o f w i ld c a u g h t e e l m u s t b e d e c l in in g . I s th is b e c a u s e o f d i f f ic u l t ie s o f o b t a in in g j u v e n i le e e l s fo r o n - g r o w in g ? Section 10, G lass eel land ings and trade S e c t io n s 1 0 .2 t o 1 0 .4 d e a l w i t h g la s s e e l c a t c h e s a n d t r a d e , a n d t h u s c o v e r m u c h N o t e ta k e n fo r f u t u r e r e p o r ts . T h e c h a n g e in g la s s e e l v e r s u s y e l l o w e e l s t o c k in g is m a in ly d u e t o t h e in c r e a s e d u s e o f la r g e r , p r e - g r o w n e e l s fo r r e s to c k in g . F o r s o m e e a s t e m E u r o p e a n c o u n t r ie s i t i s n o t p o s s ib l e to r e s t o c k w i t h g la s s e e l s in e a r ly s p r in g d u e t o ic e c o v e r . I f M = 0 .1 3 8 i s th a t u n l ik e ly , th e n u m b e r s a r e u n d e r e s t im a t e d . H o w e v e r , th e id e a b e h in d th e e q u iv a le n t s i s m a in ly t o m a k e d if f e r e n t s t o c k in g m a t e r ia ls c o m p a r a b le a n d to s im p l i f y fu r th e r c a lc u la t io n s . B e s id e s , t h e W G E E L m a d e a n e x t e n s iv e r e v ie w o n n a tu r a l m o r t a l i t ie s in t h e 2 0 1 2 R e p o r t (C h a p te r 7 in IC E S C M 2 0 1 2 /A C O M :1 8 ) IC E S v o c a b u la r y (IC E S R e fe r e n c e C o d e s R E C O V o c a b u la r y v 2 .0 q ) U n i t e d K in g d o m i s a b b r e v ia t e d a s G B (a n d N I r e la n d G B -N IR ) E ffo r t s e c t io n n o t u p d a t e d t h is y e a r C a u s e o f n e g a t iv e tr e n d i s a c o m b in a t io n o f g la s s e e l a v a i la b i l i t y a n d p r ie e s , a n d lo w e r m a r k e t d e m a n d . C o m m e n t n o t e d f o r f u t u r e r e fe r e n c e . 192 | Joint EIFAAC/ICES/GFCM WCEEL REPORT 2014 o f th e s a m e g r o u n d a s S e c t io n s 9 .1 ,9 .5 a n d 9 .6 . S e c t io n s 1 0 .5 a n d 1 0 .7 a d d r e s s s t o c k in g a n d a q u a c u l tu r e a n d th e r e fo r e o v e r la p w i t h s u b s e c t io n s 9 .5 , 9 .6 a n d 9 .8 . O v e r a l l t h e s e s e c t io n s a re c o n f u s in g , a n d i t w o u l d b e h e lp f u l to id e n t i f y c le a r o b j e c t iv e s fo r c o l la t in g t h e s e d a ta ; th e a n a ly s i s c o u ld t h e n b e d ir e c t e d t o w a r d s a c h ie v in g t h o s e a im s . T h e s e o b j e c t iv e s m ig h t b e t o ( r e l ia b ly ) q u a n t i fy t h e a n t h r o p o g e n ic l o s s e s to s t o c k s f r o m f i s h in g a n d a d d i t io n s to s t o c k s f r o m s t o c k in g , a n d a s s e s s l ik e ly f u tu r e tr e n d s . 1 0 0 T h e r e i s a r e q u ir e m e n t u n d e r E M P s th a t t h o s e M S s w i t h g la s s e e l f i s h e r ie s m u s t s e t a s id e 60% fo r s t o c k in g , b u t th e r e is n o r e q u ir e m e n t fo r M S s t o p u r c h a s e t h e s e e e l s . S e c t io n 1 0 .8 c o n c lu d e s th a t t h e s t o c k in g ta r g e t i s n o t b e in g a c h ie v e d b y a l l M S s . W h y a r e t h e r e m a in in g c o u n t r ie s n o t s t o c k in g a n d n o t r e a c h in g t a r g e t s - fu n d in g ? Is t h e W o r k in g G r o u p a b le to c o m m e n t o n w h e r e t r a c e a b i l i ty i s w o r k in g a n d w h y d a ta p r e s e n t e d in C o u n t r y R e p o r t s , E u r o S ta t , e tc . d if fe r ? 1 0 1 T h e in f o r m a t io n in S e c t io n 1 0 .2 to 1 0 .4 a p p e a r s t o b e r e le v a n t t o th e E U -C IT E S C o m m it t e e in r e la t io n t o C IT E S d i s c u s s i o n s o n th e l i s t i n g o f e e l , b u t i t is n o t c le a r w h e t h e r t h e y a r e p r o v id e d fo r o r u s e d b y th a t c o m m it t e e . 1 0 2 p .1 1 5 , f in a l p a ra ; i t i s s ta t e d , ‘E u r o S ta t c a n w e l l d e sc r ib e g la s s eel e x p o r ts in E u r o p e ’ d e s p i t e a n u m b e r o f c a v e a ts b e in g h ig h l ig h t e d ; d o e s t h is c o m m e n t a p p l y to th e r a w o r c o r r e c te d E u r o S ta t d a ta ? Section 11, Assessm ent o f qua lity o f eel stocks 1 0 3 S e c t io n 1 1 .2 p r o v id e s a u s e f u l r e v ie w o f r e c e n t l i t e r a tu r e o n c o n t a m in a n t s , d i s e a s e s a n d p a r a s i t e s o n t h e q u a l i t y o f e m ig r a t in g e e ls . A n u p d a t e i s p r o v id e d o n in c i d e n c e o f A n g u i l l ic o la c ra ssu s in d i f f e r e n t c o u n t r ie s b u t m u c h o f th e in f o r m a t io n i s n o t q u a n t i ta t iv e . S e c t io n 1 1 .3 p r o v id e s p r e l im in a r y r e s u lt s f r o m a m o d e l e s t im a t in g th e r e p r o d u c t iv e p o t e n t ia l o f s i lv e r e e l s w h e n t h e y r e a c h th e S a r g a s s o S e a , d e p e n d i n g o n o r ig in , s iz e , s e x , a n d in it ia l fa t c o n te n t . W h ile th e r e p o r t in d ic a t e s m a n y u n c e r ta in t ie s in th e m o d e l , t h e r e s u lt s h ig h l ig h t s o m e in t e r e s t in g a n d p o t e n t ia l ly im p o r ta n t c o n s id e r a t io n s c o n c e m i n g th e r e p r o d u c t iv e p o t e n t ia l o f e e l f r o m _________ d if f e r e n t a r e a s ( p a r t ic u la r ly th e e f f e c t s T h is w a s a d d r e s s e d in S e c t io n 1 0 .7 o f t h e 2 0 1 3 r e p o r t . T h e t im e f r a m e fo r W G E E L m e e t i n g is in s u f f i c ie n t fo r a d e t a i l e d tr a d e d a ta a n a ly s i s t o s c r u t in iz e p o s s ib l e s o u r c e s fo r d i f f e r e n c e s in s o u r c e d a ta S R G r e q u e s t IC E S a d v ic e a n d s ig h t o f th e d a ta a n d r e p o r t . T h is w a s c o m p l i e d w it h . C o r r e c te d E u r o s ta t d a ta . C o m m e n t n o t e d fo r f u t u r e r e fe r e n c e . Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 I 193 o f d is t a n c e to th e s p a w n in g a r e a s a n d s i z e a t e m ig r a t io n ) . T h e W o r k in g G r o u p m ig h t c o n s id e r in c o r p o r a t in g u n c e r t a in t ie s in t o th e m o d e l , t h u s a l l o w i n g a n a s s e s s m e n t , fo r e x a m p le , o f t h e p r o p o r t io n o f e e l s th a t h a v e a g r e a te r t h a n X % p r o b a b i l i t y o f h a v in g a r e p r o d u c t iv e p o t e n t ia l > Y, 1 0 4 W h ile t h e c u r r e n t r e s u lt s a r e v e r y in t e r e s t in g , i t i s p r e m a t u r e to s ta te , 'T h e n e w f ig u r e s s h o w c o n s id e ra b le v a r ia t io n in r e p r o d u c tio n p o te n t ia l b e tw e e n c o u n tr ie s /c a tc h m e n ts . ' (S e c t io n 1 1 .6 ) , a n d th e W o r k in g G r o u p s h o u l d b e m o r e c a u t ío u s a b o u t th e ir c o n c lu s io n s . 1 0 5 M o r e w o r k i s r e q u ir e d o n s o m e o f th e m o d e l in p u t s ( e .g . e n e r g y c o s t s o f m ig r a t io n u n d e r o c e a n ic c o n d it io n s ( e f f e c t s o f c u r r e n ts a n d p r e s s u r e a t d if f e r e n t d e p t h s ) , th e in f lu e n c e o f s h o a l in g , e tc ) . 1 0 6 M o n i t o r in g e e l q u a l i t y i s a n e x p e n s iv e u n d e r t a k i n g a n d a t th e m o m e n t n o g u id a n c e i s a v a i la b le t o p r io r i t iz e w h a t a s s e s s m e n t s s h o u l d b e c o n d u c t e d th a t w i l l g iv e m e a n in g f u l in fo r m a t io n . W h i le th is i s p o t e n t ia l ly im p o r ta n t w o r k , it s h o u l d b e e v a lu a t e d a g a in s t o t h e r d a t a d e f ic ie n c i e s a n d r e s e a r c h n e e d s to e n s u r e th a t i t i s th e h ig h e s t p r io r i t y a re a fo r im p r o v i n g th e a s s e s s m e n t a n d m a n a g e m e n t o f e e l; a t p r e s e n t c o l le c t in g a d e q u a t e in fo r m a t io n o n c a tc h e s , b io lo g ic a l c h a r a c te r is t ic s , a n d a b u n d a n c e in d ic e s th a t c a n b e u s e d t o d e l i v e r a s t o c k w i d e a s s e s s m e n t m u s t b e a h ig h e r p r io r ity . A n y p r o g r e s s m a d e o n i m p r o v i n g t h e k n o w le d g e a b o u t th e e f f e c t s o f c o n t a m in a n t s w i l l b e d if f ic u l t t o in c o r p o r a te in a s to c k w id e a s s e s s m e n t th a t d o e s n ' t e x i s t . Section 12, Local stock assessm ent 1 0 7 T h is s e c t io n m a k e s p r o p o s a l s fo r A g r e e d . s t a n d a r d iz in g d a ta c o l le c t io n to s im p l i f y a n d i m p r o v e p r o v i s io n o f r e p o r ts t o a r a n g e o f c u s t o m e r s / f o r a . S u c h e f fo r t s a r e to b e c o m m e n d e d , a l t h o u g h th e W o r k in g G r o u p s h o u l d b e c a u t io u s a b o u t s e e k in g e x c e s s i v e d e t a i l in th e d a t a r e p o r t in g . 1 0 8 O t h e r in f o r m a t io n r e q u ir e m e n t s a r e t o T h is i s n o t a n a c t io n a b le r e c o m m e n d a t io n . a d d r e s s c o m m it m e n t s o n m o n it o r in g a c t iv i t i e s o r c o m m itm e n t s t o C IT E S a n d i t i s n o t c le a r th a t t h e s e s h o u l d b e le d b y S c ie n c e , i n c l u d in g IC E S . C o m m e n t n o t e d . W e s t i l l b e l i e v e th e f ig u r e s s h o w v a r ia t io n a s in d ic a t e d . T h e s h o r t c o m in g s o f th e m o d e l a n d u n c e r t a in t ie s w it h r e s p e c t to th e d a ta , u s e d to e la b o r a t e th e f ig u r e s h a v e b e e n d is c u s s e d . F u l ly a g r e e d . C o m m e n t n o te d . 194 | Joint ElFAAC/iCES/CFCM WGEEL REPORT 2014 109 T h e p r io r i t ie s fo r th e a s s e s s m e r t t a re p r o b a b ly : C a t c h -e f fo r t - c p u e (S e c 1 2 .2 ) S to c k ( n o t s to c k in g ) in d ic a to r t a b le (S e c 1 2 .6 ) E s t im a te o f B o (S ec 1 2 .1 1 .2 ) B io lo g ic a l d a ta (S e c 1 2 .9 ) M a n a g e m e n t m e a s u r e s o v e r v i e w ( fo r e s t im a t in g c h a n g e s in e x p . r a te s ) (S e c 1 2 .8 ) M a n a g e m e n t m e a s u r e s d e t a i l s ( in c l u d in g e x p e c te d e f f e c t o n th e s to c k ) (S e c 1 2 .1 1 .3 ) O th e r d a t a ta b le s l i s t e d a r e u s e d fo r r e s p o n d i n g t o o th e r c o m m itm e n t s u n r e la t e d t o th e a s s e s s m e n t o f th e E U E e l R e c o v e r y R e g u la t io n . Sections 1 3 and 14, Forward focus and Research needs 110 S e c t io n 1 3 p r o v id e s a b r ie f h is t o r y o f e e l m a n a g e m e n t o v e r th e p a s t ~ 5 y e a r s a n d a n e v a lu a t io n o f th e a s s e s s m e n t s p r o v id e d in S e c t io n s 4 -8 . I t c o v e r s m u c h o f th e s a m e g r o u n d a s S e c t io n 8 a n d m ig h t s e n s i b l y b e c o m b in e d w i t h o r r e p la c e th a t s e c t io n . S e c t io n 14 a d d r e s s e s d a ta d e f i d e n c i e s a n d r e s e a r c h n e e d s id e n t i f i e d b y th e W o r k in g G r o u p , a l t h o u g h m o r e d e t a i l o n s o m e r e s e a r c h a r e a s i s p r o v id e d in o t h e r s e c t io n s a n d n o t a ll t h e p r o p o s a l s a r e fo r r e s e a r c h . It w o u l d b e h e lp f u l t o h a v e a ll th e d a ta d e f ic ie n c i e s a n d r e s e a r c h n e e d s d e s c r ib e d in s im ila r d e t a i l in o n e s e c t io n . T h is n e e d s t o b e a c c o m p a n ie d b y a n e v a l u a t i o n o f th e p r io r it ie s f o r th e v a r io u s p r o p o s a l s a n d a m o r e s y s t e m a t ic e x a m in a t io n o f w h a t is f e a s ib le . S u c h a n e x a m in a t io n w o u l d a s s i s t in d e t e r m in in g w h i c h a n a ly s e s s h o u l d b e p u r s u e d a n d w h i c h d r o p p e d . A t p r e s e n t i t is d i f f ic u l t t o d e t e r m in e w h e t h e r e e l q u a l i t y , fo r e x a m p le , is th e m o s t p r e s s in g r e s e a r c h n e e d o r ju s t h a s th e m o s t f e r v e n t a d v o c a t e . 111 I t w o u l d b e h e lp f u l i f f u t u r e T o R c le a r ly r e f le c t e d (a ) th e s p e c i f i c a d v is o r y r e q u ir e m e n t s ( e .g . r e p o r t o n th e s t a t u s o f t h e E u r o p e a n e e l s t o c k b y r e g io n ) , (b ) m e t h o d o lo g ic a l d e v e l o p m e n t s t o m e e t t h o s e a d v is o r y n e e d s ( r e p o r t o n th e fu r th e r d e v e l o p m e n t a s t o c k - r e c r u itm e n t r e la t io n s h ip fo r E u r o p e a n e e l ) , (c ) o th e r i s s u e s r e q u ir in g a t t e n t io n in o r d e r t o p r o v id e t h e a d v ic e (e .g . r e s e a r c h a n d d a ta n e e d s ) (e .g . r e p o r t o n th e d e v e l o p m e n t o f m e t h o d s to __________ in c o r p o r a t e e e l q u a l i t y in c u r r e n t__________ A c t io n e d to s o m e e x t e n t in th is r e p o r t a n d n o t e d fo r fu tu r e r e fe r e n c e a n d d e v e lo p m e n t . A g r e e d . T im e c o n s tr a in t s p r e v e n t e d t h i s d u r in g t h e 2 0 1 4 m e e t i n g b u t i t i s n o t e d fo r 2 0 1 5 . D o n e - t h e 2 0 1 4 T o R w e r e d e s ig n e d w i t h t h is r e c o m m e n d a t io n in m in d , a n d r e c o m m e n d a t io n s fo r T o R fo r 2 0 1 5 a r e s im ila r ly d e s ig n e d . Joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 195 112 113 a s s e s s m e n t s . ) I t is n o t c le a r w h e r e R e c o m m e n d a t io n 1 o r ig in a t e s f r o m in th e r e p o r t. T h e f o l l o w i n g r e c o m m e n d a t io n s a re m a d e in t h e r e p o r t b u t n o t in c lu d e d in A n n e x 4: p .1 3 2 : It i s r e c o m m e n d e d th a t a ll c o u n t r ie s a d h e r e to th e c o n d i t io n s la id o u t in th e E e l R e g u la t io n o f 2 0 0 9 a n d e s t a b l i s h th e r e q u ir e d in t e r n a t ío n a l t r a c e a b i l i ty s y s t e m in l in e w i t h A r t ic le 12. p .1 5 4 : W G E E L 2 0 1 3 r e c o m m e n d e d th e d e v e l o p m e n t o f s ta n d a r d iz e d a n d h a r m o n iz e d p r o t o c o l s fo r th e e s t im a t io n o f e e l q u a l i t y t h r o u g h th e o r g a n iz a t io n o f a W o r k s h o p o f a P la n n in g G r o u p o n th e M o n it o r in g o f E e l Q u a li t y ) . p .1 5 5 , S e c 11 .8 : W e r e c o m m e n d th a t m o n it o r in g o f s i lv e r e e l q u a l i t y s h o u ld b e in t r o d u c e d a s p a r t o f n e w o r e x i s t in g p r o g r a m m e s (D C F /D C M A P ) . p .1 8 5 : It i s r e c o m m e n d e d th a t r e s e a r c h t o in v e s t ig a t e fa c to r s th a t c a u s e N a tu r a l M o r ta l i t y (M ) to v a r y in s p a c e a n d t im e b e g iv e n th e h ig h p r io r ity . T h u s fu r th e r d a t a c o l le c t io n a n d r e s e a r c h s h o u ld b e e n c o u r a g e d to s u p p o r t a n d im p r o v e th e k n o w le d g e o f t h is d i f f i c u l t r e se a r c h t o p ic in o r d e r to o b t a in m o r e a n d m o r e r e l ia b le s t o c k a s s e s s m e n t s . It is n o t c le a r w h y s o m e ta b le s a r e in th is A n n e x w h i l e o t h e r s a r e in th e tex t . [N B Is th e r e a s t a n d a r d IC E S fo r m a t; e .g . p la c i n g a ll t a b le s a n d f ig u r e s a t th e e n d o f e a c h s e c t io n ? ] R e c o m m e n d a t io n s a r e c o l la t e d in A n n e x 7. M o s t t a b le s a r e n o w p la c e d a t th e e n d o f r e le v a n t c h a p te r s , w it h th e e x c e p t io n o f s o m e la r g e ta b le s th a t a r e p r o v id e d a s a c c o m p a n y in g e l e c t r o n ic ta b le s . 196 I Joint EIFAAC/ICES/CFCM WCEEL REPORT 2014 Annex 9: Glossary Eel life history Eels are quite unlike other fish. Consequently, eel fisheries and eel biology come with a specialized jargon. This section provides a quick introduction. It is by no means in- tended to be exhaustive. There are two species of eel in the North Atlantic, the European eel (Anguilla anguilla) and the American eel (A. rostrata). The European eel Anguilla anguilla (L.) is found and exploited in fresh, brackish and coastal waters in almost all of Europe and along the Mediterranean coasts of Africa and Asia. The life cycle has not been fully eluci- dated but current evidence supports the view that recruiting eel to European continental waters originate in a single spawning stock in the Atlantic Ocean, presumably in the Sar- gasso Sea area, where the smallest larvae have been found. Larvae (Leptocephali) of progres- sively larger size are found between the Sar- gasso Sea and European continental shelf waters. While approaching the continent, the laterally flattened Leptocephalus transforms into a rounded glass eel, which has the same shape as an adult eel, but is unpigmented. Glass eel migrate into coastal waters and estuaries mostly between October and March/April, before migrating, as pigmented elvers, on into rivers and eventually into lakes and streams between May and September. Following immigration into continen- tal waters, the prolonged yellow eel stage (known as yellow eel) begins, which lasts for up to 20 or more years. During this stage, the eels may occupy freshwater or inshore marine and estuarine areas, where they grow, feeding on a wide range of insects, worms, molluscs, crustaceans and fish. Sexual differentiation occurs when the eels are partly grown, though the mechanism is not fully understood and probably depends on local stock density. At the end of the continental growing period, the eels mature and return from the coast to the Atlantic Ocean; this stage is known as the silver eel. Female silver eels are twice as large and may be twice as old as males. Glass eel Leptocephalus Eggs Ocean \ Eiver Continent Yellow eel Spawning Silvcr ecl The life cycle of the European eel. The nam es of the m ajor life stages are indicated; spawning and eggs have never been observed in the w ild and are therefore only tentatively in- cluded. (D ia g ra m : W il le m D e k k e r ) . joint EIFAAC/ICES/GFCM WGEEL REPORT 2014 I 197 B o o t la c e , I n t e r m e d ia t e s iz e d e e ls , a p p r o x . 1 0 - 2 5 c m in le n g t h . T h e s e t e r m s a r e m o s t f in g e r l in g o f t e n u s e d in r e la t io n to s to c k in g . T h e e x a c t s i z e o f th e e e l s m a y v a r y c o n s id e r a b ly . T h u s , i t i s a c o n f u s i n g te r m . E e l R iv e r B a s in " M e m b e r S ta te s s h a l l id e n t i f y a n d d e f in e t h e in d iv id u a l r iv e r b a s in s ly i n g o r E e l w i t h in th e ir n a t io n a l te r r ito r y th a t c o n s t i t u t e n a tu r a l h a b i ta t s fo r t h e E u r o p e a n M a n a g e m e n t e e l ( e e l r iv e r b a s in s ) w h ic h m a y in c l u d e m a r i t im e w a te r s . I f a p p r o p r ia t e U n i t j u s t i f ic a t io n i s p r o v id e d , a M e m b e r S ta te m a y d e s ig n a t e th e w h o l e o f i t s n a t io n a l t e r r ito r y o r a n e x i s t i n g r e g io n a l a d m in is t r a t iv e u n i t a s o n e e e l r iv e r b a s in . In d e f in in g e e l r iv e r b a s in s , M e m b e r S ta te s s h a l l h a v e t h e m a x im u m p o s s ib l e r e g a r d fo r t h e a d m in is t r a t iv e a r r a n g e m e n t s r e fe r r e d t o in A r t ic le 3 o f D ir e c t iv e 2 0 0 0 /6 0 /E C [ i.e . R iv e r B a s in D is t r ic t s o f th e W a te r F r a m e w o r k D ir e c t iv e ] ." E C N o . 1 1 0 0 /2 0 0 7 . Y o u n g e e l , in i t s f ir s t y e a r f o l l o w i n g r e c r u it m e n t f r o m th e o c e a n . T h e e l v e r s t a g e i s s o m e t im e s c o n s id e r e d to e x c lu d e th e g la s s e e l s t a g e , b u t n o t b y e v e r y o n e . T o a v o id c o n f u s io n , p ig m e n t e d 0 + c o h o r t a g e e e l a r e in c l u d e d in th e g la s s e e l te r m . Y o u n g , u n p i g m e n t e d e e l , r e c r u it in g f r o m th e s e a in t o c o n t in e n t a l w a t e r s . W G E E L c o n s id e r t h e g la s s e e l te r m to in c l u d e a l l r e c r u it s o f th e 0 + c o h o r t a g e . T h e a r e a o f la n d a n d s e a , m a d e u p o f o n e o r m o r e n e ig h b o u r in g r iv e r b a s in s t o g e t h e r w i t h t h e ir a s s o c ia t e d s u r fa c e a n d g r o u n d w a t e r s , t r a n s it io n a l a n d c o a s t a l w a t e r s , w h i c h is id e n t i f i e d u n d e r A r t ic le 3 (1 ) o f th e W a te r F r a m e w o r k D ir e c t iv e a s th e m a in u n i t fo r m a n a g e m e n t o f r iv e r b a s in s . T h e te r m i s u s e d in r e la t io n to th e E U W a te r F r a m e w o r k D ir e c t iv e . M ig r a to r y p h a s e f o l l o w i n g th e y e l l o w e e l p h a s e . E e l in th is p h a s e a r e c h a r a c te r iz e d b y d a r k e n e d b a c k , s i lv e r y b e l ly w i t h a c le a r ly c o n tr a s t in g b la c k la te r a l l in e , e n la r g e d e y e s . S i lv e r e e l u n d e r t a k e d o w n s t r e a m m ig r a t io n t o w a r d s t h e s e a , a n d s u b s e q u e n t ly w e s t w a r d s . T h is p h a s e m a in ly o c c u r s in th e s e c o n d h a l f o f c a le n d a r y e a r s , a l t h o u g h s o m e a r e o b s e r v e d t h r o u g h o u t w in t e r a n d f o l l o w i n g s p r in g . S to c k in g ( fo r m e r ly c a l le d r e s to c k in g ) i s t h e p r a c t ic e o f a d d i n g f i s h [ e e ls ] to a w a t e r b o d y f r o m a n o th e r s o u r c e , to s u p p le m e n t e x i s t i n g p o p u l a t io n s o r to c r e a te a p o p u l a t io n w h e r e n o n e e x is t s . S i lv e r in g i s a r e q u ir e m e n t fo r d o w n s t r e a m m ig r a t io n a n d r e p r o d u c t io n . It m a r k s th e e n d o f t h e g r o w t h p h a s e a n d th e o n s e t o f s e x u a l m a t u r a t io n . T h is tr u e m e t a m o r p h o s i s i n v o l v e s a n u m b e r o f d i f f e r e n t p h y s i o lo g ic a l f u n c t io n s ( o s m o r e g u la t o r y , r e p r o d u c t iv e ) , w h i c h p r e p a r e th e e e l fo r t h e l o n g r e tu r n tr ip t o t h e S a r g a s s o S e a . U n l ik e s m o lt i f i c a t io n in s a lm o n id s , s i lv e r in g o f e e l s i s la r g e ly u n p r e d ic ta b le . I t o c c u r s a t v a r io u s a g e s ( f e m a le s : 4 - 2 0 y e a r s ; m a le s 2 - 1 5 y e a r s ) a n d s i z e s ( b o d y le n g t h o f f e m a le s : 5 0 - 1 0 0 cm ; m a le s : 3 5 - 4 6 c m ) (T e s c h , 2 0 0 3 ) . Y e l l o w e e l L if e - s ta g e r e s id e n t in c o n t in e n t a l w a t e r s . O f t e n d e f in e d a s a s e d e n t a r y p h a s e , (B r o w n e e l ) b u t m ig r a t io n w i t h in a n d b e t w e e n r iv e r s , a n d t o a n d f r o m c o a s ta l w a t e r s o c c u r s a n d th e r e fo r e in c lu d e s y o u n g p ig m e n t e d e e l s ( 'e lv e r s ' a n d b o o t la c e ) . E lv e r G la s s e e l R iv e r B a s in D is t r ic t S i lv e r e e l S to c k in g T o s i lv e r ( s i lv e r in g ) 198 | Jo in t EIFAAC/ICES/GFCM WCEEL REPORT 2014 Eel reference po in ts/popu la tion dynam ics C u r e n t e s c a p e m e n t b io m a s s ( B cu rren t) B e s t a c h ie v a b le b io m a s s (B b c s t) P r is t in e b io m a s s (Bo) BMSY-triggcr B s to p T h e a m o u n t o f s i lv e r e e l b io m a s s th a t c u r r e n t lv e s c a p e s t o t h e s e a t o s p a w n , c o r r e s s p o n d in g to th e a s s e s s m e n t y e a r . S p a w n in g b io m a s s c o r r e s p o n d in g to r e c e n t n a tu r a l r e c r u it m e n t t h a t w o u l d h a v e s u r v iv e d i f th e r e w a s o n ly n a t u r a l m o r t a l i t y a n d n o s to c k in g , c o r r e s s p o n d in g t o th e a s s e s s m e n t y e a r . S p a w n e r e s c a p e m e n t b io m a s s in a b s e n c e o f a n y a n t h r o p o g e n ic im p a c t s . L im it a n t h r o p o g e n ic m o r t a l i t y (Ai™) L im it s p a w n e r e s c a p e m e n t b io m a s s ( B n m ) P r e c a u t io n a r y a n t h r o p o g e n ic m o r t a l i t y (Apa) P r e c a u t io n a r y s p a w n e r e s c a p e m e n t b io m a s s (B Pa) R target S p a w n e r p e r r e c r u itm e n t (S P R ) % SP R E F E H £ A " 3 B s & A " V a lu e o f s p a w n in g - s t o c k b io m a s s (S S B ) w h i c h t r ig g e r s a s p e c i f i c m a n a g e m e n t a c t io n , in p a r tic u la r : t r ig g e r in g a lo w e r l im it fo r m o r t a l i t y to a c h ie v e r e c o v e r y o f th e s to c k . B io m a s s o f th e s p a w n in g s to c k , a t w h i c h r e c r u it m e n t i s s e v e r e ly im p a ir e d , a n d th e n e x t g e n e r a t io n is ( o n a v e r a g e ) e x p e c t e d t o p r o d u c e a n e q u a l ly l o w s p a w n in g - s t o c k b io m a s s a s th e c u r r e n t. B io m a s s o f th e s p a w n in g s to c k a t w h i c h r e c r u it m e n t i s s e v e r e ly im p a ir e d , a n d th e n e x t g e n e r a t io n h a s a 5% c h a n c e to p r o d u c e a n e q u a l ly l o w s p a w n in g - s t o c k b io m a s s a s th e c u r r e n t. A n t h r o p o g e n ic m o r t a l it y , a b o v e w h í c h th e c a p a c i t y o f s e l f - r e n e w a l o f th e s to c k i s c o n s id e r e d to b e e n d a n g e r e d a n d c o n s e r v a t io n m e a s u r e s a r e r e q u e s t e d (C a d im a , 2 0 0 3 ) . S p a w n e r e s c a p e m e n t b io m a s s , b e l o w w h i c h th e c a p a c i t y o f s e l f - r e n e w a l o f th e s to c k i s c o n s id e r e d to b e e n d a n g e r e d a n d c o n s e r v a t io n m e a s u r e s a r e r e q u e s t e d (C a d im a , 2 0 0 3 ) . A n t h r o p o g e n ic m o r ta l i t y , a b o v e w h i c h th e c a p a c i t y o f s e l f - r e n e w a l o f th e s to c k i s c o n s id e r e d to b e e n d a n g e r e d , t a k in g in t o c o n s id e r a t io n th e u n c e r ta in ty in th e e s t im a t e o f th e c u r r e n t s t o c k s ta tu s . T h e s p a w n e r e s c a p e m e n t b io m a s s , b e l o w w h i c h t h e c a p a c i t y o f s e l f - r e n e w a l o f th e s t o c k i s c o n s id e r e d t o b e e n d a n g e r e d , t a k in g in t o c o n s id e r a t io n th e u n c e r ta in ty in th e e s t im a t e o f th e c u r r e n t s t o c k s ta tu s . T h e G e o m e tr ic M e a n o f o b s e r v e d r e c r u it m e n t b e t w e e n 1 9 6 0 a n d 1 9 7 9 , p e r io d s in w h i c h th e s to c k w a s c o n s id e r e d h e a lt h y . E s t im a te o f s p a w n e r p r o d u c t io n p e r r e c r u it in g in d iv id u a l . R a t io o f S P R a s c u r r e n t ly o b s e r v e d to S P R o f th e p r is t in e s to c k , e x p r e s s e d in p e r c e n ta g e . % S P R i s a ls o k n o w n a s S p a w n e r P o t e n t ia l R a t io . T h e f i s h in g m o r t a l i t y r a te . s u m m e d o v e r th e a g e - g r o u p s in t h e s to c k . T h e a n t h r o p o g e n ic m o r t a l i t y r a te o u t s i d e t h e f is h e r y , s u m m e d o v e r t h e a g e - g r o u p s in t h e s to c k . T h e s u m o f a n t h r o p o g e n ic m o r ta l it ie s , i .e . Z A = E F + E H . R e fe r s t o t h e 3 b io m a s s in d ic a t o r s (Bo, Bbest a n d B cm -rent) a n d a n t h r o p o g e n ic m o r t a l i t y r a te (E A ). Defmition 40% EU Target: "The objective of each Eel Management Plan shall be to reduce anthro- pogenic mortalities so as to permit with high probability the escapement to the sea of at least 40% of the silver eel biomass relative to the best estimate of escapement that would have existed if no anthropogenic influences had impacted the stock". The WGEEL takes the EU target to be equivalent to a reference limit, rather than a target. Acronyms Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 1 199 A c r o n y m s D e f in it io n A C E A d v i s o r y C o m m it t e e o n th e E n v ir o n m e n t A C F M (IC E S ) A d v i s o r y C o m m it t e e o n F is h e r ie s M a n a g m e n t A C O M (IC E S ) A d v i s o r y C o m m it t e e o n M a n a g e m e n t A F N N a t io n a l F o r e s tr y A u th o r i ty A IC A k a ik e I n fo r m a tio n C r ite r io n A N C O V A A n a l y s i s o£ C o v a r ia n c e A N O V A A n a l y s i s o£ V a r ia n c e B E R T B a y e s ia n E e l R e c r u i tm e n t T r e n d m o d e l B IC B a y e s ia n In fo r m a tio n C r ite r io n B IO R I n s t i t u te o f F o o d S a fe ty , A n im a l H e a l t h a n d E n v ir o n m e n t " B IO R " , L a tv ia C C M C a t c h m e n t C h a r a c te r is a t io n a n d M o d e l l in g C IT E S C o n v e n t io n o n I n te r n a t io n a l T r a d e in E n d a n g e r e d S p e c ie s C N T S C e n tr e N a t io n a l d e T r a it e m e n t S ta t is t iq u e s , F r a n c e ( e x C R T S ) C O M M E U C o m m is s io n C P U E C a tc h p e r u n i t o f e f fo r t C R C o u n t r y R e p o r t C U S U M C u m u la t iv e S u m C o n tr o l C h a r t D B E E L D a t a b a s e o n E e l (E U P O S E p r o je c t) D C A L D e p a r t m e n t o f C u ltu r e , A r ts & L e is u r e , N . I r e la n d D C F D a ta C o l le c t io n F r a m e w o r k D F O D e p a r t m e n t o f F i s h e r ie s a n d O c e a n s D G -M A R E D ir e c to r a t e -G e n e r a l fo r M a r it im e A f fa ir s a n d F is h e r ie s , E U C o m m is s io n D G P A G e n e r a l D ir e c to r a te o f F is h e r ie s a n d A q u a c u lt u r e , P o r tu g a l D L S D a ta -L im it e d S to c k s D P M A D ir e c t io n d e s F S ch es M a r it im e s e t d e T A q u a c u ltu r e , F r a n c e E IF A A C E u r o p e a n I n la n d F is h e r ie s & A q u a c u lt u r e A d v i s o r y C o m m is s io n E M P E el M a n a g m e n t P la n E M U E e l M a n a g e m e n t U n i t EFF E u r o p e a n F is h e r ie s F u n d F A O F o o d a n d A g r ic u l t u r e O r g a n is a t io n F E A P T h e F e d e r a t io n o f E u r o p e a n A q u a c u lt u r e P r o d u c e r s F G F R I F in n is h G a m e a n d F is h e r ie s R e s e a r c h I n s t itu t e G A M G e n e r a l i s e d A d d i t i v e M o d e l G E M G e r m a n E e l M o d e l G F C M G e n e r a l F is h e r ie s C o m m is s io n o f th e M e d i t e r r a n e a n G IS G e o g r a p h ic I n f o r m a t io n S y s t e m s G L M G e n e r a l i s e d L in e a r M o d e l G lo b A n g F r e n c h M o d e l o f E e l P o p u la t io n D y n a m ic s H P S H y d r o p o w e r S ta t io n IC E S I n te r n a t io n a l C o u n c í l fo r th e E x p lo r a t io n o f t h e S e a L H T L ife H i s t o r y T ra it L 5 0 L 5 0 = th e le n g t h (L) a t w h i c h h a lf (50% ) o f a f i s h s p e c ie s m a y b e a b le t o s p a w n L V P A L e n g t h - b a s e d V ir tu a l P o p u la t io n A s s e s s m e n t 2 0 0 | joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 A c r o n y m s D e f in it io n M IW A M a r in e a n d I n la n d W a te r s A d m in i s t r a t io n M S M e m b e r S ta te M S Y M a x im u m S u s ta in a b le Y ie ld N A O N o r t h A t la n t ic O s c i l la t io n O N E M A O f f ic e N a t io n a l d e l'E a u e t d e s M i l ie u x A q u a t iq u e s , F r a n c e (e x -C S P ) P O S E P i lo t p r o je c t s to e s t im a t e p o t e n t ia l a n d a c tu a l e s c a p e m e n t o f s i lv e r e e l R B D R iv e r B a s in D is tr ic t R G E E L R e v ie w G r o u p o n E e l (IC E S ) S G IP E E S t u d y G r o u p o n I n te r n a t io n a l P o s t - E v a lu a t io n o n E e ls S L IM E R e s t o r a t io n th e E u r o p e a n E e l p o p u ia t io n ; p i lo t s t u d ie s f o r a s c ie n t i f ic f r a m e w o r k in s u p p o r t o t s u s t a in a b le m a n a g e m e n t S M E P II S c e n a r io -b a s e d M o d e l to r E e l P o p u la t io n s , v l l S N P E S u iv i n a t io n a l d e la p e c h e a u x e n g in s e t a u x f i l e t s S P R E s t im a t e o f s p a w n e r p r o d u c t io n p e r r e c r u it in g in d iv id u a l . S Q L S p e c ia l p u r p o s e p r o g r a m m in g la n g u a g e fo r m a n a g in g d a ta SSB S p a w n in g - S t o c k B io m a s s S T E C F S c ie n t i f ic , T e c h n ic a l a n d E c o n o m ic C o m m it t e e fo r F is h e r ie s , E U C o m m is s t o n S W A M S w e d i s h A n a ly t ic a l M o d e l s T o R T e r m s o f R e fe r e n c e V P A V ir tu a l P o p u la t io n A n a ly s i s W G W o r k in g G r o u p W G E E L J o in t E I F A A C /IC E S /G F C M W o r k in g G r o u p o n E e l W K E P E M P T h e W o r k s h o p o n E v a lu a t in g P r o g r e s s w i t h E e l M a n a g e m e n t P la n s W K E S D C F W o r k s h o p o n E e ls a n d S a lm o n in t h e D a ta C o l le c t io n F r a m e w o r k W F D W a te r F r a m e w o r k D ir e c t iv e W K L IF E W o r k s h o p o n th e D e v e l o p m e n t o f A s s e s s m e n t s b a s e d o n L I F E -h is to r y tr a its a n d E x p lo i ta t io n C h a r a c te r is t ic s W K P G M E Q W o r k s h o p o f a P la n n in g G r o u p o n t h e M o n it o r in g o f E e l Q u a l i t y u n d e r th e s u b je c t " D e v e lo p m e n t o f s t a n d a r d iz e d a n d h a r m o n iz e d p r o t o c o ls f o r th e e s t im a t io n o f e e l q u a lity " W G R F S W o r k in g G r o u p o n R e c r e a t io n a l F is h e r ie s S u r v e y s Y F S l Y o u n g F is h S u r v e y : N o r t h S e a S u r v e y lo c a t io n Joint EIFAAC/ICES/CFCM WGEEL REPORT 2014 ii Annex 10: Country Reports 2 0 1 3 -2 0 1 4 : Eel stock, fisheries and hab i- ta t reported by country In preparatíon for the Working Group, partícipants of each country have prepared a Country Report, in which the most recent information on eel stock and fishery are pre- sented. These Country Reports aim at presenting the best information which does not necessarily coincide with the official status. Participants from the following countries provided an updated report to the 2014 meet- ing of the Working Group on Eels: • Belgium • Denmark • Estonia • Finland • France • Germany • Greece • Ireland • Italy • Latvia • Lithuania • Montenegro • Netherlands • Norway • Poland • Portugal • Spain • The United Kingdom of Great Britain and Northern Ireland For practical reasons, this report presents the Country Reports in electronic format only (URL). Countrv Reports 2013/2014.